Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

> Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019

> > Supporting Information

Visible-light promoted aerobic difunctionalization of alkenes

with sulfonyl hydrazides for the synthesis of β-keto/hydroxyl

sulfones

Jie Wu, ^a Yulan Zhang, ^a Xinchi Gong, ^a Yunge Meng, ^a and Chunyin Zhu*^{a,b} ^{a.}School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China. E-mail:zhucycn@gmail.com ^{b.}State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P.R. China.

List of contents

1.General Information	2
2.General procedure for synthesis of 3aa-3ra and 3ab-3af	2
3.Compound characterizations	
4.Luminescence quenching by compound 2a	11
5.References	12
6.Spectroscopic Data for Products	

1. General Information

Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H (400 MHz) and ¹³C NMR (100 MHz) data were recorded on Bruker AVANCE II 400MHz spectrometer using CDCl₃ as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ =0.00 ppm)as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ =77.00 ppm) as internal reference.

2.General procedures for synthesis of 3aa-3as and 3ba-33be

To a solution of sulfonhydrazide **2** (0.5 mmol) and alkene **1** (1.5 mmol) in EtOH (1.5 mL) was added Methylene Blue (0.01 mmol) and DABCO (1 mmol). The reaction mixture was stirred at 25°C under air atmosphere (open vial) and irradiated by blue LED (7 W). The reaction was monitored by thin layer chromatography (TLC). Removal of solvent followed by column chromatography afforded desired products.

Reaction Apparatus:

Photochemical reactions were carried out under visible light irradiation by blue led bulbs at room temperature.

3.Compound characterizations

1-phenyl-2-tosylethan-1-one (3aa)^[1].

Petroleum ether/ethyl acetate =10:1, white solid, 78% yield (106 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.7 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.74 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.15, 145.36, 135.82, 134.31, 129.84, 129.34, 128.84, 128.62, 63.61, 21.70.

1-(4-bromophenyl)-2-tosylethan-1-one (3ba)^[1].

Petroleum ether/ethyl acetate =10:1, white solid, 89% yield (155 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 1.8 Hz, 1H), 7.91 (ddd, *J* = 7.8, 1.6, 1.0 Hz, 1H), 7.80 – 7.71 (m, 3H), 7.38 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.70 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.69, 144.92, 137.41, 132.04, 130.34, 128.55, 127.98, 123.18, 63.98.

1-(3-bromophenyl)-2-tosylethan-1-one (3ca)^[1].

Petroleum ether/ethyl acetate =10:1, white solid, 67% yield (118 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 6.9 Hz, 3H), 7.38 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.70 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.98, 145.64, 137.41, 137.12, 135.54, 132.09, 130.40, 129.95, 128.60, 128.03, 123.18, 63.68, 21.75.

1-(4-chlorophenyl)-2-tosylethan-1-one (3da)^[1].

Petroleum ether/ethyl acetate =10:1, white solid, 83% yield (130 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 6.8 Hz, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 4.70 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.90, 145.56, 141.08, 135.62, 134.11, 130.79, 129.91, 129.21, 128.58, 63.74, 21.72.

1-(4-fluorophenyl)-2-tosylethan-1-one (3ea)^[1].

Petroleum ether/ethyl acetate =10:1, white solid, 72% yield (106 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 7.94 (m, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.08 (m, 2H), 4.71 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.58, 167.76, 165.20, 145.52, 135.66, 132.51 – 132.12 (m), 129.90, 128.56, 116.21, 115.99, 63.75, 21.71.

1-(p-tolyl)-2-tosylethan-1-one (3fa)^[1].

Petroleum ether/ethyl acetate =20:1, white solid, 68% yield (98 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.71 (s, 2H), 2.46 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.67, 145.57, 145.30, 135.82, 133.39, 129.82, 129.54 (d, *J* = 3.7 Hz), 128.61, 63.58, 21.76 (d, *J* = 7.4 Hz).

1-(m-tolyl)-2-tosylethan-1-one (3ga)^[1].

