N-Hydroxyphthalimide/Benzoquinone-Catalyzed Chlorination of Hydrocarbon C–H Bond with N-Chlorosuccinimide

Zi-Hao Li,^{†, |}, Béla Fiser,^{#, ||} Biao-Ling Jiang,[‡] Jian-Wei Li,^{*, †} Bao-Hua Xu,^{*,‡,§} and Suo-Jiang Zhang^{‡,§}

[†] State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

[‡] Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China

[§] College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China

[#] Ferenc Rákóczi II. Transcarpathian Hungarian Institute, 90200-Beregszász, Transcarpathia, Ukraine, Computational Molecular Design Research Group, Institute of Chemistry, University of Miskolc, Miskolc, 3515, Hungary

* Author to whom correspondence should be addressed; E-Mail: lijw@mail.buct.edu.cn, bhxu@ipe.ac.cn

On leave to Institute of Process Engineering

^{||} Quantum chemical calculations

Supporting information

Contents

1.	General Method	S3
2.	Efforts on optimization of transition metal catalyzed	d chlorination
rea	action	
3.	N-Cl BDE calculation of chlorine reagents	
4.	Toluene side-chain chlorination on gram-scale	S12
5.	Oxidative bromination of 1a and 1s with NBS	S12
6.	DFT calculation of mechanism	S13
7.	Time-course plot of the chlorination reaction	S24
8.	Chain length experiment	S24
9.	Preparation and characterization of NO-H agents	S25
10	. Characterization of Chlorinated products	S27
11	. References	S34
GC	C and NMR spectral	

1. General Method

Commercial reagents were purchased from TCI or ALADDIN and unless otherwise stated, all solvents were dried and distilled before use according to the standard methods. Analytical thin layer chromatography (TLC) was performed on precoated silica gel. Visualization on TLC was achieved with UV light (254 nm) as the visualization method. ¹H NMR spectra were recorded on a bruker ASCEND spectrometer (¹H, 600 MHz; ¹³C{¹H}, 151 MHz) or a JEOL JNM-ECA600 spectrometer. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak. Data for ¹H NMR spectra are reported as follows: chemical shift (δ shift), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double of doublet, ddd = double of dd, dt = double of triplet, td = triple of doublet),integration, coupling constant (Hz), and assignment. ¹³C NMR spectra were recorded on bruker ASCEND spectrometer (${}^{13}C{}^{1}H{}$, 151 MHz). Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-d or a heptet at 39.5 ppm of dimethyl sulfoxide-d₆. GC analysis was performed using Aglient GC-7890B equipped with a DB-FFAP capillary column, 30 m×0.32 mm; FID detector: 280 °C; injection: 220 °C; oven temperature: 85 °C for 15 min, raised to 190 °C at a rate of 30 °C/min, and held for 15 min. GC-MS analysis was performed using Shimadzu GCMS-QP2020 with HP-5MS column, 30 m×0.32 mm; FID detector: 250 °C; injection: 250 °C; oven temperature: 40 °C for 2 min, raised to 100 °C at a rate of 10 °C/min, then to 240 °C at a rate of 20 °C/min, and held for 8 min. All reagents were

commercially available and weighed out under Argon conditions. All chemicals were used without further purification.

Chlorination of toluene

A typical chlorination procedure: NCS (0.5 mmol, 1 equiv.), toluene (2.5 mmol, 5 equiv.), CH₃CN (2 mL), DDQ (0.0025 mmol, 0.005 equiv.), NHPI (0.05mmol, 0.1equiv.) were added to an oven-dried tube. The reaction tube was equipped with a magnetic stir bar and sealed with a Teflon-lined cap for 3 hours or 16 hours at 80 °C. After the reaction was finished, the reaction mixture was diluted and detected by GC containing biphenyl as an internal standard. Or concentrate the reaction mixture in vacuo to remove the solvent. Notably, the vacuum degree of concentration and the time should be controlled, avoiding the product loss. The crude reaction mixture was detected by ¹H NMR with CH_2Br_2 as an internal standard. Otherwise the residue was purified by column chromatography to give the product. The products were detected by ¹H NMR analysis.

2. Efforts on optimization of transition metal catalyzed chlorination reaction

Table S1. Condition screening for chlorination of toluene in transition metal catalyzed system.^a

entrv	1a	2a	3	t	variations	conv (%)	yield
entry	(mmol)	(mmol)	(mol%)	(h)	variations	conv. (70)	(%)
1	0.5	0.5	3a (10)	6	-	68	31
2	0.5	0.5	3a (10)	6	50 °C	30	n.d.
3	0.5	0.5	3a (10)	6	100 °C	100	6
4	0.5	0.5	3a (10)	6	160 °C	65	29
5	0.5	0.5	3a (10)	6	$Co(acac)_2(3 mol\%)$	73	27
6	0.5	0.5	3a (10)	6	CoCl ₂ (3 mol%)	87	18
7	0.5	0.5	3c (10)	6	-	65	21
8	0.5	0.5	3d (10)	6	-	75	34
9	0.5	0.5	3a (10)	6	CH ₃ COOH (2 mL)	100	n.d.
10	0.5	0.5	3a (10)	6	1,2-DCE (2 mL)	49	7
11	0.5	0.5	3a (10)	6	CF ₃ COOH (2 mL)	100	n.d.
12	0.5	0.5	3a (10)	6	DMSO (2 mL)	43	n.d.
13	0.5	0.5	3a (10)	6	PhCN (2 mL)	83	17

14	0.5	0.5	3a (10)	6	$\text{CCl}_4(2 \text{ mL})$	76	21
15	0.5	0.5	3a (10)	6	O ₂ (10 atm)	89	5
16	0.5	0.5	3a (10)	6	pyridine (20 mol%)	65	12
17	0.5	0.5	3a (10)	6	TsOH (5 mol%)	71	31
18 ^b	1	0.5	3a (10)	16		-	41
19 ^b	1	0.5	3d (3)	16		-	48

^a Conditions: CH₃CN (2 mL), O₂ (1atm), 140 °C, conversions and yields are determined by GC using diphenyl as internal standard and are on the basis of toluene; ^b yields are determined by GC using diphenyl as internal standard and are on the basis of NCS.

3. N-Cl BDE calculation of chlorine reagents

Four different chlorine reagents (2a-2d) were compared and their N-Cl bond dissociation energy (BDE_{NCl}, eq. 1) values were calculated (Table S2).¹⁻⁴ 2a has the highest BDE_{N-Cl}, followed by 2b. The corresponding N-Cl BDEs of 2c and 2d are lower by more than 10 kcal/mol.

$$R-N-Cl \rightarrow R-N^{\bullet} + Cl^{\bullet}$$
 (eq. 1)

Table S2. Comparison of N-Cl BDE of the chlorine reagents based on B3LYP/6-31+G(d) and M06/6-31+G(d) level of theories.

O N-CI O	O,O' N-CI		
2a	^{2b} B3LYP/6-31	+G(d)	^{2d} M06/6-31+G(d)
	(kcal/mo	ol)	(kcal/mol)
2a	64.8		73.3
2b	62.6		70.5
2c	54.2		63.0
2d	50.0		58.8

The calculations were performed by the $B3LYP^{5-7}$ and $M06^8$ density functionals in combination with the 6-31+G(d) basis set as implemented in the Gaussian 09 program package.⁹

Normal mode analysis was carried out on each optimized structure in order to verify that they have the right number of imaginary frequencies.

Cartesian coordinates	of 2b-2d at the	B3LYP/6-31+G(d) level of theory
------------------------------	-----------------	----------------	-------------------

2b			
С	-0.99927	0.84365	-0.02339
С	-1.02052	-0.55119	-0.00164
С	-2.19889	-1.28507	0.02073
С	-3.39898	-0.56389	0.03151
С	-3.39764	0.83752	0.01561
С	-2.19782	1.55474	-0.01407
Н	-2.19214	-2.37043	0.03189
Н	-4.34236	-1.10178	0.05387
Н	-4.34243	1.37327	0.02489
Н	-2.18030	2.63998	-0.03107
С	0.36356	1.45002	-0.05432
0	0.64188	2.62688	0.02538
0	0.90634	-2.01631	-1.18940
Ν	1.28857	0.40812	-0.22576
Cl	2.96095	0.66319	0.01990
S	0.63746	-1.22141	0.00355
0	1.02668	-1.71611	1.32140
2b∙			
С	-0.79063	0.70448	0.00009
С	-0.30744	-0.60384	0.00016
С	-1.14392	-1.71232	0.00008
С	-2.52153	-1.46726	0.00002
С	-3.02613	-0.15602	0.00001

