Tiosquaramide-catalysed Asymmetric Double Michael Addition of 2-(*3H*)-Furanone to Nitroolefines

Mengchen Yang,^{‡a} Chen Chen,^{‡a} Xing Yi,^a Yuan Li,^a Xiaoqin Wu,^c Qingshan Li,^{*ab} Shurong Ban^{*ab}

^a School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, PR China

E-mail: qingshanl@yahoo.com;shurongban@sxmu.edu.cn

^b Shanxi Key laboratory of Chronic Inflammatory Targeted Drugs, School of Chinese Materia Medica, Shanxi University of Traditional Chinese Medicine, 121 University Street, Jinzhong 030619, PR China

^c Scientific Instrument Center, Shanxi University, Taiyuan, 030006, PR China

[‡]These authors contributed to the work equally and should be regarded as co-first authors.

Content

General Methods
Synthesis of organocatalysts
Catalysts screening for the model reaction
Optimization of reaction conditions
General procedure for the asymmetric double Michael addition of 5-methyl-2(3H)-furanone
to β -nitroolefins
References
Copies of ¹ H NMR, ¹³ C NMR, HRMS and IR spectra of organocatalysts
135-DEPTNMR spectrum of 3a
HMBC spectrum of 3a
HSQC spectrum of 3a
Crystallographic data for 3a
Copies of HPLC profiles of Michael addition products

General Methods

Commercially available compounds were used without further purification. The solvents and reagents were purified and dried according to standard procedures. Column chromatography was carried out using silica gel (200–300 mesh). Melting points were measured on an XT-4 melting point apparatus without correction. The ¹H-NMR and ¹³C-NMR spectra were recorded on BRUKER AVANCE II 400MHz and 600MHz spectrometer. Infrared spectra were obtained on Thermo Scientific Nicolet iS5 or Bruker tensor II spectrometer. The ESI-HRMS spectra were obtained on Bruker APEX IV mass spectrometer. Elemental analysis was performed with an Elementar Vario MICRO Cube. Optical rotations were measured with Rudolph Research Analytical Autopol III. The dr value and ee value of the products were determined by chiral HPLC (Shimadzu LC-20A) analysis using a Chiralpak IC (n-hexane/EtOH as eluent). The crystal structure of **3a** was confirmed by D8 Venture X-ray crystal diffractometer.

Synthesis of organocatalysts

Figure S1. Structures of C01-C21.

C02, **C04** and **C05** were known compounds and prepared according to the literature procedures.³⁻⁵ **C08-C21** were reported in our previous work.^{2,6}

C01, **C03**, **C06** and **C07** were synthesized as followed routes in Scheme S1. Intermediates **M1-M5** in Scheme S1 were prepared according to the literature.¹ **M6** was prepared according to the literature.^{2,6}

Scheme S1. Synthetic routes of C01, C03, C06 and C07.

2-(Benzylamino)-3-(((15,25)-2-(dimethylamino)cyclohexyl)amino)-4-Thioxocyclobut-2-en-1one (C01). Compound **M4** (1.0 mmol, 1.0 eq.) was dissolved in DCM, and (1*S*,2*S*)-N, Ndimethylcyclohexane-1,2-diamine (1.1 mmol, 1.1 eq, commercially available) was added dropwise at 0°C. The mixture was stirred for 30 minutes at 0°C, and warmed to the room temperature for 30 minutes (monitored by TLC). The reaction mixture was then concentrated and purified by silica gel column chromatography (DCM/MeOH) to give yellow solid. 62.1% yield, m.p. 201-204 °C, $[\alpha]_D^{30}$ = -140.40 (c = 0.11, MeOH). ¹H NMR (400 MHz, DMSO) δ 8.59 (s, 1H), 7.73 (s, 1H), 7.38 (m, 5H), 4.77 (s, 2H), 2.33 (s, 1H), 2.18 (s, 7H), 1.74 (m, 4H), 1.19 (m, 4H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 202.6, 201.1, 179.9, 171.4, 168.7, 137.4, 128.8, 128.0, 127.9, 65.8, 60.3, 52.9, 47.8, 46.3, 35.8, 33.6, 24.3, 24.0, 21.2. IR(ATR):1760.4, 1644.5, 1606.5, 1544.4 cm⁻¹. HRMS m/z calcd for C₁₉H₂₆N₃OS [M+H]⁺ 344.1791, found 344.1796.

