Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Biosynthetic studies of novel polyketides from the marine sponge-derived fungus *Stachylidium* sp. 293K04

Fayrouz El Maddah,^{1,2} Ekaterina Eguereva,¹ Stefan Kehraus,¹ Gabriele M. König¹

¹Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn ²Department of Pharmacognosy and Tissue Culture,National Organization for Drug Control and Research, Cairo, Egypt

Table S1.¹³C NMR data of marilone A (**1**) and mariline B (**5**) and relative % ¹³C enrichment after feeding [1-¹³C]sodium acetate and [2-¹³C]sodium acetate.

Table S2.¹³C NMR data of marilone A (**1**) and mariline B (**5**) and relative % ¹³C enrichment after feeding of [1-¹³C]sodium propionate

Figure S1.¹³C NMR (125 MHz, acetone-*d*₆) spectrum of marilone A (1) (taken from literature).¹

Figure S2.¹³C NMR (125 MHz, acetone-*d*₆) spectrum of mariline B (5) (taken from literature).²

Figure S3.¹³C NMR (75 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding [1-¹³C]sodium acetate.

Figure S4.¹³C NMR (75 MHz, acetone- d_6) spectrum of mariline B (**5**) after feeding [1-¹³C]sodium acetate.

Figure S5.¹³C NMR (125 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding [2-¹³C]sodium acetate.

Figure S6.¹³C NMR (125 MHz, acetone- d_6) spectrum of mariline B (**5**) after feeding [2-¹³C]sodium acetate.

Figure S7.¹³C NMR (125 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding [1-¹³C]sodium propionate.

Figure S8.¹³C NMR (75 MHz, acetone- d_6) spectrum of mariline B (**5**) after feeding [1-¹³C]sodium propionate.

Figure S9.¹³C NMR (125 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding L-[*Me*-¹³C]methionine.

Figure S10.¹³C NMR (125 MHz, acetone- d_6) spectrum of mariline B (**5**) after feeding L-[*Me*-¹³C]methionine.

Figure S11. LC-ESIMS spectrum of marilone A (**1**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium acetate.

Figure S12. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium acetate.

Figure S13. LC-ESIMS spectrum of marilone A (**1**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [2-¹³C]sodium acetate.

Figure S14. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [2-¹³C]sodium acetate.

Figure S15. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium propionate.

Figure S16. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium propionate.

Figure S17. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture supplemented with L-[*Me*-¹³C]methionine.

Figure S18. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with L-[*Me*-¹³C]methionine.

Figure S19. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture.

Figure S20. LC-ESIMS spectrum of mariline B (5) isolated from *Stachylidium* sp. BMS agar culture.

Figure S21.HPLC isolation chromatogram of marilone A (1).

Figure S22.HPLC isolation chromatogram of mariline B (5).

		Marilone A	(1)	Mariline B (5)			
		% ¹³ C	enrichment⁵		% ¹³ C enrichment ^b		
С	δ _c (ppm)ª	[1-13C] acetate ^c	[2- ¹³ C] acetate ^d , J _{cc} (Hz)	δ _c (ppm)ª	[1-13C] acetate ^c	[2- ¹³ C] acetate ^d , J _{cc} (Hz)	
1	168.2, qC	7.5	-	167.3, qC	7.8	_	
2	110.0, qC	-	8.0	116.3, qC	-	8.0	
3	158.0, qC	7.4	-	156.9, qC	8.5	-	
4	120.4, qC	-	7.4, <i>J</i> _(4,11) =23.0	119.3, qC	-	8.0, <i>J</i> _(4,11) =23.0	
5	164.2, qC	7.0	-	161.7, qC	7.9	-	
6	100.8, CH	-	8.3	101.8, CH	-	7.5	
7	154.2, qC	8.0	-	150.0, qC	8.1	-	
8	77.0, CH	-	9.1, <i>J</i> _(8,9) =20.0	56.9, CH	-	7.6, <i>J</i> _(8,9) =20.0	
9	20.9, CH ₃	-	2.5, <i>J</i> _(9,8) =20.0	18.9, CH₃	-	2.0, <i>J</i> _(9,8) =20.0	
10	62.1, CH ₃	-	2.8	62.1, CH ₃	-	2.4	
11	8.8, CH ₃	-	2.5, <i>J</i> _(4,11) =23.0	8.8, CH₃	-	2.0, <i>J</i> _(11,4) =23.0	
12				43.6, CH ₂	-	2.5, <i>J</i> _(12,13) =20.0	
13				61.7, CH ₂	-	2.5, <i>J</i> _(13,12) =20.0	
1'	66.5, CH ₂	5.5	-	66.2, CH ₂	6.5	-	
2'	120.1, CH	-	6.7	120.6, CH	-	6.5	
3'	142.1, qC	6.3	-	141.5, qC	7.0	-	
4'	40.1, CH ₂	-	6.6	40.1, CH ₂	-	5.7	
5'	26.9, CH ₂	6.6	-	27.0, CH ₂	6.7	-	
6'	124.6, CH	-	5.9	124.6, CH	-	6.6	
7'	132.1, qC	6.5	-	132.1, qC	6.5		
8'	25.8, CH ₃	-	6.4	25.8, CH ₃	-	5.5	
9'	16.7, CH ₃	-	6.9	16.7, CH ₃	-	6.5	
10'	17.7, CH₃	-	6.6	17.7, CH ₃	-	6.6	

TableS1.¹³C NMR data of marilone A (**1**) and mariline B (**5**) and relative % ¹³C enrichment after feeding [1-¹³C]sodium acetate and [2-¹³C]sodium acetate.