С

Η

Η

Н

Н

С

0

0

Ν

S

0

2c С

С

С

С

-2.16654

-0.74955

-3.21150

-4.10085

-2.54227

0.29613

0.14571

2.02623

1.60190

1.48517

2.02661

-0.82529

-0.82530

-2.00813

-3.20977

0.94408

-2.72360

-2.30636

0.00110

1.96261

1.72476

2.93620

-1.02628

1.16024

-0.54568

-1.02589

-0.69948

0.69949

1.42539

0.70060

0.00003

0.00008

-0.00003

-0.00005

-0.00001

-0.00001

-0.00014

-1.27287

-0.00002

-0.00003

1.27281

0.00015

0.00008

0.00013

0.00032

С	-3.20977	-0.70060	0.00043
С	-2.00812	-1.42539	0.00035
Н	-1.99784	2.51109	0.00008
Н	-4.15598	1.23453	0.00039
Н	-4.15597	-1.23453	0.00057
Н	-1.99783	-2.51108	0.00040
С	0.58538	1.18811	-0.00002
С	0.58539	-1.18811	-0.00009
0	1.01653	-2.31758	-0.00004
0	1.01655	2.31757	-0.00020
Ν	1.35940	-0.00001	-0.00015
Cl	3.06005	0.00000	-0.00039

2c∙			
С	-0.14419	-0.69974	0.00000
С	-0.14420	0.69975	-0.00008
С	-1.33076	1.42875	0.00005
С	-2.52697	0.70426	0.00024
С	-2.52696	-0.70427	0.00032
С	-1.33075	-1.42875	0.00020
Н	-1.32157	2.51456	0.00000
Н	-3.47577	1.23384	0.00035
Н	-3.47576	-1.23386	0.00047
Н	-1.32155	-2.51456	0.00025
С	1.27929	1.14730	-0.00028
С	1.27930	-1.14728	-0.00017
0	1.70851	-2.28724	0.00005
0	1.70851	2.28725	-0.00019
Ν	2.13284	-0.00001	-0.00022

С	-0.15439	1.45231	0.00019
С	-1.18044	-0.85968	0.00012
С	1.33464	-0.59223	-0.00013
Ν	0.14261	-1.34199	0.00029
Ν	-1.23361	0.54756	0.00007
Ν	1.09081	0.79474	0.00030
0	2.43406	-1.08005	-0.00052
0	-2.15270	-1.56776	0.00003
0	-0.28146	2.64837	0.00016
Cl	2.47692	1.80364	-0.00001
Cl	0.32392	-3.04703	0.00006

6	7	¢)
k	2	()

Cl	-2.80065	1.24286	-0.00023
2d·			
С	1.20761	1.25617	-0.04420
С	-1.20762	1.25617	-0.04419
С	0.00001	-0.94187	-0.07845
Ν	-1.17366	-0.15311	-0.07450

Ν	0.00000	1.85179	-0.41985
Ν	1.17367	-0.15310	-0.07453
0	0.00001	-2.14347	-0.06820
0	-2.19499	1.90640	0.21155
0	2.19496	1.90640	0.21162
Cl	2.66452	-0.98813	0.06303
Cl	-2.66451	-0.98814	0.06305

2 b			
С	-0.99540	0.83975	-0.02245
С	-1.00831	-0.54972	-0.00440
С	-2.17725	-1.28872	0.01442
С	-3.37626	-0.57545	0.02716
С	-3.38214	0.82074	0.01632
С	-2.19116	1.54343	-0.01094
Н	-2.16044	-2.37668	0.02193
Н	-4.31937	-1.11780	0.04728
Н	-4.33208	1.35128	0.02784
Н	-2.17581	2.63131	-0.02486
С	0.35795	1.44941	-0.05309
0	0.63554	2.62050	0.02152
0	0.91362	-1.99011	-1.17977
Ν	1.27798	0.40641	-0.21200
Cl	2.93641	0.64804	0.01640
S	0.63734	-1.20581	0.00489
0	1.02093	-1.69206	1.31483
2b·			
С	-0.78316	0.70166	0.00018
С	-0.30004	-0.60013	0.00024
С	-1.13061	-1.70673	0.00003
С	-2.50277	-1.46209	-0.00004
С	-3.00706	-0.15584	0.00002
С	-2.15322	0.94192	0.00010
Η	-0.73042	-2.71841	-0.00003
Н	-3.19407	-2.30257	-0.00018
Η	-4.08416	-0.00185	-0.00005
Η	-2.52725	1.96379	0.00008
С	0.29469	1.71940	0.00001
0	0.14210	2.92326	-0.00020
0	2.00610	-1.01890	-1.26593
N	1.59600	1.15043	0.00006
S	1.47617	-0.54422	-0.00002
0	2.00658	-1.01879	1.26575
2c			
C	-0.81943	-0.69646	0.00015
С	-0.81943	0.69646	0.00007
С	-1.99609	1.42146	0.00014

C -3.19275 0.69795 0.00032

Cartesian coordinates	s of 2b-2d at the	M06/6-31+G(d)	level of theory
-----------------------	-------------------	---------------	-----------------

С	-1.99608	-1.42145	0.00034
Н	-1.98074	2.50964	0.00009
Н	-4.14142	1.23159	0.00040
Н	-4.14142	-1.23159	0.00056
Н	-1.98073	-2.50964	0.00039
С	0.58332	1.18501	-0.00005
С	0.58333	-1.18501	-0.00007
0	1.01261	-2.30893	-0.00003
0	1.01263	2.30891	-0.00021
Ν	1.35394	-0.00001	-0.00015
Cl	3.03906	0.00000	-0.00037
2c∙			
С	-0.14114	-0.69633	0.00001
С	-0.14114	0.69634	-0.00007
С	-1.32161	1.42532	0.00005
С	-2.51200	0.70195	0.00024
С	-2.51199	-0.70196	0.00031
С	-1.32161	-1.42532	0.00020
Н	-1.30714	2.51350	0.00000
Н	-3.46334	1.23102	0.00034
Н	-3.46333	-1.23104	0.00047
Н	-1.30713	-2.51350	0.00026
С	1.27274	1.14485	-0.00027
С	1.27275	-1.14483	-0.00016
0	1.69304	-2.28061	0.00003
0	1.69305	2.28061	-0.00020
Ν	2.12517	-0.00001	-0.00023

C -3.19275 -0.69795 0.00042

2d

С	1.45137	0.13180	-0.00011
С	-0.83998	1.19095	-0.00034
С	-0.61150	-1.32257	0.00035
Ν	-1.33806	-0.12167	0.00008
Ν	0.56385	1.21962	-0.00060
Ν	0.77427	-1.09782	0.00030
0	-1.11354	-2.40876	0.00059
0	-1.52984	2.16861	-0.00026
0	2.64303	0.23983	-0.00023
Cl	1.75333	-2.48648	-0.00021
Cl	-3.03044	-0.27491	-0.00012

Cl	1.27729	2.76143	0.00042
2d∙			
С	1.20584	1.25258	-0.04615
С	-1.20586	1.25260	-0.04621
С	0.00000	-0.94293	-0.08594
Ν	-1.16907	-0.15427	-0.08600

Ν	0.00001	1.82133	-0.45685
Ν	1.16906	-0.15428	-0.08595
0	-0.00001	-2.13825	-0.06576
0	-2.17805	1.90056	0.22996
0	2.17809	1.90054	0.22984
Cl	2.64530	-0.97841	0.06822
Cl	-2.64531	-0.97840	0.06820

4. Toluene side-chain chlorination on gram-scale

Scheme S1. Toluene side-chain chlorination on gram-scale.^a

^a Conditions: toluene (**1a**, 75 mmol), NCS (**2a**, 15 mmol), NHPI (**3a**, 10 mol%), DDQ (5 mol%), CH₃CN (60 mL), 80 °C, 3h; GC yield with diphenyl as internal standard and is on the basis of NCS (**2a**).

5. Oxidative bromination of 1a and 1s with NBS.^a

Scheme S2. Oxdaive bromination of 1a and 1s with NBS.^a

^a Conditions: **1** (2.5 mmol, 5.0 equiv.), NBS (0.5 mmol), NHPI (**3a**, 10 mol%), DDQ (0.5 mol%), CH₃CN (2 mL), 80 °C, 3h; yield determined by GC using diphenyl as internal standard and is on the basis of NBS.

6. DFT calculation of mechanism

$$I + 1a \rightarrow 3a + II \qquad (eq. 2)$$

$$II + 2a \rightarrow 4a + III \qquad (eq. 3)$$

- $III + 1a \rightarrow 7a + II \qquad (eq. 4)$
- $III + 3a \rightarrow 7a + I \qquad (eq. 5)$

Table S3. Comparison of relative Gibbs free energies (ΔG_r , kcal/mol) and barrier heights (ΔG^{\ddagger} , kcal/mol) of the reaction steps. The calculations were performed to mimic the optimized experimental conditions (80 °C, CH₃CN).

