Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

# **Supporting Information**

# Highly Efficient Regio-Selective Ring-Opening Nucleophilic Fluorination

# of Aziridines and Azetidines: Access to $\beta$ - or $\gamma$ -Fluorinated Amino Acid

#### Derivatives

Liping Zhu,<sup>a</sup> Jiale Xiong,<sup>a</sup> Junkai An,<sup>b</sup> Nannan Chen,<sup>a</sup> Jijun Xue<sup>\*b</sup> and Xianxing Jiang<sup>\*a</sup>

<sup>a</sup> School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
 <sup>b</sup> State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical
 Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
 E-mail: jiangxx5@mail.sysu.edu.cn
 xuejj@lzu.edu.cn

# **Table of Contents**

| 1. | Conditions Optimization                  | S2         |
|----|------------------------------------------|------------|
| 2. | X-ray Crystallographic Data of <b>3v</b> | <b>S</b> 3 |
| 3. | HPLC Results                             | S4         |
| 4. | NMR Spectra of Compounds                 | S12        |

#### 1. Conditions Optimization

#### Table S1. Conditions Optimization<sup>a</sup>

|          | Ts<br>N<br>+         | NuF reagent       | Solven<br>rt, Tim | e             | F<br>NHTs                    |
|----------|----------------------|-------------------|-------------------|---------------|------------------------------|
|          | 1a                   |                   |                   |               | 3a                           |
| Entry    | NuF Reagent          | Solvent           | Time<br>(h)       | Cover.<br>(%) | Yield <sup>b</sup><br>(%)    |
| 1        | CsF                  | $CH_2Cl_2$        | 24                | 60            | < 10                         |
| 2        | KHF <sub>2</sub>     | $CH_2Cl_2$        | 36                | 10            | trace                        |
| 3        | TBAF                 | $CH_2Cl_2$        | 24                | 0             | -                            |
| 4        | Et <sub>3</sub> N.HF | $CH_2Cl_2$        | 24                | 50            | N.D                          |
| 5        | $Py.HF^{c}$          | $CH_2Cl_2$        | 0.5               | 100           | 94 (90 <sup><i>d</i></sup> ) |
| 6        | Py.HF                | Et <sub>2</sub> O | 5                 | 100           | 90                           |
| 7        | Py.HF                | Tol               | 0.5               | 100           | 78                           |
| 8        | Py.HF                | THF               | 9                 | 60            | 50                           |
| 9        | Py.HF                | 1,4-dioxane       | 9                 | 65            | 56                           |
| 10       | Py.HF                | acetone           | 9                 | 40            | 35                           |
| 11       | Py.HF                | CHCl <sub>3</sub> | 0.5               | 100           | 92                           |
| $12^{e}$ | Py.HF                | $CH_2Cl_2$        | 0.5               | 32            | 28                           |
| $13^e$   | Py.HF                | $CH_2Cl_2$        | 9                 | 85            | 82                           |
| $14^{f}$ | Py.HF                | $CH_2Cl_2$        | 0.5               | 100           | 90                           |
| $15^g$   | Py.HF                | $CH_2Cl_2$        | 0.5               | 100           | 94                           |

<sup>*a*</sup>Unless noted, the reaction was conducted with **1a** (0.2 mmol), NuF reagent (3.0 equiv) and 2.0 mL solvent at room temperature for the specified period of time. <sup>*b*</sup>Yields were determined by <sup>19</sup>F NMR using benzotrifluoride as an internal standard. <sup>*c*</sup>Py.HF = hydrogen fluoride-pyridine (70% HF in pyridine). <sup>*d*</sup>Isolated yield. <sup>*e*</sup>Py.HF was added 1.5 equiv. <sup>*f*</sup>Py.HF was added 5.0 equiv. <sup>*g*</sup>The reaction was carried out under nitrogen. TBAF = tetrabutylammonium fluoride, N.D. = not detected.

# 2. X-ray Crystallographic Data of 3v





| CCDC number                                 | 1887355                                                       |
|---------------------------------------------|---------------------------------------------------------------|
| Empirical formula                           | $C_{15}H_{19}FN_2O_6$                                         |
| Formula weight                              | 343.32                                                        |
| Temperature/K                               | 150.00                                                        |
| Crystal system                              | orthorhombic                                                  |
| Space group                                 | P 1 21 1                                                      |
| a/Å                                         | 5.1030(1)                                                     |
| b/Å                                         | 24.0246(3)                                                    |
| c/Å                                         | 13.7034(2)                                                    |
| α/°                                         | 90.0                                                          |
| β/°                                         | 98.635                                                        |
| γ/°                                         | 90.0                                                          |
| Volume/Å <sup>3</sup>                       | 1660.96(5)                                                    |
| Z                                           | 4                                                             |
| $\rho_{calc}g/cm^3$                         | 1.369                                                         |
| µ/mm <sup>-1</sup>                          | 0.970                                                         |
| F(000)                                      | 720.0                                                         |
| Crystal size/mm <sup>3</sup>                | $0.06 \times 0.29 \times 0.16$                                |
| Radiation                                   | ΜοΚa(λ = 1.54184)                                             |
| 20 range for data collection/°              | 3.68 to 73.32                                                 |
| Index ranges                                | $-4 \le h \le 6$ , $-29 \le k \le 29$ , $-16 \le l \le 16$    |
| Reflections collected                       | 12270                                                         |
| Independent reflections                     | 6438 [R <sub>int</sub> = 0.0331, R <sub>sigma</sub> = 0.0395] |
| Data/restraints/parameters                  | 6438/7/454                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.054                                                         |
| Final R indexes [I>=2σ (I)]                 | R1 = 0.0360, wR2 = 0.0933                                     |
| Final R indexes [all data]                  | R1 = 0.0375, wR2 = 0.0954                                     |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.152/-0.199                                                  |

