Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Direct C-S Bond Formation via C-O Bond Activation of Phenols in a

Crossover Pd/Cu Dual-Metal Catalysis System

Vahid Khakyzadeh,^a Abed Rostami,^b Hojat Veisi,^c Behzad Shirmardi Shaghasemi,^d Erik

Reimhult,^d Rafael Luque,^{ef} Yuanzhi Xia,^g Sima Darvishi,^a

^{*a*} Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 16315-1618, 15418 Tehran, Iran. E-mail: <u>v.khakyzadeh@kntu.ac.ir</u>

^b Vice Chancellor for food and drug, Kurdistan University of Medical Sciences, Sanandaj, Iran. E-mail: <u>abed.rostami@muk.ac.ir</u>

^c Department of Chemistry, Payame Noor University, Tehran, Iran. E-mail:

- ^d Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
- ^e Departamento de Quimica Organica, Universidad de Córdoba, Edif. Marie Curie, Ctra Nnal IV-A, Km 396, E14014 Córdoba, Spain. E-mail: <u>rafael.luque@uco.es</u>
- ^f Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russia

^gCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

Table of Contents

General information	S2
Preparation of Silica Nanoparticles	S2
Preparation of SiO ₂ @ Organic-linker	S2
Immobilization of Pd(II) ions on the surface of SiO ₂ @organic-linker(OL)@Pd ^(II)	S3
X-Ray Diffraction Analysis of the Catalyst	S4
High-resolution TEM images of the Catalyst	S 5
ICP Mass Analysis of the catalyst	S6
DSC Spectra	S7
Spectral Data	S8-S12
Reference	S13
NMR Spectra	S14- S36

General Information:

All experiments were carried out under an atmosphere of air. Flash column chromatography was performed over silica gel 48-75 μ m. All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.16 ppm) and were obtained with ¹H-decoupling. Data for ¹H NMR are described as following: chemical shift (δ in ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sx, sextet; m, multiplet; app, apparent; br, broad signal), coupling constant (Hz), integration. Data for ¹³C NMR spectra are described in terms of chemical shift (δ in ppm).

Preparation of Silica Nanoparticles

Silica nanoparticles were synthesized by sol-gel polymerization of tetraethyl ortho silicate (TEOS). To a round bottom flask (250 mL), ethanol (99%, 112 mL), ammonia solution (25%, 6 mL) and deionized water (7 mL) were added under stirring. After that, a mixture of TEOS (8 mL) in ethanol (99%, 75 mL) was added drop wise. The resultant mixture was stirred for 24 h at room temperature. Then, the sample was collected after centrifugation and calcined for 4 h (at 500 °C).

Preparation of SiO₂ @ Organic-linker

To a 100 mL of round-bottom flask were introduced 30 mL of anhydrous toluene and 1.0 g of SiO₂ NPs and 0.36 g (3.0 mmol) of 3-aminoropropyl trimethoxysilane (APTMS) were added. The solution was refluxed for 24 hrs under an inert atmosphere, filtered and washed subsequently with toluene, dichloromethane, and methanol, and dried under reduced pressure at 80 °C for 10 h. In another 100 ml round-bottom flask, to a solution of 1 g of aminopropyl functionalized SiO₂ NPs in 35 mL of THF, 0.5 ml of diisopropylethylamine was added. Then, 0.46 g (3 mmol) of cyanoric chloride was added in 0 °C. After 2h, the solution was decanted and washed with 2×25 of fresh THF and decanted. Then, 25 ml of acetonitrile and 1 ml of diisopropylethylamine was added to

residue. 7 mmol dipyridilamine was added to the mixture and stirred 2h in room temperature, refluxed for 12h. After completion of the reaction, the solid products were filtered, washed with deionized water and then acetone and dried at 100 °C for 12h. The clung dipyridilamine on triazine functionalized SiO₂ NPs (SiO₂ @ Organic-linker) was obtained through this simple procedure.