	H 	0 HO-N FS1 0	H H H TS2	$ \begin{array}{c} \mathbf{O} \\ -\mathbf{N} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{TS3} \end{array} $	о -N 0 0 0 тs4	
-			B3LYP/6- 31+G(d)	M06/6-31+G(d)	M06-2X/6-31+G(d)	_
_		eq. 2	13.7	8.8	12.2	-
		eq. 3	-1.7	1.0	-0.3	
	$\Delta G_{\rm r}$	eq. 4	-28.4	-32.4	-30.2	
		eq. 5	-42.1	-41.2	-42.4	
-		TS1	29.8	_ **	_ **	-
	ΔG^{\ddagger}	TS2	17.0	19.7	21.7	
		TS3	13.5*	9.4	13.1	
		TS4	12.5*	_ **	_ **	

* - Single-point calculations on gas phase optimized structures

** - Attempts to locate the corresponding transition states were not successful

Computational Methods

All calculations were carried out by using the Gaussian 09 program package. The calculations were performed by the B3LYP,⁵⁻⁷ M06⁸ and M06-2X⁸ density functionals in combination with the 6-31+G(d) basis set as implemented in the Gaussian 09

program package.⁹ Normal mode analysis was carried out on each optimized structure in order to verify that they have the right number of imaginary frequencies. To mimic the optimized experimental conditions the calculations were performed using the CPCM solvent model^{10, 11} with acetonitrile (CH₃CN) as solvent at 80 °C and 1 atm. Cartesian coordinates of all computed structures at the B3LYP/6-31+G(d) (solvent: CH₃CN) level of theory

1a			
С	0.19873	-1.20276	0.00000
С	0.91709	0.00547	0.00000
С	0.19187	1.20629	0.00000
С	-1.20842	1.20517	0.00000
С	-1.90966	-0.00384	0.00000
С	-1.19865	-1.21031	0.00000
Н	0.74108	-2.14651	0.00000
Н	0.72767	2.15334	0.00000
Н	-1.74810	2.14921	0.00000
Н	-2.99670	-0.00823	0.00000
Н	-1.73322	-2.15729	0.00000
С	2.42981	0.00291	0.00000
Н	2.82733	-0.51504	-0.88195
Н	2.83002	1.02193	-0.00002
Н	2.82733	-0.51500	0.88197

2a			
С	1.89116	-0.77039	0.00000
С	1.89116	0.77039	0.00006
С	0.43187	1.18697	-0.00006
С	0.43187	-1.18697	-0.00009
Н	2.37515	-1.19895	-0.88276
Н	2.37508	-1.19901	0.88277
Н	2.37520	1.19902	-0.88265
Н	2.37504	1.19894	0.88288
0	-0.04245	-2.30336	0.00003
0	-0.04245	2.30336	0.00000
Ν	-0.31922	0.00000	-0.00004
Cl	-2.02724	0.00000	0.00002
3 a			
С	0.50398	0.70124	0.00395
С	0.50398	-0.70123	0.00395
С	1.68766	-1.42552	0.00384
С	2.89016	-0.70044	-0.00081
С	2.89016	0.70044	-0.00088
С	1.68766	1.42553	0.00371
Н	1.68489	-2.51110	0.00513

Н	3.83578	-1.23439	-0.00497
Н	3.83578	1.23439	-0.00506
Н	1.68489	2.51110	0.00502
С	-0.90699	-1.17816	0.00791
С	-0.90699	1.17817	0.00834
Ν	-1.67282	-0.00001	0.09707
0	-1.35842	-2.30632	-0.04155
0	-1.35845	2.30630	-0.04161
0	-3.03107	0.00002	-0.11986
Н	-3.44587	-0.00012	0.76458
4 a			
С	-1.99588	-1.21093	-0.15970
С	-0.65937	-1.20996	0.24760
С	0.02156	0.00017	0.45244
С	-0.65962	1.21012	0.24730
С	-1.99612	1.21072	-0.15999
С	-2.66656	-0.00020	-0.36574
Н	-2.51367	-2.15419	-0.31205
Η	-0.14164	-2.15273	0.40879
Η	-0.14208	2.15304	0.40826
Η	-2.51411	2.15384	-0.31256
Η	-3.70672	-0.00034	-0.68065
С	1.45297	0.00038	0.89240
Н	1.71627	0.89354	1.45791
Н	1.71633	-0.89232	1.45861
Cl	2.62375	-0.00016	-0.55025
Ι			
C	-0.45218	0.70415	0.00029
C	0 45218	-0.70415	0.00032

С	-0.45218	0.70415	0.00029
С	-0.45218	-0.70415	0.00032
С	-1.64034	-1.42645	0.00011
С	-2.83937	-0.70195	-0.00001
С	-2.83937	0.70195	0.00001
С	-1.64034	1.42645	0.00015
Н	-1.63709	-2.51163	0.00012
Н	-3.78560	-1.23426	-0.00013
Н	-3.78560	1.23426	-0.00011
Н	-1.63709	2.51163	0.00012

С	0.93597	-1.20174	0.00062
С	0.93597	1.20174	0.00035
Ν	1.75723	0.00000	-0.00020
0	1.39497	-2.32015	-0.00015
0	1.39497	2.32015	-0.00008
0	3.02202	0.00000	-0.00097
Π			
С	0.00000	1.13594	1.21448
С	0.00000	-0.25291	1.22087
С	0.00000	-0.99712	0.00000
С	0.00000	-0.25291	-1.22087
С	0.00000	1.13594	-1.21448
С	0.00000	1.84351	0.00000
Н	0.00000	1.67898	2.15640
Н	0.00000	-0.79384	2.16442
Н	0.00000	-0.79384	-2.16442
Н	0.00000	1.67898	-2.15640
Н	0.00000	2.93000	0.00000
С	0.00000	-2.40655	0.00000
Н	0.00000	-2.96788	-0.92956
Н	0.00000	-2.96788	0.92956
III			
III C	0.76277	1.24904	-0.02672
III C C	0.76277 -0.76283	1.24904 1.24908	-0.02672 0.02676
III C C C C	0.76277 -0.76283 -1.11205	1.24904 1.24908 -0.23991	-0.02672 0.02676 0.03834
III C C C C C C	0.76277 -0.76283 -1.11205 1.11203	1.24904 1.24908 -0.23991 -0.24004	-0.02672 0.02676 0.03834 -0.03827
III C C C C H	0.76277 -0.76283 -1.11205 1.11203 1.16360	1.24904 1.24908 -0.23991 -0.24004 1.71029	-0.02672 0.02676 0.03834 -0.03827 -0.93514
III C C C C C H H	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288
III C C C C H H H	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286
III C C C C H H H H	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512
ш С С С С С Н Н Н Н Н О	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379
Ш С С С С Н Н Н Н Н О О	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416
ш С С С С Н Н Н Н Н О О N	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033
III C C C C H H H H O O N	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033
Ш С С С С Н Н Н Н Н О О N	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033
Ш С С С С Н Н Н Н Н О О N 7а С	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005 0.76946	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033
н С С С С С Н Н Н Н Н Н О О N 7а С С	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005 0.76946 1.16844	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748 -1.26012 0.20911	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033
Ш С С С С С Н Н Н Н Н И О О N 7а С С С	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005 0.76946 1.16844 -1.16844	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748 -1.26012 0.20911 0.20911	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033 0.00033 -0.00031
н С С С С С С Н Н Н Н Н О О О N 7а С С С Н Н	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005 0.76946 1.16844 -1.16844 1.20682	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748 -1.26012 0.20911 0.20911 -1.74750	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033 -0.00033 -0.00031 -0.87338
III С С С С С Н Н Н Н О О N Р 7а С С С Н Н Н	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005 0.76946 1.16844 -1.16844 1.20682 1.19728	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748 -1.26012 0.20911 0.20911 -1.74750 -1.73905	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033 -0.00033 -0.00031 -0.87338 0.88975
н С С С С С С Н Н Н Н О О N Р 7а С С С Н Н Н Н О О N	0.76277 -0.76283 -1.11205 1.11203 1.16360 1.24343 -1.24344 -1.16363 2.24441 -2.24431 -0.00005 0.76946 1.16844 -1.16844 1.20682 1.19728 -2.29374	1.24904 1.24908 -0.23991 -0.24004 1.71029 1.72425 1.72432 1.71045 -0.71907 -0.71918 -1.06748 -1.26012 0.20911 0.20911 -1.74750 -1.73905 0.68093	-0.02672 0.02676 0.03834 -0.03827 -0.93514 0.83288 -0.83286 0.93512 0.02379 -0.02416 0.00033 -0.00033 -0.00031 -0.87338 0.88975 0.00160

TS1			
Н	-1.19728	-1.73904	-0.88976
Η	-1.20682	-1.74751	0.87337
С	-0.76946	-1.26012	-0.00344
Н	0.00000	1.97498	-0.00001
Ν	0.00000	0.95934	0.00000

