A Smart Molecular Probe for Selective recognition of Nitric Oxide in 100% aqueous solution with Cell Imaging application and DFT Studies

Ananya Dutta^a, Abu Saleh Musha Islam^a, Debjani Maiti^a, Mihir SasImal^a, Chandradoy Pradhan^b, Mahammad Ali^{a,c}.

^aDepartment of Chemistry Jadavpur University, Kolkata 700 032, India; Fax: 91-33-2414-6223, E-mail: m_ali2062@yahoo.com, <u>mali@chemistry.jdvu.ac.in</u>

^{b.}Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata-700032, India.

^cVice-Chancellor, Aliah University, II-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160,

Supporting Information for Publication

No.	Content.	Figure.No.
1.	¹ H NMR spectrum of (HqEN₄₈₀) in DMSO- <i>d</i> _{6.}	Fig.S1
2.	¹³ CNMR spectrum of (HqEN₄₈₀) in DMSO-d ₆	Fig. S1a
3.	Mass spectrum of (HqEN ₄₈₀) in MeCN.	Fig.S2
4.	IR spectrum of (HqEN ₄₈₀) in solid state.	Fig.S3
6.	Mass spectrum of (HqPA) in MeOH.	Fig. S4
7.	¹ H NMR spectrum of (HqPA) in CDCl ₃ .	Fig. S5
8.	Fluorescence titration of (HqEN ₄₈₀) with NO in aqueous solution at λ_{ex} =350nm.	Fig. S6
9.	Fluorescence titration of (HqPA) with NO in aqueous solution at λ_{ex} =390nm.	Fig. S7
10.	Selectivity of HqPA towards NO over various ions.	Fig. S8
11.	¹ H NMR spectrum of (HqEN₄₈₀-NO) in DMSO-d ₆ .	Fig. S9
12.	¹³ CNMR spectrum of (HqEN₄₈₀-NO) in DMSO-d _{6.}	Fig. S9a
13.	Mass spectrum of (HqEN480-NO) in MeCN.	Fig. \$10
14.	IR spectrum of (HqEN ₄₈₀ -NO) in solid state.	Fig. S11
15.	¹ H NMR spectrum of (HqPA-NO) in DMSO-d ₆ .	Fig. S12
16.	LOD of (HqEN480-NO) from fluorescence study.	Fig. S13
17.	LOD of (HqEN ₄₈₀ -NO) from UV-vis study.	Fig. S13a
18.	Fluorescence response towards NO over various amino acids at $\lambda_{\text{ex}} \text{=} 390 \text{nm}.$	Fig. S14
19.	UV-vis absorbtion spectra of $HqEN_{480}$ towards various RONS and NO.	Fig. S15

20.	Bar plot of Competitive study of ions over NO at λ_{ex} =390nm.	Fig. S16
21.	Bar plot of Competitive study of reactive species over NO from fluorescence at $\lambda_{ex}\text{=}390\text{nm}$ and UV-vis absorbtion method .	Fig. S17
22.	List of some selected bond lengths of HqEN₄₈₀ in the ground state calculated at B3LYP Levels.	Table S1
23.	Some selected geometrical parameters for [HqEN ₄₈₀ -NO] in the ground state calculated at B3LYP Levels.	Table S2
24.	Vertical excitation energies and oscillator strengths (f_{cal}) of some low-lying excited singlet states obtained from TDDFT// B3LYP/6-31G calculations of HqEN ₄₈₀	Table S3
25.	Vertical excitation energies and oscillator strengths (f_{cal}) of some low- lying excited singlet states obtained from TDDFT// B3LYP/6-31G calculations of [HqEN ₄₈₀ -NO].	Table S4
26.	Frontier molecular orbitals involved in the UV-Vis absorption of $[HqEN_{480}]$	Fig. S18
27.	Frontier molecular orbitals involved in the UV-Vis absorption of [HqEN ₄₈₀ -NO] The response time of the probe towards NO.	Fig. S19
28.	The response time of the probe towards NO.	Fig. S20

Fig.S1.¹H NMR spectrum of spectrum of (HqEN₄₈₀) in DMSO- $d_{6.}$

Fig. S1a.¹³C NMR spectrum of spectrum of (HqEN₄₈₀) in DMSO-d₆.

Fig. S2. Mass spectrum of HqEN₄₈₀ in MeCN.

Fig. S3. IR spectrum of $HqEN_{480}$ in solid state.

Fig. S4. Mass spectrum of HqPA in MeOH.

