Supporting Information

Intramolecular Dehydrogenative C–S Coupling of Thioamides to Form 1,3-Benzothiazines under Metal-Free Conditions

Li-Rong Wen, Cheng-Cheng Zhou, Ming-Zhe Zhu, Shu-Guang Xie, Wei-Si Guo* and Ming Li* State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China E-mail: wsguo@qust.edu.cn, liming928@qust.edu.cn.

Table of the contents

1. General information	S2
2. General procedure for the synthesis of starting materials	
3. References	
4. General procedure for the synthesis of 4 <i>H</i> -benzo[<i>e</i>][1,3]thiazine	
5. Oxidation experiment	S14
6. Gram scale synthesis	S14
7. One-pot reaction	
8. Radical inhibition experiment	
9. ¹ H NMR and ¹³ C NMR spectra	

1. General information

All the reactions were carried out under an air atmosphere using glassware without being predried. Hexafluoroisopropanol, [hydroxy(tosyloxy)iodo]benzene and diphenylphosphine oxide, were obtained from commercial sources and used without further purification. Column chromatography was performed on silica gel (200-300 mesh) using analytical pure EtOAc, dichloromethane and petroleum ether. NMR spectra were recorded in CDCl₃ on 400 MHz or 500 MHz spectrometers. ¹H NMR chemical shifts (δ) are reported in parts per million relative to tetramethylsilane (0 ppm) or residual CHCl₃ (7.26 ppm). ¹³C NMR chemical shifts are reported relative to the center line signal of the CDCl₃ triplet at 77.0 ppm. The following abbreviations are used for multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, and m = multiplet. Mass spectra were obtained on an Ultima Global spectrometer with an ESI source. Melting points are uncorrected.

Experimental procedure

2. General procedure for the synthesis of starting materials

The starting materials, thioamides $1a-s^{[1]}$, $1t^{[2]}$, $1u-w^{[3]}$, $1x^{[4]}$, $1y-aa^{[5]}$, hypervalent iodines $2b^{[6]}$, $2c^{[7]}$, were prepared according to literature procedure.

3. References

[1] L.-R. Wen, Y.-X. Sun, J.-W. Zhang, W.-S. Guo and M. Li, Green Chem., 2018, 20, 125-129.

[2] T. Guntreddi, R. Vanjari and K. N. Singh, Org. Lett., 2014, 16, 3624-3627.

[3] O. I. Zbruyev, N. Stiasni and C. O. Kappe, J. Comb. Chem., 2003, 5, 145-148.

[4] C. N. Kapanda, G. G. Muccioli, G. Labar, N. Draoui, D. M. Lambert and J. H. Poupaert, *Med. Chem. Res.*, 2009, **18**, 243-254.

[5] J. Shang, A. Pourvali, J. R. Cochrane, C. A. Hutton, Aust. J. Chem., 2015, 68, 1854-1858.

[6] J.-H. Chun, S. Telu, S. Lu, V. W. Pike, Org. Biomol. Chem., 2013, 11, 5094-5099.

[7] E. A. Merritt, V. M. T. Carneiro, L. F. Silva, B. Olofsson, J. Org. Chem., 2010, 75, 7416-7419.

4. General procedure for the synthesis of 4*H*-benzo[*e*][1,3]thiazine

To a solution of thioamide 1 (0.4 mmol) in HFIP (4 mL) was added HTIB 2a (157 mg, 0.4 mmol). The reaction mixture was stirred at room temperature under an air atmosphere for 1 min. Then the mixture was quenched with saturated NaHCO₃ (10 mL) and extracted with DCM (3 \times

10 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. Evaporation of the solvent, followed by purification on silica gel, provided product 4H-benzo[*e*][1,3]thiazine **3**.

(4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3a)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3a** as a white solid (119 mg, 85%). Mp: 155-157 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.82–7.78 (m, 4H), 7.57–7.53 (m, 2H), 7.47–7.43 (m, 4H), 7.34–7.30 (m, 1H), 7.28–7.27 (m, 3H), 4.78 (d, J = 2.8 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 165.2 (d, ¹*J*_{PC} = 128.7 Hz, 1C), 132.5 (s, 2C), 132.0 (s, 2C),

131.9 (s, 2C), 130.1 (d, ${}^{1}J_{PC} = 105.7$ Hz, 2C), 129.8 (s, 1C), 129.2 (s, 1C), 128.5 (s, 2C), 128.4 (s

2C), 128.0 (s, 1C), 127.9 (s, 1C), 127.0 (s, 1C), 126.4 (s, 1C), 58.0 (d, ${}^{3}J_{PC} = 17.5$ Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₀H₁₇NOPS, 350.0768, found 350.0772.

(7-methyl-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3b)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3b** as a white solid (121 mg, 83%). Mp: 144-146 °C.

¹H NMR (400 MHz, CDCl₃): δ 7.82–7.77 (m, 4H), 7.56–7.51 (m, 2H), 7.46–7.42 (m, 4H), 7.16–7.12 (m, 1H), 7.09–7.08 (m, 2H), 4.74 (d, J = 2.7 Hz, 2H), 2.34 (m, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 165.5 (d, ¹*J*_{PC} = 128.7 Hz, 1C), 138.2 (s, 1C), 132.4 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.2 (d, ¹*J*_{PC} = 105.6 Hz, 2C), 129.1 (s, 1C), 128.7 (s, 1C), 128.5 (s, 2C), 128.4 (s, 2C), 127.7 (s, 1C), 126.4 (s, 1C), 126.2 (s, 1C), 58.0 (d, ³*J*_{PC} = 17.6 Hz, 1C), 21.0 (s, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₁H₁₉NOPS, 364.0925, found 364.0923.