C 2.96487 -0.70141 -0.0804 C 2.96481 0.70144 -0.0804 C 4.11822 1.42534 0.1870 C 5.28992 0.70063 0.4589 C 5.28998 -0.70039 0.4589 C 5.28998 -0.70039 0.4589 C 4.11833 -1.42521 0.1871 H 4.11561 2.51093 0.1863 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.1863 C 1.59172 1.17801 -0.3988	1 4 7 4 5 2
C 2.96481 0.70144 -0.0804 C 4.11822 1.42534 0.1870 C 5.28992 0.70063 0.45894 C 5.28998 -0.70039 0.45894 C 4.11833 -1.42521 0.18711 H 4.11561 2.51093 0.18634 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.18634 C 1.59172 1.17801 -0.3988	4 7 4 5 2
C 4.11822 1.42534 0.1870 C 5.28992 0.70063 0.4589 C 5.28998 -0.70039 0.4589 C 4.11833 -1.42521 0.18711 H 4.11561 2.51093 0.18633 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.18633 C 1.59172 1.17801 -0.3988	7 4 5 2
C 5.28992 0.70063 0.45894 C 5.28998 -0.70039 0.45894 C 4.11833 -1.42521 0.18711 H 4.11561 2.51093 0.18634 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.18634 C 1.59172 1.17801 -0.3988	4 6 2
C 5.28998 -0.70039 0.45899 C 4.11833 -1.42521 0.18713 H 4.11561 2.51093 0.18639 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.18639 C 1.59172 1.17801 -0.3988	6 2
C 4.11833 -1.42521 0.18713 H 4.11561 2.51093 0.18633 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.67273 H 4.11581 -2.51080 0.18633 C 1.59172 1.17801 -0.3988	2
H 4.11561 2.51093 0.1863 H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.1863 C 1.59172 1.17801 -0.3988	
H 6.21104 1.23470 0.6726 H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.1863 C 1.59172 1.17801 -0.3988	0
H 6.21114 -1.23437 0.6727 H 4.11581 -2.51080 0.1863 C 1.59172 1.17801 -0.3988 C 1.50192 1.17801 0.2027	8
H 4.11581 -2.51080 0.1863 C 1.59172 1.17801 -0.3988 C 1.50182 1.17801 0.2027	3
C 1.59172 1.17801 -0.3988	9
0 1 50100 1 17011 0 2007	3
C 1.59182 -1.1/811 -0.398/	9
N 0.83339 -0.00008 -0.5782	5
O 1.15564 2.31006 -0.4985	5
O 1.15583 -2.31019 -0.4984	7
O -0.45635 -0.00014 -0.9349	0
C -3.99910 1.21714 0.4017	6
C -3.32175 -0.00005 0.6695	0
C -3.99922 -1.21714 0.4016	9
С -5.29767 -1.21465 -0.0974	6
C -5.95285 0.00012 -0.3501	3
C -5.29755 1.21481 -0.0973	9
Н -3.49181 2.15869 0.5973	6
Н -3.49203 -2.15877 0.5972	2
Н -5.80546 -2.15568 -0.2906	4
Н -6.96689 0.00018 -0.7403	2
Н -5.80524 2.15590 -0.2905	0
C -1.95748 -0.00013 1.1630	0
Н -1.16776 -0.00015 0.0712	
Н -1.61159 0.91567 1.6465	8
Н -1.61168 -0.91598 1.6464	8 1

TS2			
С	4.09990	1.34984	-0.34525
С	4.49914	-0.13006	-0.47765
С	3.21136	-0.91277	-0.21298
С	2.60755	1.32898	-0.00695

Н	4.63283	1.87363	0.45446
Н	4.24116	1.92171	-1.26775
Н	5.25402	-0.44228	0.25079
Н	4.87071	-0.39241	-1.47314
0	1.89514	2.30179	0.19411
0	3.08768	-2.12908	-0.21427
Ν	2.20985	0.00685	0.02617
С	-1.68723	-1.37047	1.14975
Н	-1.51200	-1.17543	2.20295
Н	-1.49043	-2.38488	0.81729
С	-2.68716	-0.60795	0.46801
С	-3.20806	0.58247	1.04363
С	-3.17897	-1.02804	-0.79743
С	-4.19038	1.31009	0.38564
Н	-2.83215	0.91369	2.00794
С	-4.16113	-0.29467	-1.44905
Н	-2.78069	-1.93374	-1.24673
С	-4.66876	0.87541	-0.86129
Η	-4.59011	2.21448	0.83478
Н	-4.53809	-0.62568	-2.41228
Η	-5.43679	1.44760	-1.37404
Cl	0.29602	-0.55667	0.45913

r	Г	C	2
	L	Э	J

100			
С	-3.61956	-1.30295	0.02981
С	-4.18098	0.05961	-0.35655
С	-2.92454	0.98543	-0.37480
С	-2.10795	-1.03636	0.10006
Н	-3.96965	-1.67177	0.99918
Н	-3.81389	-2.08607	-0.71031
Н	-4.89525	0.47364	0.36106
Н	-4.63885	0.09520	-1.34967
0	-1.25638	-1.85631	0.44218
0	-2.99647	2.18971	-0.58421
Ν	-1.77357	0.25813	-0.21084
С	1.00225	1.11441	1.39554
Н	0.79788	0.55333	2.31640
Н	1.19298	2.16106	1.65387
С	2.13686	0.50997	0.62620
С	2.16842	-0.88194	0.38057

H	0.07177	1.06556	0.79886
Η	5.04936	-1.09424	-1.42473
Η	5.01710	1.36170	-1.01072
Н	3.21277	-2.52382	-0.53494
С	4.23750	-0.64867	-0.85562
Н	3.16529	2.37752	0.28479
С	4.21899	0.73429	-0.62202
Н	1.35827	-1.50168	0.75530
С	3.20530	-1.45226	-0.35266
С	3.17871	1.30438	0.10831

TS4

10.			
С	2.70259	-0.39377	0.01005
С	1.86289	0.68293	0.31877
С	2.34550	1.98229	0.38861
С	3.71266	2.17879	0.14055
С	4.55255	1.10148	-0.17085
С	4.05405	-0.20859	-0.24247
С	0.48011	0.16313	0.52618
С	1.89373	-1.65023	0.00822
Ν	0.57462	-1.20929	0.27746
0	-0.54092	0.76868	0.80753
0	2.23392	-2.79507	-0.17732
0	-0.42833	-2.08757	0.59370
Ν	-2.99468	-0.77471	-0.16219
С	-3.69681	0.13540	0.64964
С	-2.45799	-0.04599	-1.23929
С	-3.67426	1.55062	0.07196
0	-4.28512	-0.22426	1.65951
С	-2.98306	1.38231	-1.28953
0	-1.63672	-0.56332	-1.98756
Н	1.68818	2.81174	0.63195
Н	4.12742	3.18168	0.19205
Н	5.60705	1.28401	-0.35849
Н	4.69691	-1.04986	-0.48364
Н	-1.05083	-2.08034	-0.16399
Н	-4.69085	1.95151	0.02428
Н	-3.09569	2.18338	0.75364
Н	-3.68060	1.47487	-2.13139
Н	-2.15541	2.07313	-1.46928

Cartesian coordinates of all computed structures at the M06/6-

1a			
С	0.19152	1.20313	-0.00466
С	0.91331	0.00655	-0.00571
С	0.20001	-1.19819	-0.00466
С	-1.19205	-1.20695	0.00100
С	-1.90069	-0.00492	0.00441
С	-1.20318	1.20082	0.00109
Н	0.73193	2.15087	-0.00914
Н	0.74933	-2.14122	-0.00911
Н	-1.72769	-2.15562	0.00090
Н	-2.98960	-0.01000	0.00749
Н	-1.74566	2.14556	0.00112
С	2.41379	0.00286	0.00454
Н	2.82069	1.00766	-0.16198
Н	2.80507	-0.35750	0.96617
Н	2.81961	-0.65957	-0.77148
2a			
С	1.87566	0.75995	0.08126
С	1.87566	-0.75996	-0.08125
С	0.42978	-1.17769	-0.11711
С	0.42978	1.17769	0.11711
Н	2.35450	1.09525	1.00828
Н	2.36956	1.28496	-0.74402
Н	2.36956	-1.28496	0.74402
Н	2.35450	-1.09525	-1.00827
0	-0.04290	2.28360	0.22399

31+G(d) (solvent: CH₃CN) level of theory

Н	3.82305	-1.23144	0.00087
Н	3.82306	1.23144	0.00080
Н	1.67055	2.50967	0.00504
С	-0.90282	-1.17540	0.00461
С	-0.90282	1.17541	0.00501
Ν	-1.66595	-0.00001	0.09356
0	-1.35037	-2.29837	-0.04644
0	-1.35039	2.29835	-0.04651
0	-3.01171	0.00002	-0.10787
Н	-3.42136	-0.00011	0.77748
4 a			
С	-1.97373	-1.20731	-0.15908
С	-0.64445	-1.20620	0.25423
С	0.02888	0.00015	0.46469
С	-0.64465	1.20634	0.25398
С	-1.97394	1.20713	-0.15933
С	-2.64015	-0.00016	-0.36690
Н	-2.49143	-2.15205	-0.31646
Н	-0.12081	-2.14895	0.41770
Н	-0.12118	2.14921	0.41725
Н	-2.49180	2.15175	-0.31690
Н	-3.68052	-0.00028	-0.68772
С	1.45490	0.00032	0.89250
Н	1.72284	0.89410	1.46200
Н	1.72289	-0.89309	1.46257
Cl	2.57758	-0.00013	-0.55994
I			
С	-0.44925	0.70100	0.00022
С	-0.44925	-0.70100	0.00024
С	-1.63115	-1.42249	0.00011
С	-2.82531	-0.69928	0.00002
С	-2.82531	0.69928	0.00003
С	-1.63115	1.42249	0.00012
Н	-1.62360	-2.51011	0.00011
Н	-3.77386	-1.23140	-0.00005
Н	-3.77386	1.23140	-0.00004
Н	-1.62360	2.51011	0.00010