 $\equiv$ 

#### 3. HPLC Results



phenomenex Cellulose-1 5um 250x4.6mm (*n*-Hexane/*i*-PrOH = 97/3, flow rate = 1.0 mL/min,  $\lambda$  = 254 nm, 25 °C)







Chiral AD-H Column (*n*-Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min,  $\lambda$  = 254 nm, 25 °C)







phenomenex Cellulose-1 5um 250x4.6mm (*n*-Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min,  $\lambda$  = 254 nm, 25 °C)







\_

phenomenex Cellulose-1 5um 250x4.6mm (*n*-Hexane/*i*-PrOH = 95/5, flow rate = 0.5 mL/min,  $\lambda$  = 254 nm, 25 °C)



| Peak | RetTime | Area      | Height | Area  |
|------|---------|-----------|--------|-------|
| #    | [min]   | mAU * min | [AU]   | %     |
| 1    | 29.940  | 79.1795   | 84.50  | 49.76 |
| 2    | 32.257  | 79.9410   | 74.46  | 50.24 |





phenomenex Cellulose-1 5um 250x4.6mm (*n*-Hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min,  $\lambda$  = 254 nm, 25 °C)







phenomenex Cellulose-1 5um 250x4.6mm (*n*-Hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min,  $\lambda$  = 254 nm, 25 °C)



| Peak | RetTime | Area      | Height | Area  |  |
|------|---------|-----------|--------|-------|--|
| #    | [min]   | mAU * min | [AU]   | %     |  |
| 1    | 6.263   | 9.8607    | 67.91  | 49.70 |  |
| 2    | 6.927   | 9.9809    | 57.07  | 50.30 |  |





phenomenex Cellulose-1 5um 250x4.6mm (*n*-Hexane/*i*-PrOH = 95/5, flow rate = 0.5 mL/min,  $\lambda$  = 254 nm, 25 °C)









Chiral AD-H Column (*n*-Hexane/*i*-PrOH = 90/10, flow rate = 0.8 mL/min,  $\lambda$  = 254 nm, 25 °C)



# 4. NMR Spectra of Compounds

 $^1 \rm H$  NMR spectrum of  $1 \rm r$ 



<sup>1</sup>H NMR spectrum of **1u** 



![](_page_13_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_1.jpeg)

<sup>19</sup>F NMR spectrum of **3a** 

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

<sup>13</sup>C NMR spectrum of **3b** 

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_18_Figure_1.jpeg)

<sup>19</sup>F NMR spectrum of **3c** 

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_4.jpeg)

<sup>13</sup>C NMR spectrum of **3d** 

![](_page_20_Figure_1.jpeg)

# <sup>1</sup>H NMR spectrum of **3e**

![](_page_21_Figure_1.jpeg)

S22

<sup>19</sup>F NMR spectrum of **3e** 

H N Ts Br

3e

![](_page_22_Figure_3.jpeg)

<sup>1</sup>H NMR spectrum of **3f** 

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

<sup>13</sup>C NMR spectrum of **3f** 

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)

F ⊢ N<sub>Ts</sub> AcO

3g

![](_page_25_Figure_3.jpeg)

<sup>1</sup>H NMR spectrum of **3h** 

![](_page_25_Figure_5.jpeg)

![](_page_25_Figure_6.jpeg)

![](_page_25_Figure_7.jpeg)

![](_page_25_Figure_8.jpeg)

<sup>13</sup>C NMR spectrum of **3h** 

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

<sup>1</sup>H NMR spectrum of **3i** 

![](_page_27_Figure_1.jpeg)

<sup>19</sup>F NMR spectrum of **3i** 

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

<sup>19</sup>F NMR spectrum of **3k** 

∫N N`Ts H₃C

![](_page_31_Figure_2.jpeg)

![](_page_31_Figure_3.jpeg)

-179.98

<sup>19</sup>H NMR spectrum of **3I** 

![](_page_31_Figure_5.jpeg)

![](_page_32_Figure_0.jpeg)

<sup>1</sup>H NMR spectrum of **3m** 

![](_page_33_Figure_1.jpeg)

<sup>19</sup>F NMR spectrum of **3m** 

![](_page_34_Figure_1.jpeg)

<sup>13</sup>C NMR spectrum of **3n** 

![](_page_35_Figure_1.jpeg)

F \_H \_N<sub>\_Ns</sub>

3n

![](_page_35_Figure_4.jpeg)

<sup>1</sup>H NMR spectrum of **30** 

![](_page_36_Figure_1.jpeg)

S37

<sup>19</sup>F NMR spectrum of **30** 

![](_page_37_Figure_1.jpeg)

30

9.0

![](_page_37_Figure_3.jpeg)

-183.46

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

<sup>13</sup>C NMR spectrum of **3p** 

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

<sup>19</sup>F NMR spectrum of **3q** 

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

![](_page_40_Figure_3.jpeg)

-178.30

<sup>1</sup>H NMR spectrum of **3r** 

![](_page_40_Figure_5.jpeg)

![](_page_40_Figure_6.jpeg)

<sup>13</sup>C NMR spectrum of **3r** 

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_0.jpeg)

S43

![](_page_43_Figure_0.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

S47

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

<sup>19</sup>F NMR spectrum of **3w** 

Ē N Вос . ČOOMe  $O_2N$ 3w

![](_page_49_Figure_2.jpeg)

-194.47

![](_page_50_Figure_0.jpeg)

S51