Immobilization of Pd(II) ions on the surface of SiO₂@organic-linker(OL)@Pd^(II)

The SiO₂ @ Organic-linker (1 g) was dispersed in CH₃CN (100 mL) in an ultrasonic bath for 30 min. Subsequently, a yellow solution of PdCl₂ (50 mg) in 30 mL acetonitrile was added to dispersion of SiO₂ NPs/CCPy and the mixture was stirred for 10 hours at 25 °C. Then, the SiO₂@organic-linker(OL)@Pd^(II) was separated by centrifuge and washed by CH₃CN, H₂O and acetone respectively to remove the unattached substrates.

X-Ray diffraction analysis of the catalyst

Anchor Scan Parameters

Start Decition [97Th].	
End Position [°2Th.]:	
Step Size [°2Th.]:	
Anode Material:	
Generator Settings:	

5.0391 79.9711 0.0260 Cu 40 mA, 40 kV

Graphics

Peak List

Pos.[°2Th.]	Height [cts]	FWHMLeft[°2Th.]	d-spacing [Å]	Rel. Int. [%]
10.55(1)	240(57)	0.12(5)	8.38053	36.09
14.104(3)	666(55)	0.10(1)	6.27449	100.00
14.58(1)	192(37)	0.12(3)	6.06968	28.83
15.319(4)	506(89)	0.08(3)	5.77931	76.04
19.825(6)	326(41)	0.12(2)	4.47483	49.01
26.09(1)	142(31)	0.16(4)	3.41249	21.33
28.29(1)	121(39)	0.11(4)	3.15182	18.23
29.75(2)	96(19)	0.3(1)	3.00068	14.36
32.46(1)	101(26)	0.16(6)	2.75646	15.20
33.50(3)	53(13)	0.3(1)	2.67301	7.95
34.14(1)	107(30)	0.13(6)	2.62388	16.02
37.98(2)	68(12)	0.4(1)	2.36750	10.19
40.43(5)	34(10)	0.5(2)	2.22901	5.14
46.81(3)	50(10)	0.4(1)	1.93935	7.50
48.96(3)	33(10)	0.3(1)	1.85882	5.00

High-resolution TEM images of the catalyst

ICP Mass analysis of the catalyst

Row	Material	Pd (%)
1^a	SiO ₂ NPs / CCPy / Pd(II)	1.9
	^a total weight of the sampl	e = 0.0265 g
	Instrument = ICP MS E	LAN DRC-e

DSC spectrum of the catalyst

Spectral Data

Diphenyl sulfide (2A)^[3]

Colorless liquid: ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ= 7.2-7.4 ppm (m, 10 H); ¹³C NMR (100MHz, CDCl₃, 25 °C, TMS): δ= 127.1, 129.8, 131.6, 135.8 ppm.

Phenyl (*p*-tolyl) sulfide (2B) ^[3]

Colorless oil: ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ= 2.3 ppm (s, 3H), 7.20 (d, *J* = 8.1 Hz, 2H) 7.40-7.42 (m, 7H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ= 21.2, 127.2, 127.5, 128.8, 129.1, 129.2, 131.0, 133.6, 137.0 ppm.

Phenyl 4-methoxy phenyl sulfide (2C)^[2]

Colorless oil: ¹H NMR (250 MHz, CDCl₃, 25 °C, TMS): δ= 4.2(s, 3H), 7.1-7.2 ppm (m, 5H), 7.3-7.6 (m, 4H); ¹³C NMR (62.9 MHz, CDCl₃, 25 °C, TMS): δ= 55.3, 116.3, 126.8, 127.4, 128.5, 129.4, 137.4, 138.2, 158.2 ppm.

(4-methoxy phenyl) tolyl-p sulfide (2D)^[7]

Yellow oil:¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ= 2.3 ppm (s, 3H), 3.8 (s, 3H), 6.92 (d, *J* = 8.4 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 2H) 7.21, (d, *J* = 8.4 Hz, 2H) 7.443, (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ= 21.0, 55.3, 114.9, 125.6, 129.4, 129.8, 132.2, 134.4, 136.1, 159.5 ppm.