(6,7-dimethoxy-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3c)

Man

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3c** as a white solid (74 mg, 45%). Mp: 202-204 °C.

¹**H NMR (500 MHz, CDCl₃):** *δ* 7.78 (dd, *J* = 11.8, 7.9 Hz, 4H), 7.54–7.52 (m, 2H), 7.45–7.43 (m, 4H), 6.74 (d, *J* = 8.6 Hz, 2H), 4.71 (s, 2H), 3.84 (d, *J* = 25.2 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 165.4 (d, ¹*J*_{PC} = 128.9 Hz, 1C), 149.4 (s, 1C), 148.9 (s, 1C), 132.4 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.3 (d, ¹*J*_{PC} = 105.7 Hz, 2C), 128.5 (s, 2C), 128.4 (s, 2C), 121.2 (s, 1C), 120.7 (s, 1C), 110.0 (s, 1C), 109.2 (s, 1C), 57.8 (d, ³*J*_{PC} = 17.7 Hz, 1C), 56.1 (s, 2C).

HRMS (ESI-TOF, [M + Na]⁺): calcd for C₂₂H₂₀NO₃PSNa, 432.0799, found 432.0794.

(8H-[1,3]dioxolo[4',5':4,5]benzo[1,2-e][1,3]thiazin-6-yl)diphenylphosphine oxide (3d)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) to provide **3d** as a white solid (123 mg, 78%). Mp: 126-128 °C.

¹H NMR (500 MHz, CDCl₃): *δ* 7.78 (dd, *J* = 12.0, 7.8 Hz, 4H), 7.55–7.52 (m, 2H), 7.46–7.43 (m, 4H), 6.73 (d, *J* = 9.7 Hz, 2H), 5.95 (s, 2H), 4.64 (d, *J* = 1.9 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 165.6 (d, ¹J_{PC} = 128.1 Hz, 1C), 148.3 (s, 1C), 147.6 (s, 1C), 132.4 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.1 (d, ¹J_{PC} = 105.8 Hz, 2C), 128.5 (s, 2C), 128.4 (s, 2C), 122.9 (s, 1C), 122.0 (s, 1C), 107.4 (s, 1C), 106.6 (s, 1C), 101.6 (s, 1C), 58.2 (d, ³J_{PC} = 17.0 Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₁H₁₇NO₃PS, 394.0667, found 394.0671.

(4*H*-naphtho[2,3-*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3e)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) to provide **3e** as a yellow solid (128 mg, 80%). Mp: 163-165 °C.

¹H NMR (500 MHz, CDCl₃): δ 8.07 (d, J = 7.8 Hz, 1H), 7.83–7.77 (m, 6H), 7.52–7.47 (m, 4H), 7.43–7.40 (m, 4H), 7.33 (d, J = 8.3 Hz, 1H), 4.92 (d, J = 2.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 164.7 (d, ¹*J*_{PC} = 128.2 Hz, 1C), 132.8 (s, 1C), 132.4 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.2 (d, ¹*J*_{PC} = 105.9 Hz, 2C), 129.7 (s, 1C), 128.5 (s, 2C), 128.4 (s, 2C), 128.3 (s, 1C), 128.1 (s, 1C), 126.8 (s, 1C), 126.7 (s, 1C), 126.4 (s, 1C), 126.3 (s, 1C), 124.9 (s, 1C), 123.4 (s, 1C), 58.9 (d, ³*J*_{PC} = 17.3 Hz, 1C).

HRMS (ESI-TOF, $[M + Na]^+$): calcd for C₂₄H₁₈NOSPNa, 422.0744, found 422.0744.

(4-methyl-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3f)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl

acetate = 30:1, v/v) to provide **3f** as a white solid (93 mg, 64%). Mp: 100-102 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.87–7.78 (m, 4H), 7.55–7.52 (m, 2H), 7.46–7.42 (m, 4H), 7.35–7.32 (m, 1H), 7.28–7.23 (m, 3H), 4.75–4.71 (m, 1H), 1.64 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 162.6 (d, ¹*J*_{PC} = 130.2 Hz, 1C), 132.8 (s, 1C), 132.3 (s, 2C), 132.0 (s, 4C), 130.5 (d, ¹*J*_{PC} = 105.3, 1C), 130.1 (d, ¹*J*_{PC} = 105.1, 1C), 129.0 (s, 1C), 128.4 (s, 2C), 128.3 (s, 2C), 128.2 (s, 1C), 127.3 (s, 1C), 126.6 (s, 1C), 125.7 (s, 1C), 61.4 (d, ³*J*_{PC} = 16.6 Hz, 1C), 18.0 (s, 1C).

HRMS (ESI-TOF, $[M + H]^+$): calcd for C₂₁H₁₉NOPS, 364.0925, found 364.0927. diphenyl(4-phenyl-4*H*-benzo[*e*][1,3]thiazin-2-yl)phosphine oxide (3g)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30:1, v/v) to provide **3g** as a white solid (105 mg, 62%). Mp: 170-172 °C.