Fig. S5. ¹H NMR spectrum of HqPA in CDCl₃.

Fig. S6. Fluorescence titration of HqEN₄₈₀ with NO in aqueous HEPES buffer at λ_{ex} =350nm.

Fig. S7. Fluorescence titration of (HqPA) with NO in aqueous solution at λ_{ex} =390nm.

Fig. S8. Selectivity of HqPA towards NO over various ions(a) Cd²⁺, Sm³⁺, Na⁺, Zn²⁺, al³⁺, Fe³⁺, pb²⁺, K⁺, Eu^{2+.} (b) CH₃COO⁻, NO₂⁻, Cl⁻, N₃⁻, SCN⁻, NO₃⁻, PPi, S²⁻.

Fig.S9.¹H NMR spectrum of **HqEN**₄₈₀**-NO** in DMSO- d_6 .

Fig.S9a. ¹³C NMR spectrum of HqEN₄₈₀-NO in DMSO- $d_{6.}$

Fig. S10. Mass spectrum of HqEN₄₈₀-NO in MeCN.

Fig. S11. IR spectrum of (HqEN₄₈₀-NO) in solid state.

Fig. S12. ¹H NMR spectrum of HqPA-NO in DMSO-d₆.

Fig. S13. LOD of (HqEN₄₈₀-NO) from fluorescence study.

Fig. S13a. LOD of (HqEN480-NO) from UV-vis study.

Fig. S14. Fluorescence response of HqEN₄₈₀ towards various aminoacids in aqueous HEPES buffer at λ_{ex} =390nm.

Fig. S15. UV-vis absorbtion spectra of **HqEN**₄₈₀ towards various RONS (X=H₂O₂, , DHA, TEMPO, KO₂, ONOO⁻, AA and NO).

Fig. S16. Bar plot of Competitive study of ions over NO at λ_{ex} =390nm.

Fig. S17. Bar plot of Competitive study of reactive species over NO from fluorescence at λ_{ex} =390nm and UV-vis absorbtion method .

Table S1. List of some selected bond lengths of HqEN₄₈₀ in the ground state calculated at B3LYP Levels.

Bond Lengths (Å)						
O17-C18	1.450	C21-N23	1.351			
C18-C21	1.522	N23-C25	1.459			
C21-O22	1.255	C25-C28	1.532			
Bond Angles (°)						
O17-C18-C21	108.92	O22-C21-N23	124.97			
C18-C21-O22	118.72	C21-N23-C25	122.24			
C18-C21-N23	116.30	N23-C25-C28	109.87			

Table S2. Some selected geometrical parameters for **[HqEN₄₈₀-NO]** in the ground state calculated at B3LYP Levels.

Bond Lengths (Å)						
C10-O17	1.385	C21-O22				
			1.238			
O17-C18	1.453	N23-N39				
			1.385			
C18-C21	1.517	N39-O40				
			1.246			
C21-N23	1.404	N23-C24				
			1.473			
C10-O17-C18	118.56	C21-N23-C24	121.78			
O17-C18-C21	105.62	N23-N39-O40	114.22			
C18-C21-N23	116.94					
C18-C21-O22	122.09	C21-N23-N39	116.47			

Table S3. Vertical excitation energies and oscillator strengths (f_{cal}) of some low-lying excited singlet states obtained from TDDFT// B3LYP/6-31G calculations of HqEN₄₈₀.

Electronic transition	Composition	Excitation Energy	Oscillator strength (f)	CI	λ _{exp} (nm)
$S_0 \to S_2$	HOMO −1→ LUMO	4.0372 eV (307.10 nm)	0.1045	0.69360	314

Table S4. Vertical excitation energies and oscillator strengths (f_{cal}) of some low-lying excitedsinglets obtained from TDDFT// B3LYP/6-31G calculations of [HqEN480-NO].

Electronic transition	Composition	Excitation Energy	Oscillator strength (f)	CI	λ _{exp} (nm)
$S_0 \to S_8$	$HOMO \rightarrow LUMO + 2$	4.0721 eV	0.0814	0.50961	355
	$HOMO - 1 \rightarrow LUMO + 1$	(304.47 nm)		0.47473	

Fig. S18. Frontier molecular orbitals involved in the UV-Vis absorption of HqEN₄₈₀.

Fig. S19. Frontier molecular orbitals involved in the UV-Vis absorption of [HqEN₄₈₀-NO].

Fig. S20. The response time of the probe towards NO.