0

Ν

Cl

Uu			
С	0.49997	0.69818	0.00236
С	0.49996	-0.69817	0.00235
С	1.67750	-1.42161	0.00401
С	2.87499	-0.69780	0.00243
С	2.87499	0.69781	0.00237
С	1.67750	1.42162	0.00390
Н	1.67054	-2.50966	0.00513

-0.04291 -2.28360 -0.22399

-0.32059 0.00000 0.00000 -2.01150 0.00000 -0.00001

С	0.93151	-1.19886	0.00043
С	0.93151	1.19886	0.00026
Ν	1.74848	0.00000	-0.00017
0	1.38898	-2.31171	-0.00012
0	1.38898	2.31171	-0.00007
0	3.00278	0.00000	-0.00074
II			
С	0.00000	1.13127	1.21094
С	0.00000	-0.25251	1.21704
С	0.00000	-0.99221	0.00000
С	0.00000	-0.25251	-1.21704
С	0.00000	1.13127	-1.21094
С	0.00000	1.83613	0.00000
Н	0.00000	1.67579	2.15432
Н	0.00000	-0.79867	2.16096
Н	0.00000	-0.79867	-2.16096
Н	0.00000	1.67579	-2.15432
Н	0.00000	2.92465	0.00000
С	0.00000	-2.39527	0.00000
Н	0.00000	-2.95796	-0.93223
Н	0.00000	-2.95796	0.93223
Ш			
С	0.74547	1.22421	-0.09193
С	-0.77211	1.21201	0.11753
С	-1.13966	-0.25817	0.18195
С	1.13965	-0.23992	-0.13419
Н			
	1.06136	1.69285	-1.03086
Н	1.06136 1.29150	1.69285 1.71801	-1.03086 0.71998
H H	1.06136 1.29150 -1.33789	1.69285 1.71801 1.67433	-1.03086 0.71998 -0.69916
H H H	1.06136 1.29150 -1.33789 -1.08558	1.69285 1.71801 1.67433 1.69817	-1.03086 0.71998 -0.69916 1.04852
H H H O	1.06136 1.29150 -1.33789 -1.08558 2.18256	1.69285 1.71801 1.67433 1.69817 -0.72575	-1.03086 0.71998 -0.69916 1.04852 -0.50575
Н Н Н О О	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002
H H H O O N	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783
H H H O O N	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783
H H H O O N 7a	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783
Н Н Н О О N 7а С	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639 -0.75934	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679 1.24837	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783
H H H O N 7a C C	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639 -0.75934 -1.15735	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679 1.24837 -0.20744	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783 0.07918 0.11991
H H O O N 7a C C C C	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639 -0.75934 -1.15735 1.15735	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679 1.24837 -0.20744 -0.20744	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783 0.07918 0.11991 -0.11991
Н Н Н О О N 7а С С С Н	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639 -0.75934 -1.15735 1.15735 -1.28512	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679 1.24837 -0.20744 -0.20744 1.73458	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783 0.07918 0.11991 -0.11991 -0.75055
H H O O N 7a C C C H H	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639 -0.75934 -1.15735 1.15735 -1.28512 -1.10237	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679 1.24837 -0.20744 1.73458 1.73216	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783 0.07918 0.11991 -0.11991 -0.75055 1.00091
H H O O N 7a C C C H H O	1.06136 1.29150 -1.33789 -1.08558 2.18256 -2.23634 0.05639 -0.75934 -1.15735 1.15735 1.15735 -1.28512 -1.10237 2.27345	1.69285 1.71801 1.67433 1.69817 -0.72575 -0.76208 -0.96679 1.24837 -0.20744 -0.20744 1.73458 1.73216 -0.67163	-1.03086 0.71998 -0.69916 1.04852 -0.50575 0.11002 0.38783 0.07918 0.11991 -0.11991 -0.75055 1.00091 -0.23497

1.10237	1.73216	-1.00091
4.22719	0.83330	-0.59769
4.26940	-0.69227	-0.63549
2.88340	-1.14019	-0.20864
2.81835	1.18230	-0.15269
4.93597	1.27445	0.11273
4.41105	1.30109	-1.57184
5.00296	-1.12832	0.05256
4.47595	-1.10105	-1.63138
2.37019	2.29826	0.02985
2.49978	-2.28742	-0.08093
2.13428	-0.00360	0.00123
-1.64579	-0.14647	1.76034
-1.47765	0.72672	2.38897
-1.49198	-1.10819	2.24826
-2.63569	-0.06188	0.73113
-3.10209	1.19567	0.28662
-3.13621	-1.23514	0.12351
-4.05231	1.27260	-0.71682
-2.70425	2.10061	0.74550
-4.08747	-1.15121	-0.87865
-2.76618	-2.20362	0.45931
-4.54657	0.10108	-1.30072
-4.41520	2.24173	-1.05258
-4.47805	-2.05715	-1.33727
-5.29309	0.16577	-2.09009
0.23220	-0.07178	0.68298
	1.10237 4.22719 4.26940 2.88340 2.81835 4.93597 4.41105 5.00296 4.47595 2.37019 2.49978 2.13428 -1.64579 -1.47765 -1.49198 -2.63569 -3.10209 -3.13621 -4.05231 -2.70425 -4.08747 -2.76618 -4.54657 -4.41520 -4.47805 -5.29309 0.23220	1.102371.732164.227190.833304.26940-0.692272.88340-1.140192.818351.182304.935971.274454.411051.301095.00296-1.128324.47595-1.101052.370192.298262.49978-2.287422.13428-0.00360-1.64579-0.14647-1.477650.72672-1.49198-1.10819-2.63569-0.06188-3.102091.19567-3.13621-1.23514-4.052311.27260-2.704252.10061-4.08747-1.15121-2.76618-2.20362-4.546570.10108-4.415202.24173-4.47805-2.05715-5.293090.165770.23220-0.07178

Ν

Н

С

Н

0.00000

0.00000

0.75934

1.28512

-0.95846

-1.97469

1.24837

1.73458

0.00000

0.00000

-0.07918

0.75055

TS3			
С	1.72130	-1.75827	0.23654
С	2.90165	-1.13628	-0.49278
С	2.81881	0.34107	-0.13306
С	1.09189	-0.57703	0.95122
Н	0.98018	-2.22064	-0.42799
Н	2.00641	-2.51842	0.97425
Н	2.84911	-1.23638	-1.58395
Н	3.87649	-1.53010	-0.18073
0	0.02998	-0.61909	1.58014

0	3.54685	1.21095	-0.59709
Ν	1.81874	0.56959	0.79065
С	-0.43516	2.09912	-0.32277
Η	-0.06271	2.33708	-1.32690
Η	-0.75065	3.00212	0.21128
С	-1.42993	1.03324	-0.31393
С	-1.36374	-0.01403	-1.27203
С	-2.46674	1.00369	0.65678
С	-2.29875	-1.02563	-1.27235

Η	-0.55777	0.00062	-2.00685	
С	-3.40556	-0.00646	0.64897	
Н	-2.51059	1.79855	1.39990	
С	-3.32540	-1.02591	-0.31191	
Н	-2.24561	-1.82344	-2.00955	
Н	-4.20572	-0.01863	1.38527	
Н	-4.06226	-1.82665	-0.31185	
Н	0.48722	1.71283	0.23003	