¹**H NMR (400 MHz, CDCl₃):** δ7.89 (dd, *J* = 12.1, 7.3 Hz, 2H), 7.74 (dd, *J* = 12.1, 7.4 Hz, 2H), 7.52 (q, *J* = 8.0 Hz, 2H), 7.46–7.31 (m, 10H), 7.28–7.22 (m, 2H), 6.83–6.80 (m, 1H), 5.41 (d, *J* = 3.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 164.6 (d, ¹*J*_{PC} = 128.1 Hz, 1C), 139.2 (s, 2C), 132.5 (s, 1C), 132.4 (s, 1C), 132.3 (s, 1C), 132.2 (s, 1C), 132.1 (s, 1C), 132.0 (s, 1C), 131.9 (s, 1C), 130.6 (d, ¹*J*_{PC} = 105.4 Hz, 1C), 130.2 (d, ¹*J*_{PC} = 105.7 Hz, 1C), 129.8 (s, 1C), 128.5 (s, 2C), 128.5 (s, 2C), 128.5 (s, 2C), 128.5 (s, 1C), 128.4 (s, 1C), 128.3 (s, 1C), 128.1 (s, 1C), 127.7 (s, 1C), 127.6 (s, 1C), 127.3 (s, 1C), 126.6 (s, 1C), 69.8 (d, ³*J*_{PC} = 16.8 Hz, 1C).

HRMS (ESI-TOF, [M + Na]^+): calcd for C₂₆H₂₀NOPSNa, 448.0901, found 448.0899.

(4-cyclohexyl-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3h)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 30:1, v/v) to provide **3h** as a white solid (121 mg, 70%). Mp: 116-118 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.88–7.81 (m, 4H), 7.53–7.51 (m, 2H), 7.46–7.43 (m, 4H), 7.29–7.26 (m, 1H), 7.23–7.19 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H), 4.95 (d, J = 7.5 Hz, 1H), 1.85–1.84 (m, 1H), 1.61–1.57 (m, 4H), 1.32 (d, J = 11.5 Hz, 1H), 1.03–0.99 (m, 5H).

¹³C NMR (125 MHz, CDCl₃): δ 161.6 (d, ¹J_{PC} = 132.8 Hz, 1C), 132.3 (s, 1C), 132.2 (s, 1C),

132.1 (s, 1C), 132.0 (s, 1C), 131.9 (s, 1C), 131.8 (s, 1C), 131.0 (d, ${}^{1}J_{PC} = 106.4$ Hz, 1C), 129.9 (d, ${}^{1}J_{PC} = 103.6$ Hz, 1C), 129.6 (s, 2C), 128.5 (s, 1C), 128.4 (s, 1C), 128.3 (s, 1C), 128.2 (s, 1C), 128.1 (s, 1C), 127.5 (s, 1C), 127.2 (s, 1C), 126.6 (s, 1C), 71.3 (d, ${}^{3}J_{PC} = 16.7$ Hz, 1C), 40.5 (s, 1C), 30.4 (s, 1C), 29.4 (s, 1C), 26.2 (s, 1C), 26.0 (s, 1C), 25.8 (s, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₆H₂₇NOPS, 432.1551, found 432.1546.

(4-(4-chlorophenyl)-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3i)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) to provide **3i** as a light yellow solid (95 mg, 52%). Mp: 181-183 °C.

¹H NMR (500 MHz, CDCl₃): *δ* 7.88 (dd, *J* = 12.1, 7.5 Hz, 2H), 7.73 (dd, *J* = 12.2, 7.5 Hz, 2H), 7.54 (dd, *J* = 15.3, 7.9 Hz, 2H), 7.47–7.34 (m, 8H), 7.29–7.27 (m, 1H), 7.25–7.24 (m, 2H), 6.82 (d, *J* = 7.9 Hz, 1H), 5.34 (d, *J* = 3.1Hz, 1H).

¹³C NMR (125 MHz, CDCl₃): δ 165.1 (d, ¹*J*_{PC} = 127.0 Hz, 1C), 137.6 (s, 1C), 133.5 (s, 1C), 132.5 (s, 1C), 132.4 (s, 1C), 132.1 (s, 1C), 132.0 (s, 2C), 131.9 (s, 1C), 131.8 (s, 1C), 130.3 (d, ¹*J*_{PC} = 105.8 Hz, 1C), 129.9 (d, ¹*J*_{PC} = 105.8 Hz, 1C), 129.8 (s, 2C), 129.7 (s, 1C), 128.6 (s, 2C), 128.5 (s, 1C), 128.5 (s, 1C), 128.4 (s, 1C), 128.3 (s, 1C), 128.2 (s, 1C), 127.8 (s, 1C), 127.0 (s, 1C), 126.6 (s, 1C), 69.1 (d, ³*J*_{PC} = 16.7 Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₆H₂₀NOPSCl, 460.0692, found 460.0687.

(4-(4-fluorophenyl)-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3j)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) to provide **3j** as a white solid (71 mg, 40%). Mp: 185-187 °C.

¹H NMR (400 MHz, CDCl₃): δ7.90–7.85 (m, 2H), 7.72 (dd, *J* = 12.2, 7.3 Hz, 2H), 7.53 (q, *J* = 7.8 Hz, 2H), 7.47–7.36 (m, 5H), 7.30–7.26 (m, 4H), 7.06 (t, *J* = 8.6 Hz, 2H), 6.83–6.81 (m, 1H), 5.38 (d, *J* = 3.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 164.9 (d, ¹*J*_{PC} = 127.4 Hz, 1C), 162.2 (d, ¹*J*_{FC} = 246.3 Hz, 1C), 135.0 (s, 1C), 132.5 (s, 1C), 132.4 (s, 1C), 132.3 (s, 1C), 132.2 (s, 1C), 132.1 (s, 1C), 131.9 (s, 1C), 132.3 (s, 1C), 132.3 (s, 1C), 132.4 (s, 1C), 132.3 (s, 1C), 132.2 (s, 1C), 132.4 (s, 1C), 132.3 (s, 1C), 132.4 (s, 1C), 132.3 (s, 1C), 132.4 (s, 1C),