3-(Benzylamino)-4-(((15,25)-2-(dimethylamino) cyclohexyl) amino) cyclobut-3-ene-1,2-dithione (C03). According to the above procedures, **C03** was prepared with **M5** and (1*S*,2*S*)-N, N-dimethylcyclohexane-1,2-diamine. Yellow solid, 47.0% yield, m.p. 133-136 °C, $[\alpha]_D^{30} = -30.29$ (c = 0.175, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 24.7 Hz, 5H), 5.25 (d, *J* = 85.2 Hz, 2H), 3.76 (d, *J* = 90.4 Hz, 1H), 2.28 (m, 9H), 1.25 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.4, 170.1, 136.8, 129.9, 129.9, 128.8, 128.3, 127.9, 66.4, 54.7, 47.6, 40.1, 36.00, 31.9, 29.7, 29.3, 27.2, 25.5, 24.7, 22.7. IR(ATR):1709.8, 1635.5 cm⁻¹. HRMS m/z calcd for C₁₉H₂₆N₃S₂ [M+H]⁺ 360.1563, found 360.1565.

2-(Benzylamino)-3-(((1S)-(6-methoxyquinolin-4-yl)((2S)-5-vinylquinuclidin-2-yl)methyl)

amino) -4-thioxocyclobut-2-en-1-one (C06). Compound M4 (1.0 mmol, 1.0 eq) was dissolved in 5mL DCM, and amine M6 (1.1 mmol, 1.1 eq) was added dropwise at 0°C. The mixture was stirred at 0°C for 30 minutes, and then warmed to room temperature for 10 hours (monitored by TLC). The

reaction mixture was concentrated and purified by silica gel column chromatography (DCM/MeOH) to give orange solid. 57.4% yield, m.p. 133-135°C, $[\alpha]_D{}^{30} = 88.00$ (c = 0.125, MeOH). ¹H NMR (400 MHz, DMSO) δ 8.81 (d, *J* = 4.3 Hz, 1H), 8.64 (s, 1H), 7.97 (d, *J* = 9.2 Hz, 2H), 7.58 (s, 1H), 7.48-7.28 (m, 7H), 5.96-5.78 (m, 1H), 4.97 (dd, *J* = 22.3, 13.8 Hz, 2H), 4.74 (s, 2H), 4.00 (s, 3H), 3.61 (s, 1H), 3.18 (s, 2H), 2.64 (m, 2H), 2.27 (s, 2H), 2.00 (m, 1H), 1.55 (m, 4H). ¹³C NMR (101 MHz, DMSO) δ 199.9, 179.7, 177.1, 174.2, 171.4, 168.3, 157.6, 147.7, 144.2, 141.8, 137.1, 131.4, 129.6, 128.8, 128.6, 128.6, 127.9, 126.9, 122.6, 114.3, 102.4, 56.0, 55.4, 47.9, 40.6, 35.1, 31.2, 30.4, 28.7, 27.1, 25.2. IR(ATR):1762.7, 1620.5, 1555.5, 1505.2 cm⁻¹. HRMS: m/z calcd for C₃₁H₃₁N₄O₂S⁻ [M-H]⁻ 523.2173, Found: 523.2166.

3-(Benzylamino) -4- (((1*S*) - (6-methoxyquinolin-4-yl) ((2*S*) -5- vinylquinuclidin-2-yl) methyl) amino) cyclobut-3-ene-1,2-dithione (C07). According to the procedures of C06, C07 was obtained with the reaction of M5 and M6. Yellow solid, 88.2% yield, m.p. 107-115°C, $[\alpha]_D^{30} = 106.00$ (c = 0.10, MeOH).¹H NMR (600 MHz, DMSO-*d*₆) δ 9.22 (s, 1H), 8.82 (d, *J* = 4.4 Hz, 1H), 8.07-7.92 (m, 2H), 7.63 (d, *J* = 4.5 Hz, 1H), 7.49-7.27 (m, 7H), 5.95-5.81 (m, 1H), 5.29 (q, *J* = 14.3 Hz, 2H), 4.99 (dd, *J* = 35.7, 13.7 Hz, 2H), 4.01 (s, 3H), 3.68 (s, 1H), 2.71 (s, 2H), 2.34 (s, 1H), 1.83 (s, 1H), 1.60 (d, *J* = 25.9 Hz, 4H), 1.25 (m, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 202.8, 171.2, 170.1, 169.8, 158.3, 148.2, 148.0, 144.8, 137.8, 132.0, 131.7, 129.3, 128.9, 128.8, 128.7, 128.3, 127.8, 127.4, 122.7, 115.1,102.8, 61.0, 56.6, 55.7, 55.4, 47.6,46.5, 41.2, 39.2, 27.5, 25.4. IR(ATR):1697.9, 1619.8, 1556.5 cm⁻¹. HRMS m/z calcd for C₃₁H₃₃N₄OS₂ [M + H]⁺ 541.2090, found 541.2110.