Di-*p*-tolyl sulfide (2E)^[4]

White solid: mp 55–56 °C. ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ= 2.25 ppm (s, 6H), 7.02 (d, *J*= 8, 4H), 7.34 (d, *J*= 8, 4H);¹³C NMR (100 MHz, CDCl₃, 25 °C, TMS): δ= 21.0, 128.5, 129.8, 131.1, 137.6 ppm.

Phenyl (*m*-Tolyl) Sulfide (2F)^[2]

Colorless oil: ¹H NMR (CDCl₃, 400 MHz): δ = 2.36 (s, 3 H), 7.16–7.24 (m, 8H), 7.26–7.43 (1 H, m). ¹³C NMR (CDCl₃, 100 MHz): δ = 21.26, 126.3, 127.0, 127.9, 129.1, 129.6, 130.1, 133.0, 135.7, 137.0.

Phenyl (o-Tolyl) Sulfide (2G) ^[3]

Colorless oil: ¹H NMR (CDCl₃, 400 MHz): δ = 2.43 (3 H, s), 7.30–7.37 (8 H, m), 7.39–7.54 (1 H, m). ¹³C NMR (CDCl₃, 100 MHz): δ = 20.6, 127.5, 127.9, 129.1, 129.6, 130.6, 131.0, 133.0, 133.7, 136.1, 140.0.

(2,3-Dihydroinden-5-yl)phenyl Sulfide (2H)^[5]

Yellow oil: yield: ¹H NMR (CDCl₃, 400 MHz): δ = 7.54–7.56 (2 H, m), 7.47–7.50 (5 H, m), 7.29 (1 H, m), 2.84–2.87 (4 H, m), 2.06–2.14(2 H, m). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.2, 146.0, 136.2, 133.3, 132.2, 131.6, 128.6, 128.5, 124.9, 33.0, 31.9, 25.8.

(2,3-Dihydroinden-5-yl) p-Tolyl Sulfide (2I) ^[5]

Yellow oil:¹H NMR (CDCl₃, 400 MHz): δ = 7.50–7.51 (2 H, m), 7.48–7.49 (2 H, m), 7.29 (2 H, d, *J* = 7.5 Hz), 7.11 (2 H, d, *J* = 7.5 Hz), 2.86–2.91 (4 H, m), 2.46 (3 H, s), 2.08–2.12 (2 H, m). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.2, 146.0, 141.2, 136.2, 134.9, 132.3, 132.2, 131.6, 128.5, 124.9, 33.0, 31.9, 25.8, 21.7.

(*p*-nitro phenyl) *p*tolyl- sulfide (2J) ^[7]

Yellow solid, mp: 93-95 °C, ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.4 (s, 3H), 7.15 (d, *J* = 7.6 Hz, 2H) 7.29, (d, *J* = 7.6 Hz, 2H) 7.48, (d, *J* = 8 Hz, 2H) 8.06, (d, *J* = 8 Hz, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)=21.3, 124.0, 126.1, 126.4, 130.9, 135.1, 140.2, 145.1, 149.4.

(*p*-nitryl phenyl) *p*tolyl- sulfide (2K) ^[7]

White solid, mp: 81-83 °C, ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.44 (s, 3 H), 7.14 (d, *J*= 8.4 Hz, 2 H), 7.28 (d, *J*= 8.4 Hz, 2 H) 7.44-7.49, (m, 4 H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 21.36, 108.28, 118.96, 126.77, 130.79, 132.31, 133.44, 134.99, 140.00, 146.64.