1C), 131.8 (s, 1C), 130.5 (d, ${}^{1}J_{PC} = 105.6$ Hz, 1C), 130.2 (s, 1C), 130.1 (s, 1C), 130.0 (d, ${}^{1}J_{PC} = 105.8$ Hz, 1C), 129.7 (s, 1C), 128.6 (s, 1C), 128.5 (s, 1C), 128.4 (s, 1C), 128.3 (s, 1C), 128.2 (s, 1C), 127.8 (s, 1C), 127.1 (s, 1C), 126.6 (s, 1C), 115.4 (d, ${}^{2}J_{FC} = 21.4$, 2C), 69.1 (d, ${}^{3}J_{PC} = 16.8$ Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₆H₂₀NOFSP, 444.0987, found 444.0984.

(6-methyl-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3k/3k')

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3k/3k'** as a white solid (135 mg, 93%). Mp: 131-132 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.81–7.77 (m, 4.91H), 7.55–7.52 (m, 2.45H), 7.46–7.42 (m, 4.91H), 7.22 (t, J = 7.4 Hz, 0.23H), 7.16–7.14 (m, 1H), 7.11 (t, J = 7.7 Hz, 0.45H), 7.09–7.08 (m, 2H), 4.74 (m, 2.45H), 2.34 (s, 3H), 2.30 (s, 0.68H).

¹³C NMR (125 MHz, CDCl₃): δ 165.4 (d, ¹*J*_{PC} = 129.0 Hz, 1C), 138.1 (s, 1C), 132.4 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.1 (d, ¹*J*_{PC} = 105.6 Hz, 2C), 129.1 (s, 1C), 128.9 (s, 1C), 128.7 (s, 1C), 128.5 (s, 2C), 128.4 (s, 2C), 127.6 (s, 1C), 126.1 (s, 1C), 57.9 (d, ³*J*_{PC} = 17.2 Hz, 1C), 21.0 (s, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₁H₁₉NOPS, 364.0925, found 364.0920.

(6-methoxy-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3l/3n)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3l/3n** as a white solid (126 mg, 83%). Mp: 110-112 °C.

¹H NMR (400 MHz, DMSO): δ 7.77–7.69 (m, 5.26H), 7.64–7.62 (m, 2.62H), 7.56–7.55 (m, 5.26H), 7.38–7.34 (m, 0.31H), 7.28 (d, J = 8.6 Hz, 1H), 7.07 (d, J = 2.5 Hz, 1H), 7.02–6.99 (m, 0.62H), 6.95–6.93 (m, 1H), 4.81–4.79 (m, 2.62H), 3.81 (s, 0.93H), 3.76 (s, 3H).

¹³C NMR (100 MHz, DMSO): δ 165.3 (d, ¹*J*_{PC} = 128.1 Hz, 1C), 160.2 (s, 1C), 133.9 (s, 2C), 132.6 (s, 2C), 132.3 (s, 2C), 130.9 (s, 1C), 130.7 (d, ¹*J*_{PC} = 104.7 Hz, 2C), 128.5 (s, 2C), 128.3 (s, 2C), 126.8 (s, 1C), 119.9 (s, 1C), 114.1 (s, 1C), 112.2 (s, 1C), 57.6 (d, ³*J*_{PC} = 17.1 Hz, 1C), 55.1 (s, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₁H₁₉NO₂PS, 380.0874, found 380.0874.

(5-methyl-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3m/3k')

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3m/3k'** as a white solid (126 mg, 87%). Mp: 118-120 °C.

¹H NMR (500 MHz, CDCl₃): *δ* 7.82–7.76 (m, 4.4H), 7.54 (t, *J* = 7.4 Hz, 2.2H), 7.46–7.42 (m, 4.4H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.15–7.10 (m, 2.3H), 4.80 (d, *J* = 2.7 Hz, 0.2H), 4.75 (d, *J* = 2.6 Hz, 2H), 2.43 (s, 0.3H), 2.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 165.4 (d, ¹*J*_{PC} = 128.8 Hz, 1C), 138.1 (s, 1C), 132.4 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.1 (d, ¹*J*_{PC} = 105.5 Hz, 2C), 129.1 (s, 1C), 128.7 (s, 1C), 128.5 (s, 2C), 128.4 (s, 2C), 127.6 (s, 1C), 126.7 (s, 1C), 126.1 (s, 1C), 57.9 (d, ³*J*_{PC} = 17.3 Hz, 1C), 21.0 (s, 1C).

HRMS (ESI-TOF, [M + H]^+): calcd for C₂₁H₁₉NOPS, 364.0925, found 364.0927.

(5-methoxy-4*H*-benzo[*e*][1,3]thiazin-2-yl)diphenylphosphine oxide (3n)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3n** as a white solid (93 mg, 61%). Mp: 163-165 °C.