Catalysts screening for the model reaction.

Table S1. Catalysts screening for the model reaction^{*a*}

	+	0 cat 1a NO ₂ 2a	alyst (5 mol%) CHC님, 20 ℃	Ph Ph	Ph NO ₂ ⁷ CH ₃ 3a	
Entry	Catalyst	Equiv of 2a	Time(h)	Yield(%) ^b	ee(%) ^c	dr ^c
1	C01	1.0	24	32	73	82:18
2	C01	2.0	24	77	75	87:13
3	C02	2.0	24	32	47	86:14
4	C03	2.0	24	trace	-	-
5	C04	2.0	24	31	71	89:11
6	C05	2.0	24	36	57	88:12
7	C06	2.0	24	51	70	82:18
8	C07	2.0	24	38	74	85:15
9	C08	2.0	72	33	41	75:25

10	C09	2.0	48	30	55	83:17
11	C10	2.0	72	19	51	87:13
12	C11	2.0	72	12	51	87:13
13	C12	2.0	72	24	37	86:14
14	C13	2.0	72	30	39	85:15
15	C14	2.0	72	22	51	86:14
16	C15	2.0	72	27	34	81:19
17	C16	2.0	72	12	-57	78:22
18	C17	2.0	72	23	-56	88:12
19	C18	2.0	72	29	-49	87:13
20	C19	2.0	72	38	-41	78:22
21	C20	2.0	80	15	-45	89:11
22	C21	2.0	72	21	-42	89:11

^{*a*}All reactions were carried out with 5-methyl-2(3*H*)-furanone (**1a**, 0.3 mmol, 29.4mg), *trans*-nitrostyrene (**2a**) and the catalyst (5 mol%) in 1.0 mL CHCl₃ at room temperature; a minus sign of ee means that the product has the opposite configuration ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC on Chiralpak IC column.

Optimization of reaction conditions

Table S2. Optimization of reaction conditions for the enantioselective double Michael addition of5-methyl-2(3H)-furanone (1a) to *trans*-nitrostyrene (2a) a

	Ì	0 1a + 2a	C01 (5 mol%) solvent temperature time	Ph Ph O O O CH ₃	NO ₂ 3a	
Entry	Solvent	T.(°C)	Time(h)	Yield(%) ^b	$ee(\%)^c$	dr ^c
1	CHCl ₃	20	24	77	75	87:13
2	toluene	20	48	28	65	88:12
3	EtOAc	20	24	75	30	88:12
4	CH ₃ OH	20	30	34	14	87:13
5	CH ₃ CN	20	72	26	29	86:14
6	THF	20	48	38	62	87:13
7	Et ₂ O	20	48	50	31	88:12
8	DMF	20	48	46	13	89:11
9	DMSO	20	48	37	16	89:11
10	H_2O	20	20	51	30	88:12
11	brine	20	20	40	61	82:18

12	DCM	20	20	63	73	82:18
13	CHCl ₃	60	24	75	41	85:15
14	CHCl ₃	0	60	62	71	94:6
15	CHCl ₃	-15	60	55	79	94:6
16	CHCl ₃	-30	70	77	86	93:7
17	CHCl ₃	-50	84	39	83	94:6
18 ^[d]	CHCl ₃	-30	70	70	83	93:7
19 ^[e]	CHCl ₃	-30	70	75	81	94:6

^{*a*}All reactions were carried out with 5-methyl-2(3*H*)-furanone (**1a**, 0.3 mmol, 29.4 mg), *trans*-nitrostyrene (**2a**, 0.6 mmol, 89.5 mg) and the catalyst **C01**. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC on Chiralpak IC column. ^{*d*}2.5 mol% **C01**.^{*e*}10 mol% **C01**.

General procedure for the asymmetric double Michael addition of 5-methyl-2(3*H*)-furanone to β -nitroolefins

To a solution of catalyst (**C01**, 0.015 mmol, 5.2 mg) and nitroolefin (0.6 mmol) in CHCl₃ (2.0 ml) was added 5-methyl 2(3H)-furanone (0.3 mmol, 29.4 mg). The reaction mixture was stirred at -30 °C (monitored by TLC). After the reaction is completed, the mixture was concentrated and purified by silica gel column chromatography (ethyl acetate/petroleum).