1-Naphthyl phenyl sulfide (2L)^[1]

Colorless oil; ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 7.03-7.38 (m, 3H), 7.57 (dd, *J* = 7.2, 1.2Hz, 4H), 7.58-7.66 (m, 2H), 8.36-8.39 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 123.7, 124.6, 126.1, 126.3, 127.0, 127.6, 128.7, 128.6, 129.7, 130.0, 131.8, 134.3, 135.4, 136.0, 136.5

Naphthalen-1-yl(p-tolyl)sulfane (2M) ^[7]

Colorless oil: ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.09 (s, 3H), 7.21-7.25 (m, 4H), 7.29-7.42 (m, 3H), 7.60-7.75 (m, 2H), 7.87-7.99 (m, 2H); ¹³C {¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 21.1, 123.8, 124.8, 126.7, 127.9, 128.6, 129.5, 130.0, 131.3, 134.3, 135.4, 135.9.

2-Naphthyl phenyl sulfide (2N) ^[1]

White solid, mp: 49-50 °C, ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 7.08-7.29 (m, 6H), 7.39-7.44 (m, 2H), 7.57-7.67 (m, 1H), 7.86-7.97 (m, 2H), 8.27-7.29 (m, 1H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 123.9, 124.7, 125.9, 126.4, 128.0, 128.6, 129.2, 129.5, 132.9, 134.4, 135.4, 137.3.

Naphthalen-2-yl(p-tolyl)sulfide (2O) ^[7]

White solid, mp: 68-70 °C, ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.30 (s, 3H), 7.00-7.10 (m, 4H), 7.39-7.44 (m, 3H), 7.53-7.7.58 (m, 2H), 7.60-7.87 (m, 2H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 20.9, 123.8, 124.8, 126.7, 127.9, 128.6, 129.6, 129.2, 123.0, 131.8, 132.7, 135.4,135.9.

2-Naphthyl p-Nitrophenyl Sulfide (2P)^[5]

Yellow solid, mp: 156–157 °C, ¹H NMR (CDCl₃, 400 MHz): δ = 7.83–7.86 (2 H, d, *J* = 6.5 Hz), 7.63–7.77 (3 H, m), 7.56–7.60 (2 H, m), 7.52–7.55 (2 H, d, *J* = 6.5 Hz), 7.45–7.49 (2 H, m), ¹³C NMR (CDCl₃, 100 MHz): δ = 171.4, 151.2, 133.3, 132.4, 132.3, 132.2, 131.3, 131.2, 128.6, 128.4, 126.4, 124.4.

Phenyl(2-pyridyl)sulfide (2Q) ^[7]

Colorless oil: ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 6.86 (d, *J* = 4.8 Hz, 1 H), 6.94-6.97 (m, 1 H), 7.38-7.40 (m, 4 H), 7.54-7.58 (m, 2 H), 8.40 (d, *J* = 4.8 Hz, 1 H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 119.9, 121.3, 129.14, 129.6, 131.0, 134.9, 136.8, 149.5, 161.4.

2-Pyridyl(p-tolyl)sulfide (2R) ^[7]

Colorless oil: ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.37 (s, 3 H), 6.81 (d, *J* = 4.8 Hz, 1 H) 6.93-6-98 (m, 1 H), 7.21-7.30 (m, 2 H),7.38-7.40 (m, 1 H), 7.42-7.44 (m, 1 H), 7.50-7.54 (m, 1 H), 8.39 (d, *J* = 4.8 Hz, 1 H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 21.3, 119.6, 120.8, 127.6, 130.5, 135.2, 136.6, 139.4, 149.4, 162.1.

4-Acetylphenyl *p*-Nitrophenyl Sulfide (2S) ^[5]

Yellow solid, mp: 47–48 °C, ¹H NMR (CDCl₃, 400 MHz): δ = 7.78 (2 H, d, *J* = 6.8 Hz), 7.73 (2 H, d, *J* = 6.8 Hz), 7.48 (4 H, m), ¹³C NMR (CDCl₃, 100 MHz): δ = 197.0, 171.2, 135.8, 132.3, 131.9, 129.8, 129.1, 128.4, 123.5, 26.25.