¹**H NMR (500 MHz, CDCl₃):** *δ* 7.86 (dd, *J* = 12.0, 7.7 Hz, 4H), 7.58–7.56 (m, 2H), 7.50–7.46 (m, 4H), 7.30 (t, *J* = 7.9 Hz, 1H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 4.82 (d, *J* = 2.4 Hz, 2H), 3.84 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 165.2 (d, ¹*J*_{PC} = 128.8 Hz, 1C), 154.8 (s, 1C), 132.4 (s, 2C), 132.1 (s, 2C), 132.0 (s, 2C), 130.4 (d, ¹*J*_{PC} = 105.2 Hz, 2C), 129.5 (s, 1C), 128.6 (s, 1C), 128.5 (s, 2C), 128.4 (s, 2C), 119.2 (s, 1C), 118.0 (s, 1C), 109.3 (s, 1C), 57.4 (d, ³*J*_{PC} = 17.6 Hz, 1C), 55.9 (s, 1C).

HRMS (ESI-TOF, [M + H]^+): calcd for C₂₁H₁₉NO₂PS, 380.0874, found 380.0869.

(4H-benzo[e][1,3]thiazin-2-yl)di-p-tolylphosphine oxide (30)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl

acetate = 15:1, v/v) to provide **30** as a white solid (130 mg, 86%). Mp: 158-160 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.66 (dd, *J* = 12.0, 8.1 Hz, 4H), 7.33–7.29 (m, 1H), 7.28–7.24 (m, 7H), 4.76 (d, *J* = 2.7 Hz, 2H), 2.38 (s, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 165.5 (d, ¹*J*_{PC} = 128.0 Hz, 1C), 143.0 (s, 2C), 132.0 (s, 2C), 131.9 (s, 2C), 130.0 (s, 1C), 129.2 (s, 4C), 129.1 (s, 2C), 127.9 (s, 1C), 127.8 (s, 1C), 127.3 (s, 1C), 126.9 (s, 1C), 126.4 (s, 1C), 57.9 (d, ³*J*_{PC} = 17.1 Hz, 1C), 21.6 (s, 2C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₂H₂₁NOPS, 378.1081, found 378.1078.

(4*H*-benzo[*e*][1,3]thiazin-2-yl)bis(4-methoxyphenyl)phosphine oxide (3p)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3p** as a white solid (151 mg, 92%). Mp: 178-180 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.70 (dd, J = 11.6 Hz, 8.7 Hz, 4H), 7.33–7.30 (m, 1H), 7.29–7.27 (m, 3H), 6.95 (dd, J = 8.8, 2.2 Hz, 4H), 4.76 (d, J = 2.5 Hz, 2H), 3.83 (s, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 165.8 (d, ¹*J*_{PC} = 128.5 Hz, 1C), 162.8 (s, 2C), 133.9 (s, 2C), 133.8 (s, 2C), 130.0 (s, 1C), 129.3 (s, 1C), 127.9 (s, 1C), 127.8 (s, 1C), 127.0 (s, 1C), 126.4 (s, 1C), 121.3 (d, ¹*J*_{PC} = 113.1 Hz, 2C), 114.1 (s, 2C), 114.0 (s, 2C), 57.9 (d, ³*J*_{PC} = 17.3 Hz, 1C), 55.3 (s, 2C).

HRMS (ESI-TOF, [M + Na]⁺): calcd for C₂₂H₂₀NO₃PSNa, 432.0799, found 432.0797.

(4*H*-benzo[*e*][1,3]thiazin-2-yl)bis(4-chlorophenyl)phosphine oxide (3q)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3q** as a white solid (133 mg, 80%). Mp: 143-145 °C.

¹**H NMR (500 MHz, CDCl₃):** δ 7.72 (dd, *J* = 11.7, 8.4 Hz, 4H), 7.43 (dd, *J* = 8.3, 2.1 Hz, 4H), 7.35–7.31 (m, 1H), 7.28–7.27 (m, 3H), 4.77 (d, *J* = 2.5 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 164.9 (d, ¹*J*_{PC} = 131.8 Hz, 1C), 139.4 (s, 2C), 133.3 (s, 2C), 133.2 (s, 2C), 129.4 (s, 2C), 129.0 (s, 2C), 128.9 (s, 2C), 128.3 (d, ¹*J*_{PC} = 107.6 Hz, 2C), 128.2 (s, 1C), 128.0 (s, 1C), 127.1 (s, 1C), 126.4 (s, 1C), 57.9 (d, ³*J*_{PC} = 17.8 Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₀H₁₅NOPSCl₂, 417.9989, found 417.9991.

(4H-benzo[e][1,3]thiazin-2-yl)bis(4-fluorophenyl)phosphine oxide (3r)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3r** as a white solid (94 mg, 61%). Mp: 138-140 °C.

¹**H NMR (500 MHz, CDCl₃):** *δ* 7.81–7.76 (m, 4H), 7.34–7.29 (m, 1H), 7.27–7.26 (m, 3H), 7.15–7.11 (m, 4H), 4.76 (d, *J* = 2.7 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 165.4 (d, ¹*J*_{FC} = 254.4 Hz, 2C), 165.1 (d, ¹*J*_{PC} = 131.6 Hz, 1C), 134.6 (s, 1C), 134.5 (s, 2C), 134.4 (s, 1C), 129.5 (s, 1C), 129.0 (s, 1C), 128.2 (s, 1C), 128.0 (s, 1C), 127.0 (s, 1C), 126.4 (s, 1C), 125.9 (d, ¹*J*_{PC} = 110.2 Hz, 2C), 116.0 (dd, ²*J*_{FC} = 21.3, 13.8 Hz, 4C), 57.9 (d, ³*J*_{PC} = 17.8 Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₀H₁₅NOF₂PS, 386.0580, found 386.0575. diphenyl(3a,4,5,6-tetrahydronaphtho[1,8-*de*][1,3]thiazin-2-vl)phosphine oxide (3s)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3s** as a light yellow solid (143 mg, 92%). Mp: 166-168 °C.

