Supporting Information

An Effective Promoter for Reductive Coupling Reactions of Nitrodienes with Unactivated Alkenes: Sodium Phosphate Dibasic Heptahydrate

Mengmeng Zhang, Liming Yang, Chao Tian, Meng Zhou, Guanghui An* and Guangming Li*

Table of Contents

1.	Preparation of substrates	s3
2.	Optimization of Reaction Conditions	s3-s4
3.	Mechanistic Investigation	s5
4.	References	s5
5.	¹ H and ¹³ C NMR spectra	s6-s33

1 Preparation of substrates

The nitrodienes were prepared as reported in respective literature.¹ All characterization data are in accordance with the previous literature.

2 Optimization of Reaction Conditions^a

Table S1. Catalyst screening [a]

Ph{	NO ₂ 2 1a	+ Ph	Catalyst, Reductant Additive, EtOH	Ph
	Entry	Catalyst	Catalyst (mol%)	vield% ^b
	1	Fe(acac) ₃	10	23
	2	$Fe(acac)_3$	20	30
	3	$Fe(acac)_3$	30	48
	4	Fe(dibm) ₃	30	39
	5	$Ni(acac)_3$	30	25
	6	Fe(OX) ₃	30	trace
	7	$Nd(acac)_3$	30	N.R.
	8	$Co(acac)_2$	30	N.R.
	9	$Er(acac)_3$	30	N.R.

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1 equiv), Styrene (2 equiv), catalyst, PhSiH₃ (2 equiv) and Na₂HPO₄·7H₂O (2 equiv) was added in 2 mL of EtOH under atmosphere at 40°C for 2 h. ^{*b*} Isolated yields are given. N.R.=No reaction.

Table S2. Catalyst loading variation [a]

Ph (1a) ^{NO} 2 +	Ph -	Catalyst, Reducta Additive, EtOH	Ph Ph Ph
	Entry	Catalyst	Reductant	yield% ^b
	1	Fe(acac) ₃	PhSiH ₃	48
	2°	Fe(acac) ₃	Et ₃ SiH	N.R.
	3	Fe(acac) ₃	Ph ₃ SiH	N.R.
	4	Fe(acac) ₃	(EtO) ₃ SiH	34
	5	$Fe(acac)_3$	PMHS	43

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1 equiv), Styrene (2 equiv), Fe(acac)₃ (30 mol %), reductant (2 equiv) and Na₂HPO₄·7H₂O (2 equiv) was added in 2 mL of EtOH under atmosphere at 40°C for 2 h. ^{*b*} Isolated yields are given. N.R.=No reaction.

Table S3. Variation base screening [a]

	$Ph \left(\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & 1a \end{array} \right) NO_2$	+ Ph Catalys	st, Reducta tive, EtOH	Ph $\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	`Ph
Entry	Catalyst	Additive	Time	Temperature	yield% ^b
1	Fe(acac) ₃	Na ₂ CO ₃	2h	40	51
2	Fe(acac) ₃	NaC ₂ H ₃ O ₂	2h	40	47
3	Fe(acac) ₃	$Na_2S_2O_3$	2h	40	44
4	Fe(acac) ₃	K_2CO_3	2h	40	45
5	Fe(acac) ₃	KC ₂ H ₃ O ₂	2h	40	43
6	Fe(acac) ₃	K ₃ PO ₄	2h	40	42
7	Fe(acac) ₃	NaNO ₃	2h	40	33
8	Fe(acac) ₃	$NH_4C_2H_3O_2$	2h	40	39
9	Fe(acac) ₃	NH ₄ NO ₃	2h	40	38
10	Fe(acac) ₃	NH ₄ Cl	2h	40	34
11	Fe(acac) ₃	NaOH	2h	40	52
12	Fe(acac) ₃	NaH ₂ PO ₄	2h	40	55
13	Fe(acac) ₃	Na ₂ CO ₃	2h	40	53
14	Fe(acac) ₃	Na ₂ HCO ₃	2h	40	51
15	Fe(acac) ₃	-	2h	40	29
16	Fe(acac) ₃	NH ₄ HPO ₄	2h	40	45
17	Fe(acac) ₃	NaC ₂ H ₃ O ₂ ·2H ₂ O	2h	40	55
18	Fe(acac) ₃	K ₂ HPO ₄ ·2H ₂ O	2h	40	57
19	Fe(acac) ₃	Na ₂ HPO ₄ ·2H ₂ O	2h	40	62
20	Fe(acac) ₃	Na ₂ HPO ₄ ·7 H ₂ O	2h	40	89
21	Fe(acac) ₃	Na ₂ HPO ₄ ·12 H ₂ O	2h	40	83
22	Fe(acac) ₃	Na ₂ HPO ₄ +7 H ₂ O	2h	40	12
23	Fe(acac) ₃	Na ₂ HPO ₄ ·7 H ₂ O	2h	50	71
24	Fe(acac) ₃	Na ₂ HPO ₄ ·7 H ₂ O	2h	60	58
25	Fe(acac) ₃	Na ₂ HPO ₄ ·7 H ₂ O	3h	40	65