Phenyl(o-formylphenyl)sulfide (2T) ^[1]

Colorless oil: 171 mg (80% yield);¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 7.12 -7.14 (m, 1 H), 7.29-7.48 (m, 7 H), 7.90-7.92 (m, 1 H), 10.42 (s, 1 H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 126.3, 128.4, 129.7, 130.3, 131.9, 133.2, 133.3, 133.7, 134.1, 141.6, 191.6.

o-Formylphenyl(p-tolyl)sulfide (2U) [8]

Colorless oil: ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.42 (s, 3 H), 7.04-7.06 (m, 1 H), 7.24-7.26 (m, 2 H), 7.30-7.33 (m, 2 H), 7.38-7.41 (m, 2 H), 7.87-7.89 (m, 1 H), 10.40 (s, 1 H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 21.2, 125.6, 128.9, 129.2, 130.6, 132.2, 133.1, 133.9, 134.0, 139.0, 142.8, 191.5.

Phenyl(*m*-formylphenyl)sulfide (2V)^[1]

Colorless oil: ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 7.43-7.63 (m, 6 H), 7.72-7.84 (m, 2 H), 8.04 (s, 1 H), 9.99 (s, 1 H); ¹³C{¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 128.4, 129.6, 129.7, 132.3, 132.5, 133.6, 135.3, 137.3, 138.0, 138.8, 191.6.

m-Formylphenyl(*p*-tolyl)sulfide (2V) ^[8]

Colorless oil: ¹HNMR (400 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 2.41 (s, 3 H), 7.21-7.29 (m, 2 H), 7.38-7.49 (m, 2 H), 7.67-7.72 (m, 1 H), 7.77-7.85 (m, 3 H), 9.95 (s, 1 H); ¹³C {¹H}NMR (100 MHz, CDCl₃, 25 °C, TMS): δ (ppm)= 21.2, 127.1, 128.4, 129.48, 130.4, 132.38, 133.5, 134.2, 137.0, 138.0, 139.9, 191.7.

S₁₂

(4-methoxy phenyl) *p*tolyl- sulfide (2D)

Phenyl (m-Tolyl) Sulfide (2F)

Phenyl (o-Tolyl) Sulfide (2G)

(2,3-Dihydroinden-5-yl)phenyl Sulfide (2H)

(2,3-Dihydroinden-5-yl) p-Tolyl Sulfide (2I)

7.51 7.50 7.50 7.49 7.49 7.48 7.32 7.32 7.32 7.30 7.11 7.09

(p-nitro phenyl) ptolyl- sulfide (2J) 8.08 - 8.06 - 8.06 - 8.06 - 8.06 - 8.06 - 7.48 - 7.46 - 7.46 - 7.46 - 7.45 - 7.31 - 7.31 - 7.31 - 7.31 - 7.15 - 7.15 - 7.15

0

2-Naphthyl *p*-Nitrophenyl Sulfide (2P) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2.29 2.29 26.41 132.49 132.34 132.34 131.60 131.57 131.57 131.57 77.37 28.48 33.33

90 80 70

60 50

40 30 20 10

0

210

190

170

150

130

110

S₂₈

Phenyl(*m*-formylphenyl)sulfide (2V)

S₃₃

References

- [1] Lee, J. Y.; Lee, P. H. J. Org. Chem. 2008, 73, 7413
- [2] Fernandez-Rodreguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180.
- [3] Park, N.; Park, K.; Jang, M.; Lee, S. J. Org. Chem. 2011, 76, 4371.
- [4] Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. 2011, 13, 4100.
- [5] Rostami, A. Rostami, A. Ghaderi, A. Gholinejad, M. and Gheisarzadeh, S. Synthesis. 2017, 49, 5028
- [6] Prasad, D. J. C.; Sekar, G. Org. Lett. 2011, 13, 1008.
- [7] Singh, N.; Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15, 5874.
- [8] Sheng-Rong, G.; Yan-Gain, Y.; Li-Jin, W. J. Sulfur Chem. 2009, 30, 10.