¹**H** NMR (500 MHz, CDCl₃): δ7.89 (dd, J = 12.0, 7.4 Hz, 2H), 7.78 (dd, J = 12.2, 7.5 Hz, 2H), 7.57–7.54 (m, 1H), 7.52–7.45 (m, 3H), 7.42–7.38 (m, 2H), 7.15–7.11 (m, 3H), 3.71 (dd, J = 13.0,6.5 Hz, 1H), 2.81 (t, J = 6.0 Hz, 2H), 2.67–2.61 (m, 1H), 2.48–2.41 (m, 1H), 2.05–1.87 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 163.5 (d, ¹ $J_{PC} = 128.2$ Hz, 1C), 138.1 (s, 1C), 132.3 (s, 2C), 131.8 (s, 1C), 131.7 (s, 1C), 130.9 (s, 1C), 130.8 (s, 1C), 130.1 (s, 1C), 129.9 (s, 1C), 129.7 (d, ¹ $J_{PC} = 177.6$ Hz, 2C), 128.4 (s, 2C), 128.3 (s, 2C), 128.2 (s, 1C), 126.9 (s, 1C), 124.1 (s, 1C), 62.2 (d, ³ $J_{PC} = 15.9$ Hz, 1C), 31.1 (s, 1C), 29.6 (s, 1C), 21.3 (s, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₃H₂₁NOPS, 390.1081, found 390.1082.

(6-bromonaphtho[1,8-de][1,3]thiazin-2-yl)diphenylphosphine oxide (3t)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 8:1, v/v) to provide **3t** as a light red solid (174 mg, 94%). Mp: 206-208 °C.

¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, J = 7.7 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.25 (s, 1H), 8.04 (dd, J = 12.7, 7.4 Hz, 4H), 7.70–7.64 (m, 2H), 7.59–7.56 (m, 2H), 7.53–7.49 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 165.3 (d, ¹ J_{PC} = 128.1 Hz, 1C), 151.8 (d, ³ J_{PC} = 20.8 Hz, 1C), 134.3 (s, 2C), 132.6 (s, 2C), 131.9 (s, 2C), 131.8 (s, 2C), 131.2 (d, ¹ J_{PC} = 109.3 Hz, 1C), 129.8 (d, ¹ J_{PC} = 103.1 Hz, 1C), 128.7 (s, 2C), 128.6 (s, 2C), 128.1 (s, 1C), 127.8 (s, 1C), 127.7 (s, 1C), 124.4 (s, 2C), 122.5 (s, 2C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₃H₁₆NOPSBr, 463.9874, found 463.9862.

diphenyl(4H-thieno[3,2-e][1,3]thiazin-2-yl)phosphine oxide (3u)

The crude product was purified by silica gel column chromatography (dichloromethane/ethyl acetate = 15:1, v/v) to provide **3u** as a white solid (121 mg, 85%). Mp: 108-110 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.83 (dd, J = 12.2, 7.3 Hz, 4H), 7.57–7.54 (m, 2H), 7.48–7.45 (m, 4H), 7.33 (d, J = 5.2 Hz, 1H), 6.83 (d, J = 5.1 Hz, 1H), 4.99 (d, J = 2.9 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 161.0 (d, ¹J_{PC} = 130.7 Hz, 1C), 132.5 (s, 2C), 132.0 (s, 2C),

131.9 (s, 2C), 130.0 (d, ${}^{1}J_{PC} = 105.8$ Hz, 2C), 128.5 (s, 2C), 128.4 (s, 2C), 126.7 (s, 1C), 125.9 (s, 2C), 128.4 (s, 2C), 126.7 (s, 1C), 125.9 (s, 2C), 128.4 (s

1C), 125.1 (s, 1C), 124.7 (s, 1C), 53.2 (d, ${}^{3}J_{PC} = 17.9$ Hz, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₈H₁₅NOPS₂, 356.0333, found 356.0330.

2-(trifluoromethyl)-4*H*-benzo[*e*][1,3]thiazine (3v)

The crude product was purified by silica gel column chromatography (petroleum ether) to provide 3v as a light yellow oil (70 mg, 81%).

¹H NMR (500 MHz, CDCl₃): δ 7.38–7.30 (m, 4H), 4.78 (s, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 153.6 (q, ²*J*_{FC} = 38.4 Hz, 1C), 129.0 (s, 1C), 128.4 (s, 1C), 128.2 (s, 1C), 127.7 (s, 1C), 127.3 (s, 1C), 126.7 (s, 1C), 118.8 (q, ¹*J*_{FC} =277.4 Hz, 1C), 55.9 (s, 1C).

¹⁹F NMR (376 MHz, CDCl₃): δ-69.6.

HRMS (ESI-TOF, [M + H]^+): calcd for C₉H₇F₃NS, 218.0251, found 218.0251.

7-methyl-2-(trifluoromethyl)-4*H*-benzo[*e*][1,3]thiazine (3w)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 500:1, v/v) to provide **3w** as a light yellow oil (69 mg, 75%).

¹**H NMR (CDCl₃, 500 MHz):** δ 7.22–7.18 (m, 1H), 7.17–7.13 (m, 2H), 4.75 (s, 2H), 2.37 (d, J = 8.2 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 153.8 (q, ² J_{FC} = 38.7 Hz, 1C), 138.7 (s, 1C), 129.0 (s, 1C), 128.0 (s, 1C), 127.0 (s, 1C), 126.4 (s, 1C), 124.2 (s, 1C), 118.9 (q, ¹ J_{FC} = 277.5 Hz, 1C), 55.9 (s,

1C), 20.9 (s, 1C).

