SUPPORTING MATERIALS

Correlations between secondary structure- and

protein-protein interface-mimicry: The

Interface Mimicry Hypothesis

Jaru Taechalertpaisarn,^a Rui-Liang Lyu,^a Maritess Arancillo,^a Chen-Ming Lin,^a Lisa M. Perez,^b Thomas R. loerger,^c and Kevin Burgess^a*

^aDepartment of Chemistry and ^bLaboratory For Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA. ^cDepartment of Computer Science, Texas A & M University, College Station, TX 77843-3112.

E-mail: burgess@tamu.edu

Contents

A. EKO Procedures		
B. EKOS. EKO. and DSSP/S ⁻	TRIDE data for chemotype 2	4
C. EKOS, EKO, and DSSP/S	TRIDE data for chemotype 3	6
D. EKOS, EKO, and DSSP/S	TRIDE data for chemotype 4	
E Reference		40

A. EKO Procedures

The QMD was performed according to the procedure described before.^{1, 2} After energy minimization in the QMD process, all conformers within 3.0 kcal/mol of the lowest energy conformer were clustered into families with similar RMSDs (< 0.5 Å) based on $C\alpha - C\beta$ coordinates. The conformer having lowest energy in each family was selected as a representative. These representatives were systematically aligned on the $C\alpha - C\beta$ coordinates of interface residues on > 240,000 protein-protein complexes recorded in the PDB, and the results were sorted based on RMSDs of $C\alpha - C\beta$ coordinates.¹

B. EKOS, EKO, and DSSP/STRIDE data for chemotype 2

Figure S1. (a) RMSD (Å) of the overlays of mimics **2** on each of the ideal secondary structures, organized by stereochemistry. Statistical distribution of secondary structures at PPI interfaces derived by DSSP and STRIDE calculations; (b) the best 115 overlays of DDD-**2**; and, (c) 287 overlays of LDD-**2**.

C. EKOS, EKO, and DSSP/STRIDE data for chemotype 3

Figure S2. (a) RMSD (Å) of the overlays of mimics **3** on each of the ideal secondary structures, organized by stereochemistry. Statistical distribution of secondary structures at PPI interfaces derived by DSSP and STRIDE calculations; (b) the best 288 overlays of DDD-**3**.

D. EKOS, EKO, and DSSP/STRIDE data for chemotype 4

Figure S2. (a) RMSD (Å) of the overlays of mimics **4** on each of the ideal secondary structures, organized by stereochemistry. Statistical distribution of secondary structures at PPI interfaces derived by DSSP and STRIDE calculations; (b) the best 369 overlays of LDL-**4**; (c) the best 308 overlays of LLL-**4**.

E. Reference

- D. Xin, E. Ko, L. M. Perez, T. R. loerger and K. Burgess, *Org. Biomol. Chem.*, 2013, **11**, 7789-7801. D. Xin, L. M. Perez, T. R. loerger and K. Burgess, *Angew. Chem. Int. Ed.*, 2014, **53**, 3594-3598. 1.
- 2.