White solid, 77% yield, 86% ee, 93:7 dr, $[\alpha]_D^{20} = 87.69$ (c = 0.325, CH₂Cl₂). m.p. 169.4-170.2°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 75/25, flow rate 1.0 mL/min, λ = 210 nm), t_R(1) = 9.221 min, t_R(2) = 9.788 min, t_R(3) = 10.793 min, t_R(4) = 12.538 min. ¹H NMR (600 MHz, CDCl₃) δ 7.34-7.19 (m, 6H), 7.10 (d, *J* = 7.3 Hz, 2H), 6.97 (s, 1H), 6.74 (d, *J* = 7.3 Hz, 2H), 4.92 (dd, *J* = 13.5, 4.9 Hz, 1H), 4.85-4.77 (m, 2H), 4.66 (dd, *J* = 13.3, 7.0 Hz, 1H), 4.35 (t, *J* = 7.7 Hz, 1H), 3.94 (dd, *J* = 9.8, 4.9 Hz, 1H), 1.54 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.2, 152.9, 135.0, 134.4, 132.6, 129.4, 129.3, 128.9, 128.3, 127.4, 86.5, 76.6, 75.5, 50.5, 40.9, 23.6. IR(ATR): 3082.5, 2923.0, 2852.7, 1753.5, 1652.4, 1556.6, 1493.0, 1454.7, 1433.5, 1382.0, 1272.1, 1240.4, 1113.7, 1028.2, 950.4, 798.2, 768.9, 702.9 cm⁻¹. HRMS m/z calcd for C₂₁H₁₉N₂O₆ [M-H]⁻ 395.1249, found 395.1241.

White solid, 86% yield, 86% ee, >99:1 dr, $[\alpha]_D^{20} = 90.86$ (c = 0.35, CH₂Cl₂). m.p. 166-167.3°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 75/25, flow rate 1.0 mL/min, λ = 210 nm), t_R(1) = 9.288 min, t_R(2) = 9.799 min, t_R(3) = 11.127 min, t_R(4) = 11.820 min. ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 7.9 Hz, 2H), 7.00 (dd, *J* = 14.8, 7.7 Hz, 5H), 6.68 (d, *J* = 8.0 Hz, 2H), 4.91-4.72 (m, 3H), 4.63 (dd, *J* = 13.2, 7.0 Hz, 1H), 4.34 (dd, *J* = 14.1, 6.5 Hz, 1H), 3.90 (dd, *J* = 9.9, 5.0 Hz, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 152.9, 138.7, 138.1, 132.7, 132.1, 131.3, 130.1, 129.9, 128.2, 127.4, 86.7, 75.7, 50.3, 40.6, 23.7, 21.3, 21.2. IR(ATR): 3028.9, 2922.3, 2852.3, 1753.6, 1613.2, 1553.9, 1512.8, 1453.7, 1433.0, 1374.3, 1252.8, 1177.3, 1115.6, 1031.4, 983.7, 816.9, 648.5, 517.9 cm⁻¹. Anal. Calcd for C₂₃H₂₄N₂O₆: C, 65.08; H, 5.70; N, 6.60. Found: C, 65.25; H, 5.69; N, 6.68.

White solid, 67% yield, 94% ee, 99:1 dr, $[\alpha]_D^{20} = -23.20$ (c = 0.125, CH₂Cl₂). m.p. 65-67.1°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 75/25, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R(1) = 7.205 min, t_R(2) = 8.032 min, t_R(3) = 9.071 min, t_R(4) = 9.694 min. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 2H), 7.22 (m, 2H), 7.00 (d, J = 8.4 Hz, 2H), 6.93-6.85 (m, 3H), 4.94 (ddd, J = 15.3, 13.4, 6.8 Hz, 2H), 4.84-4.73 (m, 1H), 4.45 (dd, J = 13.0, 7.0 Hz, 1H), 4.32 (t, J = 7.8 Hz, 1H), 3.88 (dd, J =9.9, 5.0 Hz, 1H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.9, 135.2, 134.8, 133.7, 132.8, 132.4, 129.9, 129.7, 129.6, 129.5, 129.3, 129.2, 128.8, 86.3, 75.8, 75.3, 50.0, 40.9, 23.19. IR(ATR): 2921.3, 2851.7, 1753.8, 1651.3, 1593.6, 1550.5, 1492.6, 1433.7, 1376.3, 1260.9, 1199.3, 1091.8, 1014.7, 983.5, 825.2, 754.9, 719.1, 640.9 cm⁻¹. Anal. Calcd for C₂₁H₁₈Cl₂N₂O₆: C, 54.21; H, 3.90; N, 6.02. Found: C, 54.32; H, 3.82; N, 6.25.