¹⁹F NMR (**376** MHz, CDCl₃): *δ*-69.7.

HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₀H₉F₃NS, 232.0408, found 232.0406.

6,7-dimethoxy-2-(trifluoromethyl)-4*H*-benzo[*e*][1,3]thiazine (3x)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 100:1, v/v) to provide **3x** as a white solid (85 mg, 77%). Mp: 99-101 °C.

¹H NMR (500 MHz, CDCl₃): δ 6.78 (s, 2H), 4.72 (s, 2H), 3.87 (d, J = 8.0 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 153.8 (q, ²J_{FC} = 38.2 Hz, 1C), 149.6 (s, 1C), 149.1 (s, 1C),

120.9 (s, 1C), 118.9 (q, ${}^{1}J_{FC} = 277.5$ Hz, 1C), 118.3 (s, 1C), 110.2 (s, 1C), 109.3 (s, 1C), 56.1 (s, 2C), 55.7 (s, 1C).

¹⁹F NMR (376 MHz, DMSO): δ -68.8.

HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₁H₁₁F₃NO₂S, 278.0463, found 278.0464.

2-phenyl-4*H*-benzo[*e*][1,3]thiazine (3y)⁸

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1, v/v) to provide **3**y as a light yellow solid (74 mg, 82%). Mp: 41-42 °C.

¹**H NMR (500 MHz, CDCl₃):** δ 8.00 (d, *J* = 7.3 Hz, 2H), 7.47–7.37 (m, 4H), 7.33–7.27 (m, 3H), 4.78 (s, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 161.6 (s, 1C), 136.9 (s, 1C), 131.3 (s, 1C), 131.1 (s, 1C), 130.9 (s, 1C), 128.4 (s, 2C), 127.7 (s, 2C), 127.4 (s, 2C), 126.8 (s, 1C), 126.5 (s, 1C), 56.7 (s, 1C).

[8] W. R. Bowman, H. Heaney, B. M. Jordan, *Tetrahedron* 1991, 47, 10119-10128.

2-(4-methoxyphenyl)-4H-benzo[e][1,3]thiazine (3z)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10:1, v/v) to provide **3z** as a white solid (69 mg, 68%). Mp: 78-80 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J = 8.6 Hz, 2H), 7.40–7.39 (m, 1H), 7.34–7.28 (m, 3H), 6.94 (d, J = 8.6 Hz, 2H), 4.76 (s, 2H), 3.85 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 162.0 (s, 1C), 161.0 (s, 1C), 131.7 (s, 1C), 131.1 (s, 1C), 129.6 (s, 1C), 129.4 (s, 2C), 127.5 (s, 1C), 127.4 (s, 1C), 126.8 (s, 1C), 126.6 (s, 1C), 113.8 (s, 2C),

56.6 (s, 1C), 55.4 (s, 1C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₅H₁₄NOS, 256.0796, found 256.0800.

2-(3,4-dimethoxyphenyl)-4*H*-benzo[*e*][1,3]thiazine (3aa)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 4:1, v/v) to provide **3aa** as a light yellow solid (83 mg, 73%). Mp: 120-122 °C.

¹H NMR (500 MHz, CDCl₃): δ 7.63 (d, J = 8.4 Hz, 1H), 7.59 (s, 1H), 7.40–7.39 (m, 1H), 7.32–7.28 (m, 3H), 6.89 (d, J = 8.4 Hz, 1H), 4.76 (s, 2H), 3.94 (d, J = 16.9 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃): δ 161.0 (s, 1C), 151.6 (s, 1C), 148.9 (s, 1C), 131.7 (s, 1C), 131.1 (s, 1C), 129.7 (s, 1C), 127.4 (s, 2C), 126.7 (s, 1C), 126.5 (s, 1C), 121.3 (s, 1C), 110.2 (s, 1C), 109.9 (s, 1C), 56.5 (s, 1C), 55.9 (s, 2C).

HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₆H₁₆NO₂S, 286.0902, found 286.0905.

2-(4-chlorophenyl)-4*H*-benzo[*e*][1,3]thiazine (3ab)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 50:1, v/v) to provide **3ab** as a white solid (66 mg, 64%). Mp: 122-124 °C.

¹**H NMR (500 MHz, CDCl₃):** δ7.95 (d, *J* = 8.5 Hz, 2H), 7.41–7.38 (m, 3H), 7.34–7.29 (m, 3H), 4.79 (s, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 160.5 (s, 1C), 137.3 (s, 1C), 135.4 (s, 1C), 131.2 (s, 1C), 130.6 (s, 1C), 129.0 (s, 2C), 128.7 (s, 2C), 127.6 (s, 2C), 126.9 (s, 1C), 126.6 (s, 1C), 56.7 (s, 1C).
HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₄H₁₁NSCl, 260.0301, found 260.0307.

2-(4-(trifluoromethyl)phenyl)-4*H*-benzo[*e*][1,3]thiazine (3ac)

The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 100:1, v/v) to provide **3ac** as a light yellow solid (88 mg, 75%). Mp: 76-78 °C

¹**H NMR (400 MHz, CDCl₃)**: δ 8.11 (d, *J* = 8.1 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.39−7.37 (m, 1H), 7.36−7.28 (m, 3H), 4.82 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 160.4 (s, 1C), 140.1 (s, 1C), 132.7 (q, ²*J*_{FC} = 32.6 Hz, 1C), 130.8 (s, 1C), 130.3 (s, 1C), 128.0 (s, 2C), 127.8 (s, 1C), 127.7 (s, 1C), 126.9 (s, 1C), 126.6 (s, 1C), 125.4 (q, ³*J*_{FC} = 3.8 Hz, 2C), 123.8 (q, ¹*J*_{FC} = 272.4 Hz, 1C), 56.9 (s, 1C).