1a			
С	-0.19718	-1.20076	-0.00848
С	-0.91284	0.00250	-0.01098
С	-0.19400	1.20269	-0.00850
С	1.20154	1.20377	0.00199
С	1.90269	-0.00185	0.00792
С	1.19726	-1.20615	0.00194
Н	-0.74059	-2.14337	-0.01676
Н	-0.73403	2.14708	-0.01689
Н	1.74051	2.14726	0.00203
Н	2.98886	-0.00374	0.01330
Н	1.73367	-2.15112	0.00189
С	-2.42140	0.00101	0.00870
Н	-2.82438	-0.82541	-0.58428
Н	-2.79675	-0.11579	1.03188
Н	-2.82371	0.93782	-0.38671
2a			
С	0.01731	-0.76708	-1.88368
С	-0.01731	0.76708	-1.88368
С	-0.00337	1.18075	-0.42708
С	0.00337	-1.18075	-0.42708
Н	-0.84436	-1.21877	-2.38040
Н	0.92193	-1.17310	-2.34319
Н	-0.92193	1.17310	-2.34319
Н	0.84436	1.21877	-2.38040
0	0.00000	-2.28912	0.04799
0	0.00000	2.28912	0.04799
Ν	0.00000	0.00000	0.32347
Cl	0.00000	0.00000	2.00848
32			
C	-0.50568	-0.69773	0.00476
С	-0.50568	0.69773	0.00477
С	-1.68323	1.42370	0.00425
С	-2.88156	0.69869	0.00068
С	-2.88156	-0.69869	0.00072
C	-1.68322	-1.42370	0.00433
Н	-1.67708	2.50913	0.00496
Н	-3.82746	1.23101	-0.00267
Н	-3.82746	-1.23102	-0.00262

Н	-1.67707	-2.50913	0.00502
С	0.90863	1.17304	0.00639
С	0.90863	-1.17303	0.00608
Ν	1.66922	-0.00001	0.09623
0	1.35741	2.29256	-0.04707
0	1.35739	-2.29256	-0.04709
0	3.01507	0.00001	-0.11111
Н	3.42754	-0.00009	0.77186

4 a			
С	-1.95109	-1.22852	-0.12818
С	-0.62027	-1.18952	0.28272
С	0.02931	0.03605	0.45997
С	-0.66966	1.22325	0.22372
С	-2.00179	1.18619	-0.18594
С	-2.64396	-0.03969	-0.36342
Н	-2.44780	-2.18504	-0.26124
Н	-0.07970	-2.11531	0.46693
Н	-0.16878	2.17872	0.36196
Н	-2.53809	2.11365	-0.36393
Н	-3.68215	-0.06878	-0.68101
С	1.46565	0.07472	0.88368
Н	1.72164	1.00781	1.38434
Н	1.73046	-0.77105	1.51753
Cl	2.57737	-0.03146	-0.55646

1	

1			
С	0.45532	-0.69979	0.00003
С	0.45532	0.69979	0.00001
С	1.63690	1.42416	0.00009
С	2.83231	0.69986	0.00012
С	2.83231	-0.69986	0.00010
С	1.63690	-1.42416	0.00004
Н	1.63006	2.50929	0.00008
Н	3.77850	1.23127	0.00016
Н	3.77850	-1.23127	0.00013
Н	1.63006	-2.50929	0.00005
С	-0.93795	1.19624	-0.00013
С	-0.93795	-1.19624	0.00006
Ν	-1.75198	0.00000	-0.00007
0	-1.39557	2.30516	-0.00003

Cartesian coordinates of all computed structures at the M06-2X/6-31+G(d) (solvent: CH_3CN) level of theory

0	-1.39557	-2.30516	-0.00008
0	-3.00789	0.00000	-0.00012
Π			
С	0.00000	1.21028	-1.13346
С	0.00000	1.21570	0.25303
С	0.00000	0.00000	0.98991
С	0.00000	-1.21570	0.25303
С	0.00000	-1.21028	-1.13346
С	0.00000	0.00000	-1.83814
Н	0.00000	2.15160	-1.67562
Н	0.00000	2.15773	0.79581
Н	0.00000	-2.15773	0.79581
Н	0.00000	-2.15160	-1.67562
Н	0.00000	0.00000	-2.92363
С	0.00000	0.00000	2.40276
Н	0.00000	-0.92936	2.96056
Н	0.00000	0.92936	2.96056
III			
С	0.76270	1.23717	-0.02819
С	-0.76502	1.23694	0.03834
С	-1.13552	-0.23476	0.01109
С	1.13518	-0.23405	0.00466
Н	1.15430	1.67495	-0.95052
Н	1.24130	1.74699	0.81152
Н	-1.24587	1.74507	-0.80066
Н	-1.15452	1.67566	0.96151
0	2.25387	-0.70696	-0.03263
0	-2.25170	-0.70883	-0.06325
Ν	0.00049	-1.07832	0.08425
7a			
С	-0.76238	1.25588	0.07842
С	-1.15645	-0.20988	0.12160
С	1.15645	-0.20988	-0.12160
Н	-1.28282	1.73194	-0.75628
Н	-1.10255	1.73493	0.99986
0	2.27021	-0.67486	-0.23997
0	-2.27021	-0.67486	0.23997
O N	-2.27021 0.00000	-0.67486 -0.96089	0.23997 0.00000
O N H	-2.27021 0.00000 0.00000	-0.67486 -0.96089 -1.97619	0.23997 0.00000 0.00000
O N H C	-2.27021 0.00000 0.00000 0.76238	-0.67486 -0.96089 -1.97619 1.25588	0.23997 0.00000 0.00000 -0.07843

TS2			
С	4.46094	-0.04030	-0.21042
С	3.93183	-1.47868	-0.17000
С	2.41617	-1.33920	-0.06341
С	3.21756	0.84076	-0.13896
Н	5.10555	0.20807	0.63648
Н	5.00360	0.19770	-1.12862
Н	4.28641	-2.04873	0.69240
Н	4.16444	-2.05082	-1.07166
0	3.18703	2.05450	-0.11336
0	1.60800	-2.23962	0.03932
Ν	2.12159	0.00645	-0.11431
С	-1.53903	1.59167	0.84082
Н	-1.41623	2.54727	0.33834
Н	-1.33231	1.59981	1.90696
С	-2.57953	0.71153	0.36801
С	-3.16027	0.90531	-0.90345
С	-3.00812	-0.37233	1.16349
С	-4.15573	0.05014	-1.35452
Н	-2.82461	1.73422	-1.52132
С	-4.00101	-1.22613	0.70613
Н	-2.55281	-0.52834	2.13810
С	-4.57579	-1.01642	-0.55253
Н	-4.60705	0.20736	-2.32903
Н	-4.33081	-2.05599	1.32308
Н	-5.35185	-1.68669	-0.90964
Cl	0.27072	0.67964	0.18862

Н 1.10255 1.73493 -0.99986

TS3

133			
С	-1.05916	0.69464	-1.66641
С	-1.74891	-0.66490	-1.51778
С	-2.01358	-0.77518	-0.02153
С	-1.24931	1.36241	-0.31344
Н	0.02285	0.59685	-1.82115
Н	-1.46084	1.32443	-2.46283
Н	-1.14241	-1.51631	-1.83506
Н	-2.70675	-0.70998	-2.04539
0	-0.85568	2.46020	0.02002
0	-2.25428	-1.78233	0.60768
Ν	-1.95692	0.50760	0.54871
С	0.11746	-0.00934	2.27746
Н	-0.09558	-0.94381	2.80295

Н	0.40343	0.78226	2.97478
С	1.06987	-0.17066	1.14516
С	1.14205	-1.38052	0.43511
С	1.86017	0.90804	0.71819
С	1.97964	-1.50641	-0.67073
Н	0.53952	-2.22647	0.75870
С	2.70159	0.78180	-0.38499

Н	1.80641	1.85119	1.25631	
С	2.76082	-0.42474	-1.08460	
Н	2.02618	-2.44898	-1.20851	
Н	3.30897	1.62515	-0.69999	
Н	3.41512	-0.52327	-1.94584	
Н	-0.90266	0.32190	1.86480	

7. Time-course plot of the chlorination reaction

Figure S1. Time-course plot of the chlorination reaction.^a

^a Conditions: toluene (**1a**, 6.91g, 75 mmol), NCS (**2a**, 2g, 15 mmol), NHPI (**3a**, 10 mol%), DDQ (0.5 mol%), CH₃CN (60 ml), 80 °C; yield is determined by GC using diphenyl as internal standard; the calculation of yield is on the basis of NCS (**2a**).

8. Chain length experiment

C	+ NCS c (5 equiv.) 2a (1 equiv	DMT (0.1 equiv.) <u>NHPI</u> CH ₃ CN (2 mL) 80 °C	CI 4c	
NHĐI	2	0 min	2	40min
/ equiv	Y4c / %	Chain Length 1 ^a	Y _{4c} / %	Chain Length 2 ^a
0.03	33.7 (±1.6)	11.2 (±0.5)	44.6 (±0.05)	14.9 (±0.02)
0.07	40.1 (±0.2)	5.7 (±0.03)	45.9 (±0.6)	6.6 (±0.1)
0.1	41.9 (±0.1)	4.2 (±0.01)	47.1 (±0.3)	4.7 (±0.03)
0.2	41.8 (±0.5)	2.1 (±0.02)	48.7 (±1.9)	2.4 (±0.1)
0.3	44.1 (±0.5)	1.5 (±0.02)	49.3 (±0.05)	1.6 (±0.002)
Average Chain Len	gth ^b	4.9 (±0.1)		6.0 (±0.001)

Table S4. Radical chain length initiated by NHPI.^a

^a yield determined by GC with diphenyl as internal standard, on the basis of NCS; ^b chain length refers to yield divide NHPI in mol%; ^c average chain length refers to sum of chain length divide sum of experiments.