Petroleum ether/ethyl acetate =20:1, white solid, 65% yield (93mg). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.77 (s, 2H), 7.75 (s, 1H), 7.73 (s, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.37 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.72 (s, 2H), 2.46 (s, 3H), 2.42 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 188.30, 145.33, 138.74, 135.83, 135.15, 129.76 (d, *J* = 10.2 Hz), 128.67 (d, *J* = 5.5 Hz), 126.66, 63.58, 21.68, 21.31.

1-(4-methoxyphenyl)-2-tosylethan-1-one (3ha)^[1].

Petroleum ether/ethyl acetate =5:1, white solid, 77% yield (117mg). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.9 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.68 (s, 2H), 3.96 (s, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.36, 164.55, 145.26, 135.85, 131.93, 129.81, 128.92, 128.57, 114.07, 63.55, 55.64, 21.71.

1-(3,4-dimethoxyphenyl)-2-tosylethan-1-one (3ia).

Petroleum ether/ethyl acetate =5:1, white solid, 82% yield (136mg). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 10.3 Hz, 1H), 7.48 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 1H), 4.70 (s, 2H), 3.96 (s, 3H), 3.91 (s, 3H), 2.45 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 186.41, 154.48, 149.23, 145.27, 135.85, 129.81, 129.04, 128.57, 125.15, 110.67, 110.13, 63.48, 56.12 (d, *J* = 19.0 Hz), 21.71. MS (ESI, *m*/z) 335.1 (M + H⁺), 357.1 (M + Na⁺). Anal. calcd for C₁₇H₁₈O₅S: C, 61.06; H, 5.43. Found: C, 60.84; H, 5.56.

2-tosyl-1-(3-vinylphenyl)ethan-1-one (3ja).

Petroleum ether/ethyl acetate =20:1, white solid, 73% yield (109mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.75 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.84 (d, *J* = 17.6 Hz, 1H), 5.38 (d, *J* = 10.9 Hz, 1H), 4.75 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.12, 145.42, 138.36, 137.42, 136.08, 135.54, 131.74, 129.85, 129.04, 128.63, 126.96, 115.88, 63.69, 21.70. MS (ESI, *m*/z) 301.1 (M + H⁺), 323.1 (M + Na⁺). Anal. calcd for C₁₇H₁₆O₃S: C, 67.98; H, 5.37. Found: C, 67.74; H, 5.26.

2-tosyl-1-(4-vinylphenyl)ethan-1-one (3ka).

Petroleum ether/ethyl acetate =40:1, white solid, 64% yield (96mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 6.78 (dd, J = 17.6, 10.9 Hz, 1H), 5.69 (dd, J = 189.7, 19.5 Hz, 2H), 4.72 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.46, 145.38, 143.33 (s), 135.77, 135.68, 134.89, 129.83 (d, J = 1.9 Hz), 128.61, 126.53, 117.76, 63.68, 21.71. MS (ESI, m/z) 301.1 (M + H⁺), 323.1 (M + Na⁺). Anal. calcd for C₁₇H₁₆O₃S: C, 67.98; H, 5.37. Found: C, 67.86; H, 5.24.

2-phenyl-1-tosylpropan-2-ol (3la)^[2].

Petroleum ether/ethyl acetate =10:1, white solid, 72% yield (103mg). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.24 – 7.14 (m, 5H), 4.66 (s, 1H), 3.67 (dd, *J* = 45.6, 14.6 Hz, 2H), 2.40 (s, 3H), 1.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.53, 137.39, 133.62, 129.71, 128.25, 127.56, 127.13, 124.65, 73.17, 66.69, 30.76, 21.57.

2-(4-bromophenyl)-1-tosylpropan-2-ol (3ma)^[2].