^a Referenced to acetone- $d_{6, b} \% ^{13}$ C-enrichment was calculated according to Scott et al., ^{35c} % ¹³C-enrichment relative to the natural abundance of C-11, ^d% ¹³C-enrichment relative to the natural abundance of

		Maril	one A (1)		Mariline B (5)			
С	δ _c (ppm)ª	/ (labeled)	I (unlabeled)	% ¹³ C	δ _c (ppm) ^a	/ (labeled)	/ (unlabeled)	% ¹³ C
				enrichment				enrichment
1	168.2, qC	0.35	0.25	0.44	167.3, qC	0.27	0.15	0.88
2	110.0, qC	0.35	0.19	0.92	116.3, qC	0.52	0.30	0.81
3	158.0, qC	0.31	0.20	0.61	156.9, qC	0.75	0.46	0.69
4	120.4, qC	0.47	0.27	0.81	119.3, qC	n.d	0.11	n.d
5	164.2, qC	0.60	0.32	0.96	161.7, qC	n.d	0.30	n.d
6	100.8, CH	2.59	1.64	0.63	101.8, CH	1.25	0.77	0.69
7	154.2, qC	0.48	0.29	0.72	150.0, qC	0.95	0.61	0.61
8	77.0, CH	2.42	1.52	0.65	56.9, CH	1.08	0.80	0.39
9	20.9, CH ₃	2.56	1.49	0.79	18.9, CH ₃	2.25	1.43	0.63
10	62.1, CH₃	2.00	1.12	0.86	62.1, CH₃	1.58	0.96	0.71
11	8.8, CH ₃	1.00	1.00	Internal	8.8, CH ₃	1.00	1.00	Internal
				reference				reference
12					43.6, CH ₂	1.89	1.06	0.86
13					61.7, CH ₂	1.11	0.72	0.60
1'	66.5, CH ₂	2.89	1.79	0.68	66.2, CH ₂	1.46	0.91	0.66
2'	120.1, CH	2.58	1.62	0.65	120.6, CH	1.72	1.11	0.60
3'	142.1, qC	1.12	0.66	0.76	141.5, qC	0.18	0.13	0.42
4'	40.1, CH ₂	2.54	1.50	0.76	40.1, CH ₂	2.74	1.83	0.54
5'	26.9, CH ₂	2.90	1.80	0.67	27.0, CH ₂	2.89	1.98	0.51
6'	124.6, CH	1.89	1.29	0.51	124.6, CH	1.21	0.71	0.77
7'	132.1, qC	0.54	0.30	0.88	132.1, qC	n.d.	0.10	n.d
8'	25.8, CH ₃	2.76	1.62	0.77	25.8, CH ₃	2.58	1.59	0.68
9'	16.7, CH ₃	2.52	1.50	0.75	16.7, CH ₃	1.87	1.32	0.46
10'	17.7, CH ₃	1.98	1.10	0.88	17.7, CH ₃	1.78	1.14	0.62

Table S2.¹³C NMR data of marilone A (**1**) and mariline B (**5**) and relative % ¹³C enrichment after feeding [1-¹³C]sodium propionate

10'17.7, CH_3 1.981.100.8817.7, CH_3 1.781.140.62a Referenced to acetone- $d_{6, b}$ % ¹³C-enrichment was calculated according to Scott et al., ^{35c} % ¹³C-enrichment relative to the natural abundance of C-11, *I* = integrated intensity of ¹³C signal, n.d. = not determined, % ¹³C enrichment= 1.1% X [Integrated Intensity *I* (labeled)/Integrated Intensity *I* (unlabeled)] - 1.1%

Figure S1.¹³C NMR (125 MHz, acetone- d_6) spectrum of mariloneA(1) (taken from literature).¹

Figure S2.¹³C NMR (125 MHz, acetone-*d*₆) spectrum of mariline B (5) (taken from literature).²

Figure S3.¹³C NMR (75 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding [1-¹³C]sodium acetate.

Figure S4.¹³C NMR (75 MHz, acetone- d_6) spectrum of mariline B(**5**) after feeding [1-¹³C]sodium acetate.

Figure S5.¹³C NMR (125 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding [2-¹³C]sodiumacetate.

Figure S6.¹³C NMR (125 MHz, acetone- d_6) spectrum of marilineB(**5**) after feeding [2-¹³C]sodium acetate.

Figure S7.¹³C NMR (125 MHz, acetone- d_6) spectrum of mariloneA (**1**) after feeding [1-¹³C]sodiumpropionate.

Figure S8.¹³C NMR (75 MHz, acetone- d_6) spectrum of mariline B (**5**) after feeding [1-¹³C]sodium propionate.

Figure S9.¹³C NMR (125 MHz, acetone- d_6) spectrum of marilone A (**1**) after feeding L-[*Me*-¹³C]methionine.

Figure S10.¹³C NMR (125 MHz, acetone- d_6) spectrum of mariline B (**5**) after feeding L-[*Me*-¹³C]methionine.

Figure S11. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium acetate.

Figure S12. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium acetate.

Figure S13. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture supplemented with [2-¹³C]sodium acetate.

Figure S14. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [2-¹³C]sodium acetate.

Figure S15. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium propionate.

Figure S16. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with [1-¹³C]sodium propionate.

Figure S17. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture supplemented with L-[*Me*-¹³C]methionine.

Figure S18. LC-ESIMS spectrum of mariline B (**5**) isolated from *Stachylidium* sp. BMS agar culture supplemented with L-[*Me*-¹³C]methionine.

Figure S19. LC-ESIMS spectrum of marilone A (1) isolated from *Stachylidium* sp. BMS agar culture.

Figure S20. LC-ESIMS spectrum of mariline B (5) isolated from *Stachylidium* sp. BMS agar culture.

Figure S21.HPLC isolation chromatogram of marilone A (1)

Figure S22.HPLC isolation chromatogram of mariline B (5)