9. Preparation and characterization of NO-H agents

Scheme S3. Preparation of 3c.

3c was prepared according to the literature procedure in Scheme S3.^{12, 13} Trimellitic acid anhydride (7.68 g, 0.04 mol) was boiled in thionyl chloride (10 mL) for 12 h. The anhydride acid chloride was isolated by vacuum distillation of the solvent. Remove the thionyl chloride with 20ml petroleum ether three times giving rise to white solid. Pyridine (10 mmol, 0.75 mL) was added in a few portions to a stirred mixture of trimellitic anhydride chloride (10 mmol, 2.16 g) in toluene (10 mL) at 0°C. Next, a solution of dodecyl alcohol (10 mmol, 2.25 mL) in toluene (5 mL) was added dropwise over 30 min. The mixture was stirred for 4 h at room temperature, then for 10 h at 85°C and for 7 h at 100°C. Toluene was evaporated, and product in form of white paste was obtained. Dried pyridine (12.5 mL) and hydroxylamine hydrochloride (11 mmol, 0.76 g) were added and the reaction mixture was stirred at 90°C for 15 h. The product was poured to 30 mL of water and acidified by hydrochloric acid to pH 1. The precipitate was filtered, and washed with ice water. The product was recrystallised from methanol.

¹**H NMR** (600 MHz, DMSO-D⁶, 298 K):
$$\delta$$
 = 11.01 (s, 1H,N-OH), 8.35 (dd, ³J_{HH} = 7.8

Hz, ${}^{4}J_{\text{HH}} = 1.8$ Hz, 1H, Ar-H), 8.17 (s, 1H, Ar-H), 7.97 (d, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 1H, Ar-H), 4.32 (t, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 2H, CO-OCH₂), 1.73 (m, 2H, OCH₂-CH₂), 1.22 - 1.32 (m, 18H, CH₂), 0.84 (t, 3H, ${}^{3}J_{\text{HH}} = 6.6$ Hz, CH₃); ${}^{13}C{}^{1}H$ **NMR** (151 MHz, DMSO-D⁶, 298 K): $\delta = 164.2, 163.2$ (Ar-CO-N), 135.2, 135.1, 132.5, 129.4, 123.5, 122.3 (Ar), 65.6 (COO), 31.3 (OCH₂), 29.0, 28.94, 28.88, 28.7, 28.6, 28.0, 25.4 (CH₂), 22.1 (CH₂CH₃), 14.0 (CH₃).

The procedures for the synthesis of 3d

Scheme S4. Preparation of the THICA (3d) catalyst.

3d was prepared according to the literature procedure in Scheme S4.¹⁴

¹**H NMR** (600 MHz, DMSO-D⁶, 298 K): *δ* = 11.04 (s, 3H, NO-H). ¹³C{¹H} NMR (151 MHz, DMSO-D⁶, 298 K): *δ* = 146.7 (C=O).

10. Characterization of Chlorinated products

1-(chloromethyl)-4-fluorobenzene (4b)

¹**H** NMR (600 MHz, CDCl₃, 298 K): δ = 7.37 (m, 2H, Ar-H), 7.05 (t, ³*J*_{HH} = 8.4 Hz, 2H, Ar-H), 4.57 (s, 2H, CH₂). ¹³**C** NMR (151 MHz, CDCl₃, 298 K): δ =163.6, 133.5, 130.5, 115.9 (Ar), 45.5 (CH₂). NMR data correspond to the reported values.¹⁵

Chloro-4-(chloromethyl)benzene (4c).

¹**H NMR** (600 MHz, CDCl₃, 298 K): δ = 7.35–7.31 (m, 4H, Ar-H), 4.55 (s, 2H, CH₂). ¹³**C NMR** (151 MHz, CDCl₃, 298 K): δ = 136.1, 134.4, 130.0, 129.0 (Ar), 45.5 (CH₂). NMR data correspond to the reported values.¹⁶

Bromo-4-(chloromethyl)benzene (4d).

¹**H** NMR (600 MHz, CDCl₃, 298 K): δ = 7.49 (d, ³*J*_{HH} = 8.4 Hz, 2H, Ar-H), 7.27 (d, ³*J*_{HH} = 8.4 Hz, 2H, Ar-H), 4.54 (s, 2H, CH₂). ¹³C NMR (151 MHz, CDCl₃, 298 K): δ =

136.6, 132.0, 130.4, 122.6 (Ar), 45.5 (CH₂). NMR data correspond to the reported values.¹⁷

4-(chloromethyl)benzonitrile (4e).

¹**H** NMR (600 MHz, CDCl₃, 298 K): $\delta = 7.64$ (d, 2H, ${}^{3}J_{\text{HH}} = 8.4$ Hz, Ar-H), 7.50 (d, 2H, ${}^{3}J_{\text{HH}} = 8.4$ Hz, Ar-H), 4.59 (s, 2H, CH₂). 13 C NMR (151 MHz, CDCl₃, 298 K): $\delta = 142.5$ (CN), 132.5, 129.2, 118.5, 112.2 (Ar), 45.0 (CH₂). NMR data correspond to the reported values.¹⁵

1-(chloromethyl)-4-nitrobenzene (4f).

¹**H** NMR (600 MHz, CDCl₃, 298 K): $\delta = 8.21$ (d, ${}^{3}J_{\text{HH}} = 8.4$ Hz, 2H, Ar-H), 7.57 (d, ${}^{3}J_{\text{HH}} = 8.4$ Hz, 2H, Ar-H), 4.64 (s, 2H, CH₂). ¹³C NMR (151 MHz, CDCl₃, 298 K): $\delta = 147.8$, 144.4, 129.4, 124.0 (Ar), 44.6 (CH₂). NMR data correspond to the reported values.¹⁸

1-(chloromethyl)-4-(trifluoromethyl)benzene (4g).

¹**H** NMR (600 MHz, CDCl₃, 298 K): $\delta = 7.64$ (d, ${}^{3}J_{\text{HH}} = 8.4$ Hz, 2H, Ar-H), 7.52 (d, ${}^{3}J_{\text{HH}} = 8.4$ Hz, 2H, Ar-H), 4.62 (s, 2H, CH₂). ¹³C NMR (151 MHz, CDCl₃, 298 K): $\delta = 141.4$ (CF₃), 130.6, 129.0, 125.8, 123.2 (Ar), 45.2 (CH₂). NMR data correspond to the reported values.¹⁹

Methyl 4-(chloromethyl)benzoate (4h).

¹**H NMR** (600 MHz, CDCl₃, 298 K): $\delta = 8.02$ (d, ${}^{3}J_{\text{HH}} = 8.4$ Hz, 2H, Ar-H), 7.45 (d, ${}^{3}J_{\text{HH}} = 8.4$ Hz, 2H, Ar-H), 4.60 (s, 2H, CH₂), 3.91 (s, 3H, CH₃). ¹³**C NMR** (151 MHz, CDCl₃, 298 K): $\delta = 166.7$ (C=O), 142.3, 130.2, 130.1, 128.6 (Ar), 52.3 (CH₃), 45.5 (CH₂). NMR data correspond to the reported values.²⁰

1-(chloromethyl)naphthalene (4i).

¹**H NMR** (600 MHz, CDCl₃, 298 K): δ = 8.18 (d, ³*J*_{HH} = 8.4 Hz, 1H, Ar-H), 7.91–7.86 (m, 2H, Ar-H), 7.64–7.61 (m, 1H, Ar-H), 7.57–7.54 (m, 2H, Ar-H), 7.46–7.43 (m, 1 H, Ar-H), 5.07 (s, 2 H, CH₂). ¹³**C NMR** (151 MHz, CDCl₃, 298 K): δ = 134.1, 133.1, S29

131.2, 129.9, 129.0, 127.8, 126.8, 126.3, 125.4, 123.8 (Ar), 44.7 (CH₂). NMR data correspond to the reported values.²¹

1-(chloromethyl)-4-methylbenzene (4k).

¹**H** NMR (600 MHz, CDCl₃, 298 K): $\delta = 7.3$ (d, 2H, ${}^{3}J_{\text{HH}} = 8.4$ Hz), 7.19 (d, 2H, ${}^{3}J_{\text{HH}} = 7.8$ Hz), 4.57 (s, 2H), 2.37 (s, 3 H). ¹³**C** NMR (151 MHz, CDCl₃, 298 K): $\delta = 138.4$, 134.7, 129.5, 128.7, 46.4 (Ar), 21.3 (CH₂). NMR data correspond to the reported values.¹⁵

1-chloro-2-(chloromethyl)benzene (4m).