Petroleum ether/ethyl acetate =10:1, white solid, 81% yield (183mg). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, J = 13.3, 5.4 Hz, 2H), 7.29 – 7.23 (m, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.15 – 7.08 (m, 2H), 4.72 (s, 1H), 3.66 (dd, J = 53.1, 14.7 Hz, 2H), 2.45 (d, J = 7.6 Hz, 3H), 1.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.81, 143.28, 136.84, 131.17, 129.75, 127.51, 126.61, 121.32, 72.80, 66.25, 31.02, 21.62.

2-(3-chlorophenyl)-1-tosylpropan-2-ol (3na)^[2].

Petroleum ether/ethyl acetate =10:1, white solid, 76% yield (161mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 6.9 Hz, 3H), 7.38 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.70 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.98, 145.64, 137.41, 137.12, 135.54, 132.09, 130.40, 129.95, 128.60, 128.03, 123.18, 63.68, 21.75.

1,1-diphenyl-2-tosylethan-1-ol (3oa)^[2].

Petroleum ether/ethyl acetate =10:1, white solid, 75% yield (132mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.34 (m, 4H), 7.26 – 7.19 (m, 6H), 7.15 (d, *J* = 8.1 Hz, 2H), 5.41 (s, 1H), 4.21 (s, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.51, 143.73, 137.42, 129.70, 128.28, 127.57 (d, *J* = 18.7 Hz), 125.87, 65.51, 21.61.

2-(naphthalen-2-yl)-1-tosylpropan-2-ol (3pa)^[2].

Petroleum ether/ethyl acetate =10:1, white solid, 70% yield (119mg). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.93 (m, 1H), 7.87 (d, *J* = 7.3 Hz, 1H), 7.67 (dd, *J* = 8.7, 4.1 Hz, 2H), 7.49 – 7.40 (m, 1H), 7.39 – 7.32 (m, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 6.78 (d, *J* = 8.1 Hz, 2H), 4.87 (s, 1H), 4.13 (dd, *J* = 220.5, 15.0 Hz, 2H), 2.21 (s, 3H), 2.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.70, 139.04, 134.54, 129.37, 129.20, 128.82, 126.94, 125.72, 125.09, 124.77, 124.55, 124.38, 73.52, 65.00, 30.14, 21.35.

2-(4-methoxyphenyl)-1-tosylpropan-2-ol (3qa)^[2].

Petroleum ether/ethyl acetate =5:1, white solid, 77% yield (123mg). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.1 Hz, 2H), 7.19 (dd, J = 8.6, 3.3 Hz, 4H), 6.71 (d, J = 8.8 Hz, 2H), 4.61 (s, 1H), 3.77 (s, 3H), 3.64 (dd, J = 49.7, 14.6 Hz, 2H), 2.40 (s, 3H), 1.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.70, 144.41, 136.64, 129.65, 127.57, 125.87, 113.50, 72.89, 66.85, 55.24, 30.70, 21.57.

2-(pyridin-3-yl)-1-tosylpropan-2-ol (3ra)^[3].

Petroleum ether/ethyl acetate =10:1, white solid, 63% yield (92mg). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 4.7 Hz, 1H), 7.66 (q, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.07 (ddd, *J* = 6.6, 4.8, 1.7 Hz, 1H), 3.90 (dd, *J* = 152.0, 14.5 Hz, 2H), 2.38 (s, 3H), 1.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.51, 147.95, 144.23, 137.45, 136.93, 129.55, 127.70, 122.13, 119.34, 74.04, 65.17, 30.11, 21.56.

1-phenyl-2-(phenylsulfonyl)ethan-1-one (3ab)^[4].

Petroleum ether/ethyl acetate =10:1, white solid, 75% yield (98mg). ¹H NMR (400 MHz, CDCl₃) δ 4.74 (s, 2H), 7.48(tt, *J* = 7.8, 1.6 Hz, 2H), 7.55 (tt, *J* = 7.8, 1.6 Hz, 2H), 7.62 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.66 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.90 (m, 2H), 7.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.1, 138.8, 135.8, 134.5, 134.4, 129.4, 129.3, 129.0, 128.7, 63.6.