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1 equiv), Styrene (2 equiv), Fe(acac)₃ (30 mol %), PhSiH₃ (2 equiv) and additive (2 equiv) was added in 2 mL of EtOH under atmosphere at 40°C for 2 h. ^{*b*} Isolated yields are given. N.R.=No reaction.

3 Mechanistic Investigation

Reaction conditions for GC-MS:

1a (0.2 mmol, 1 equiv), Styrene (2 equiv), $Fe(acac)_3$ (30 mol %), $PhSiH_3$ (2 equiv) and additive (2 equiv) was added in 2 mL of EtOH under Ar protection. After stirring at 40°C for corresponding time, the reaction mixture was quickly cooled in liquid nitrogen under Ar protection before injection. The reaction mixture was allowed to melt under Ar and quickly injected in GC-MS.

Scheme S1. a: TG-DSC of NaH₂PO₄; b: TG-DSC of resulting precipitate after the reaction; c: comparison of a and b; d: generation of PhSi(OEt)H₂ vs time (detected by GC-MS)

4 References

(1) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028–15029.

5¹H and ¹³C NMR spectra

¹H and ¹³C NMR spectra of **2a**

¹H and ¹³C NMR spectra of **2b**

 1 H and 13 C NMR spectra of **2c**

 1 H and 13 C NMR spectra of **2d**

¹H and ¹³C NMR spectra of **2e**

 1 H and 13 C NMR spectra of **2g**

7,738 7,738 7,738 7,738 7,738 7,729

¹H and ¹³C NMR spectra of **2h**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 2i

¹H and ¹³C NMR spectra of **2**j

$\begin{array}{c} 7,7,7,1\\ 7,7,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3,3\\ 7,3,3$

H and ¹³C NMR spectra of **2k**

7,740 7,737 7,737 7,737 7,737 7,737 7,737 7,728 7,729 7,728 7,729 7,229 7,239

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 2l

 1 H and 13 C NMR spectra of **2m**

¹H and ¹³C NMR spectra of **2n**

¹H and ¹³C NMR spectra of **20**

1.56 1.53 1.53 1.51 1.51 1.51 1.50 1.48 1.48 1.48 1.37 1.37

¹H and ¹³C NMR spectra of **2p**

¹H and ¹³C NMR spectra of **2q**

 1 H and 13 C NMR spectra of **2r**

¹H and ¹³C NMR spectra of **2s**

7 743 7 747 7

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 2t

$\begin{array}{c} 1.36\\ 1.36\\ 1.17\\ 1.17\\ 1.13\\$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 2u

 1 H and 13 C NMR spectra of 2v

 $\begin{array}{c} 7.743\\ 7.711\\ 7.711\\ 7.711\\ 7.711\\ 7.728\\ 7.$

¹H and ¹³C NMR spectra of 4a

¹H and ¹³C NMR spectra of **4b**

 1 H and 13 C NMR spectra of **4c**

1 H and 13 C NMR spectra of **4d**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 4e