¹⁹F NMR (376 MHz, CDCl₃): δ-62.7.

HRMS (ESI-TOF, [M + H]⁺): calcd for C₁₅H₁₁F₃NS, 294.0564, found 294.0571.

5. Oxidation experiment

To a solution of KMnO₄ (190 mg, 1.2 mmol) in acetone (5 mL) and CHCl₃ (5 mL) was added **3a** (140 mg, 0.4 mmol). The reaction mixture was stirred at 0 °C under an air atmosphere for 3 h. Then, CHCl₃ (5 mL) was added, and the precipitated MnO₂ was removed by filtration. The solvent was evaporated and the crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 2:1, v/v) to provide **4a** as a white solid (87 mg, 60%). Mp: 185-187 °C.

2-(diphenylphosphoryl)-4*H*-benzo[*e*][1,3]thiazin-4-one (4a)

¹H NMR (400 MHz, CDCl₃): δ 8.50–8.48 (m, 1H), 8.08–8.04 (m, 4H), 7.72–7.65 (m, 2H), 7.62–7.55 (m, 3H), 7.54–7.49 (m, 4H).

¹³C NMR (100 MHz, CDCl₃): δ 180.8 (d, ¹*J*_{PC} = 115.8 Hz, 1C), 167.1 (s, 1C), 166.9 (s, 1C), 136.0 (s, 1C), 133.1 (s, 2C), 132.3 (s, 2C), 132.2 (s, 2C), 131.0 (s, 1C), 130.8 (s, 1C), 128.9 (s, 2C), 128.8 (d, ¹*J*_{PC} = 106.2 Hz, 2C), 128.7 (s, 2C), 126.7 (s, 1C), 121.4 (s, 1C). HRMS (ESI-TOF, [M + H]⁺): calcd for C₂₀H₁₅NO₂PS, 364.0561, found 364.0558.

6. Gram scale synthesis

To a solution of *N*-benzyl-1-(diphenylphosphoryl)methanethioamide **1a** (2.106 g, 6 mmol) in HFIP (60 mL) was added HTIB **2a** (2.352 g, 6 mmol). The reaction mixture was stirred at room temperature under an air atmosphere for 1 min. The mixture was quenched with saturated NaHCO₃ (60 mL) and extracted with DCM (3×60 mL). The combined organic layers were washed with brine (50 mL) and dried over MgSO₄. Evaporation of the solvent, followed by purification on silica gel, provided product **3a** (1.571 g, 75%).

7. One-pot reaction

To a 15 mL sealed tube was charged with a mixture of (isothiocyanatomethyl)benzene (60 mg, 0.4 mmol) and diphenylphosphine oxide (81 mg, 0.4 mmol). The reaction mixture was stirred at 60 °C for 1 h. After completion, the mixture was cooled to room temperature, added with HFIP (4.0 mL) and HTIB **2a** (157 mg, 0.4 mmol). The reaction mixture was stirred at room temperature under an air atmosphere for 1 min. Then, the mixture was quenched with saturated NaHCO₃ (10 mL) and extracted with DCM (3×10 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. Evaporation of the solvent, followed by purification on silica gel, provided product **3a** (84 mg, 60%).

8. Radical inhibition experiment

To a solution of **1a** (140 mg, 0.4 mmol) in HFIP (4.0 mL) was added TEMPO (63 mg, 0.4 mmol) and HTIB **2a** (157 mg, 0.4 mmol). The reaction mixture was stirred at room temperature under an air atmosphere for 1 min. The mixture was quenched with saturated NaHCO₃ (10 mL) and extracted with DCM (3×10 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. Evaporation of the solvent, followed by purification on silica gel, provided product **3a** (95 mg, 68%).

To a solution of **1a** (141 mg, 0.4 mmol) in HFIP (4.0 mL) was added 1,1-diphenylethylene (72 mg, 0.4 mmol) and HTIB **2a** (157 mg, 0.4 mmol). The reaction mixture was stirred at room temperature under an air atmosphere for 1 min. The mixture was quenched with saturated NaHCO₃ (10 mL) and extracted with DCM (3×10 mL). The combined organic layers were washed with brine (10 mL) and dried over MgSO₄. Evaporation of the solvent, followed by purification on silica gel, provided product **3a** (101 mg, 72%).

9. ¹H NMR and ¹³C NMR spectra

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppa)

S20

1.1255 1.

ZCC-180720.2.fid

(155.02) (155.02) (155.02) (155.02) (157.64) (157.64) (157.64) (157.64) (157.64) (157.64) (157.64) (157.64) (157.64) (158.65) (158.

- 0.0

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} fl (ppm)

^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

---0.01

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppa)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -150 -200 -210 -2 fl (ppm)

8812 7.233 7.2

- 0.00

(40.1) (40.1) (40.1) (40.1) (132.38 (132.38 (132.38 (132.38 (132.38 (132.38 (132.38 (132.38 (132.38 (132.55) (1

ZCC-180714-E.2.fid

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -120 -130 -140 -150 -160 -170 -180 -150 -200 -210 -2 f1 (ppm)