2-((4-fluorophenyl)sulfonyl)-1-phenylethan-1-one (3ac)^[4].

Petroleum ether/ethyl acetate =10:1, white solid, 75% yield (104mg). ¹H NMR (400 MHz, CDCl₃) δ 4.75 (s, 2H),7.20-7.26 (m, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.90-7.95 (m, 4H). ¹³C NMR(100 MHz, CDCl₃) δ 188.1, 166.3 (d, *1JCF* = 245.4 Hz), 135.7, 134.8 (d, *4JCF* = 3.1 Hz), 134.7, 131.8 (d, *3JCF* = 9.7 Hz), 129.4, 129.1, 116.7 (d, *2JCF* = 22.6 Hz), 63.6.

2-((4-chlorophenyl)sulfonyl)-1-phenylethan-1-one (3ad)^[4].

Petroleum ether/ethyl acetate =10:1, white solid, 69% yield (101mg). ¹H NMR (400 MHz, CDCl₃) δ 4.75 (s, 2H),7.48-7.53 (m, 4H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 141.3, 137.2, 135.7, 134.7, 130.3, 129.7, 129.4, 129.1, 63.5.

2-((4-nitrophenyl)sulfonyl)-1-phenylethan-1-one (3ae)^[4].

Petroleum ether/ethyl acetate =10:1, white solid, 77% yield (117mg). ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.35 (m, 1H), 8.14 (ddt, *J* = 11.3, 9.3, 2.4 Hz, 1H), 7.94 (dt, *J* = 7.1, 1.4 Hz, 1H), 7.72 – 7.63 (m, 0H), 7.52 (t, *J* = 7.8 Hz, 1H), 4.82 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.60, 144.03, 135.33, 134.86, 130.34, 129.19, 129.09, 124.31, 63.00.

1-phenyl-2-(thiophen-2-ylsulfonyl)ethan-1-one (3af)^[5].

Petroleum ether/ethyl acetate =5:1, white solid, 73% yield(102mg). ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 7.4 Hz, 2 H), 7.74 (dd, *J* = 4.9, 1.3 Hz, 1 H), 7.69 (dd, *J* = 3.8, 1.2 Hz, 1 H), 7.63 (t, *J* = 7.4 Hz, 1 H), 7.49 (t, *J* = 7.4 Hz, 2 H), 7.13 (dd, *J* = 4.9, 3.9 Hz, 1 H), 4.83 (s, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 187.8, 139.4, 135.7, 135.5, 135.0, 134.5, 129.2, 128.9, 127.9, 64.4 ppm.

4. Luminescence quenching by compound 2a

A Varian Cary Eclipse fluorescence spectrometer was used to record the emission intensities. All the solutions were excited at 664 nm and the emission intensity at 685 nm was observed. EtOH was degassed with a stream of N₂ for 30 min. In a typical experiment, the emission spectrum of a 1×10^{-2} M solution of Methylene Blue in EtOH was collected. Then, appropriate amount of quencher **2a** was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I₀ and I represent the intensities of the emission in the absence and presence of the quencher at 685 nm.

5.Reference

[1] L.-L. Xie, X.-M. Zhen, S.-P. Huang, X.-L. Su, M. Lin, Y. Li . Green Chem, 2017, 19, 3530–3534.

[2] C.-K. Chan, N.-C. Lo, P-Y. Chen, M.-Y. Chang. Synthesis. 2017, 49. 4469-4477.

[3] T.-C. Tsuyoshi, I. Atsushi, I. Hiroyuki. Org. Biomol. Chem. 2011, 9, 3151 - 3153.

[4] Q.-Q. Lu, J. Zhang, G.-L. Zhao, Y. Qi, H.-M. Wang, A.-W. Lei. J. Am. Chem. Soc. **2013**, 135, 11481–11484.

[5] H. Jiang, Y.-Z. Cheng, Y. Zhang, S.-Y. Yu. Eur. J. Org. Chem. 2013, 5485–5492.

6. Spectroscopic Data for Products