¹**H NMR** (600 MHz, CDCl₃, 298 K): $\delta = 7.48-7.47$ (m, 1H, Ar-H), 7.42–7.40 (m, 1H, Ar-H), 7.29–7.26 (m, 2H, Ar-H), 4.72 (s, 2H, CH₂). ¹³**C NMR** (151 MHz, CDCl₃, 298 K): $\delta = 135.1, 134.2, 131.0, 130.0, 129.9, 127.3$ (Ar), 43.7 (CH₂). NMR data correspond to the reported values.²¹

1-chloro-3-(chloromethyl)benzene (4n).

¹H NMR (600 MHz, CDCl₃, 298 K): δ = 7.40 (bs, 1H, Ar-H), 7.31–7.27 (m, 3H, Ar-H), 4.54 (s, 2H, CH₂).
¹³C NMR (151 MHz, CDCl₃, 298 K): δ = 139.4, 134.6, 130.1, 128.8, 128.7, 126.8 (Ar), 45.3 (CH₂). NMR data correspond to the reported values.¹⁷

methyl 3-(chloromethyl)benzoate (40).

¹**H NMR** (600 MHz, CDCl₃, 298 K): $\delta = 8.05$ (s, 1H, Ar-H), 7.98 (d, ${}^{3}J_{HH} = 7.8$ Hz, 1H, Ar-H), 7.57 (d, ${}^{3}J_{HH} = 7.8$ Hz, 1H, Ar-H), 7.43 (t, ${}^{3}J_{HH} = 7.8$ Hz, 1H, Ar-H), 4.61 (s, 2H, CH₂), 3.92 (s, 3H, CH₃). ¹³**C NMR** (151 MHz, CDCl₃, 298 K): $\delta = 166.6$ (C=O), 137.9, 133.2, 130.8, 129.7, 129.6, 128.9 (Ar), 52.3 (CH₃), 45.6 (CH₂). NMR data correspond to the reported values.²²

1-(chloromethyl)-3-methylbenzene (4p).

¹H NMR (600 MHz, CDCl₃, 298 K): δ = 7.28−7.15 (m, 4H, Ar-H), 4.57 (s, 2H, CH₂),
2.38 (s, 3H, CH₃). ¹³C NMR (151 MHz, CDCl₃, 298 K): δ = 138.6, 137.5, 129.4, 129.3,
128.8, 125.8 (Ar), 46.5 (CH₂), 21.4 (CH₃). NMR data correspond to the reported

values.21

(1-chloroethyl)benzene (4r).

¹**H** NMR (600 MHz, CDCl₃, 298 K): $\delta = 7.44-7.30$ (m, 5H, Ar), 5.12 (q, 1H, ${}^{3}J_{HH} = 6.6$ Hz, CH), 1.87 (d, 3H, ${}^{3}J_{HH} = 6.6$ Hz, CH₃). ¹³**C** NMR (151 MHz, CDCl₃, 298 K): $\delta = 143.0, 128.8, 128.4, 126.6$ (Ar), 58.9 (CH), 26.6 (CH₃). NMR data correspond to the reported values.²³

2-(chloromethyl)quinolone (4x).

¹**H NMR** (600 MHz, CDCl₃, 298 K): $\delta = 8.18$ (d, 1H, ³*J*_{HH} = 8.4 Hz, Ar-H), 8.07 (d, 1H, ³*J*_{HH} = 8.4 Hz, Ar-H), 7.81 (d, 1H, ³*J*_{HH} = 7.8 Hz, Ar-H), 7.73 (t, 1H, ³*J*_{HH} = 7.8 Hz, Ar-H), 7.60–7.54 (m, 2H, Ar), 4.84 (s, 2H, CH₂). ¹³**C NMR** (151 MHz, CDCl₃, 298 K): $\delta = 156.8, 147.5, 137.4, 130.1, 129.4, 127.7, 127.6, 127.1, 120.6$ (Ar), 47.5 (CH₂). NMR data correspond to the reported values.¹⁵

1-(chloromethyl)isoquinoline (4y).

¹**H** NMR (600 MHz, CDCl₃, 298 K): $\delta = 8.48$ (d, 1H, ${}^{3}J_{HH} = 5.4$ Hz, Ar-H), 8.25 (d, 1H, ${}^{3}J_{HH} = 8.4$ Hz, Ar-H), 7.86 (d, 1H, ${}^{3}J_{HH} = 7.8$ Hz, Ar-H), 7.74–7.65 (m, 3H, Ar), 5.15 (s, 2H, CH₂). ¹³C NMR (151 MHz, CDCl₃, 298 K): $\delta = 155.8$, 142.1, 136.8, 130.5, 128.0, 127.7, 126.6, 125.2, 121.9 (Ar), 45.1 (CH₂). NMR data correspond to the reported values.¹⁵

11. References

- 1. Q. Xiong, D. Xu, C. Shan, S. Liu, Y. Luo, F. Liu, S. Liu, Y. Lan and R. Bai, *Chemistry, an Asian journal*, 2019, DOI: 10.1002/asia.201801862.
- L. Zhu, J.-H. Ye, M. Duan, X. Qi, D.-G. Yu, R. Bai and Y. Lan, Organic Chemistry Frontiers, 2018, 5, 633-639.
- 3. D. Xu, C. Shan, Y. Li, X. Qi, X. Luo, R. Bai and Y. Lan, *Inorganic Chemistry Frontiers*, 2017, **4**, 1813-1820.
- 4. X. Qi, L. Zhu, R. Bai and Y. Lan, *Scientific Reports*, 2017, 7, 43579.
- 5. C. T. Lee, W. T. Yang and R. G. Parr, *Physical Review B*, 1988, **37**, 785-789.
- 6. A. D. Becke, *Journal of Chemical Physics*, 1993, **98**, 5648-5652.
- W. Kohn, A. D. Becke and R. G. Parr, *Journal of Physical Chemistry*, 1996, 100, 12974-12980.
- Y. Zhao and D. G. Truhlar, *Theoretical Chemistry Accounts*, 2008, **120**, 215-241.
- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand,

J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V; Cioslowski, J.; Fox, D. J.; Montgomery Jr., J. A. *Gaussian 09, Rev A.1*; Gaussian, Inc., 2009; Vol. 34.

- V. Barone and M. Cossi, *Journal of Physical Chemistry A*, 1998, **102**, 1995-2001.
- M. Cossi, N. Rega, G. Scalmani and V. Barone, *Journal of Computational Chemistry*, 2003, 24, 669-681.
- K. Kasperczyk, B. Orlinska and J. Zawadiak, Cent. Eur. J. Chem., 2014, 12, 1176-1182.
- 13. M. Guo and X. Wang, *Gaofenzi Xuebao*, 2008, 1113-1117.
- K. Wang, Z. Zhou, J. Song, L. Bi, N. Shen, Y. Wu, F. Chen and H. Wen, J. Hazard. Mater., 2010, 184, 400-405.
- 15. S. Gaspa, A. Valentoni, G. Mulas, A. Porcheddu and L. De Luca, *ChemistrySelect*, 2018, **3**, 7991-7995.
- S. Motsch, C. Schuetz and P. H. Huy, *Eur. J. Org. Chem.*, 2018, 2018, 4541-4547.
- D. Rui, H. Yong, W. Xiao, X. Jingli, C. Yurong, F. Man and Q. Chuanmin, Molecules, 2011, 16, 5665-5673.

- P. H. Huy, S. Motsch and S. M. Kappler, *Angewandte Chemie International Edition*, 2016, 55, 10145-10149.
- C.-H. Lee, S.-M. Lee, B.-H. Min, D.-S. Kim and C.-H. Jun, Org. Lett., 2018, 20, 2468-2471.
- 20. S. G. Newman, C. S. Bryan, D. Perez and M. Lautens, *Synthesis-Stuttgart*, 2011, 342-346.
- S. H. Combe, A. Hosseini, A. Parra and P. R. Schreiner, *J. Org. Chem.*, 2017, 82, 2407-2413.
- 22. Y.-Y. Sun, J. Yi, X. Lu, Z.-Q. Zhang, B. Xiao and Y. Fu, *Chem. Commun.* (*Cambridge, U. K.*), 2014, **50**, 11060-11062.
- 23. M. Zhao and W. Lu, Org. Lett., 2017, 19, 4560-4563.

GC and NMR spectral

¹³C{¹H} NMR (151 MHz, DMSO-D⁶, 298 K) of 3c

¹³C{¹H} NMR (151 MHz, DMSO-D⁶, 298 K) of 3d

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4b

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4c

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4d

S42

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4f

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4g

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (151 MHz, CDCl₃, 298 K) of 4h

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4i

S47

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4m

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (151 MHz, CDCl₃, 298 K) of 4n

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 40

S51

GC spectral of $\mathbf{4q}$ crude reaction mixture and standard substance

S53

GC spectral of 4t crude reaction mixture and standard substance

¹H NMR (600 MHz, CDCl₃, 298 K) of 4w crude reaction mixture

¹³C{¹H} NMR (151 MHz, CDCl₃, 298 K) of 4x

S57

GC spectral of 8a crude reaction mixture and standard substance

GC spectral of 8b crude reaction mixture and standard substance