White solid, 63% yield, 95% ee, 97:3 dr, $[\alpha]_D^{20} = -18.75$ (c = 0.16, CH₂Cl₂). m.p. 65.8-68.1°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 75/25, flow rate 1.0 mL/min, λ = 210 nm), t_R(1) = 7.536 min, t_R(2) = 8.321 min, t_R(3) = 8.813 min, t_R(4) = 9.372 min. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H), 7.42-7.36 (m, 2H), 6.93 (dd, *J* = 16.1, 4.7 Hz, 3H), 6.82 (d, *J* = 8.5 Hz, 2H), 4.93 (ddd, *J* = 13.5, 12.6, 6.8 Hz, 2H), 4.80-4.75 (m, 1H), 4.43 (dd, *J* = 13.0, 7.0 Hz, 1H), 4.32 (t, *J* = 7.7 Hz, 1H), 3.87 (dd, *J* = 9.8, 5.0 Hz, 1H), 1.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 153.9, 134.2, 133.3, 132.7, 132.5, 132.3, 129.9, 129.1, 123.3, 122.9, 86.2, 75.8, 75.2, 50.0, 40.9, 23.18. IR(ATR): 2920.3, 2851.4, 1753.9, 1658.2, 1632.5, 1550.6, 1489.9, 1434.3, 1411.0, 1376.4, 1259.7, 1074.2, 1011.2, 960.0, 884.6, 795.4, 717.4, 642.6, 516.4 cm⁻¹. Anal. Calcd for C₂₁H₁₈Br₂N₂O₆: C, 45.51; H, 3.27; N, 5.05. Found: C, 45.32; H, 3.32; N, 5.25.

White solid, 61% yield, 63% ee, >99:1 dr, $[\alpha]_D^{20} = -16.53$ (c = 0.375, CH₂Cl₂). m.p. 72.6-73.7°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 75/25, flow rate 1.0 mL/min, λ = 210 nm), t_R(1) = 6.969 min, t_R(2) = 7.404 min, t_R(3) = 8.620 min, t_R(4) = 9.305 min. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 1.8 Hz, 1H), 7.28 (d, *J* = 14.6 Hz, 2H), 7.19 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.96 (dd, *J* = 18.5, 8.4 Hz, 2H), 5.09 (dd, *J* = 13.2, 9.2 Hz, 1H), 5.00 (dd, *J* = 13.9, 4.9 Hz, 1H), 4.85 (dt, *J* = 18.7, 8.5 Hz, 2H), 4.63-4.54 (m, 2H), 1.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ 170.0, 154.3, 135.5, 135.3, 134.3, 131.1, 130.8, 130.5, 130.3, 130.2, 128.9, 128.3, 128.0, 127.5, 121.9, 86.4, 74.9, 74.2, 44.5, 37.0, 29.84. IR(ATR): 3081.5, 2920.5, 2851.3, 1756.2, 1658.2, 1632.5, 1589.0, 1552.0, 1472.4, 1375.9, 1260.2, 1175.4, 1104.0, 1054.6, 916.1, 866.7, 819.7, 797.0, 639.5 cm⁻¹. Anal. Calcd for C₂₁H₁₆Cl₄N₂O₆: C, 47.22; H, 3.02; N, 5.24. Found: C, 47.12; H, 3.23; N, 5.35.

White solid, 62% yield, 93% ee, 98:2 dr, $[\alpha]_D^{20} = -10.91$ (c = 0.275, CH₂Cl₂). m.p. 51.6-53.8°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 75/25, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R(1) = 7.009 min, t_R(2) = 7.905 min, t_R(3) = 9.119 min, t_R(4) = 9.719 min. ¹H NMR (400 MHz, CDCl₃) δ 7.06-7.02 (m, 2H), 6.98 (s, 1H), 6.95 (dd, J = 5.4, 2.0 Hz, 3H), 6.94-6.90 (m, 3H), 4.93 (ddd, J =16.0, 13.2, 6.8 Hz, 2H), 4.79 (dd, J = 9.7, 3.8 Hz, 1H), 4.45 (dd, J = 13.0, 7.1 Hz, 1H), 4.33 (t, J =7.8 Hz, 1H), 3.90 (dd, J = 9.9, 5.1 Hz, 1H), 1.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 163.9, 161.6, 153.8, 132.6, 131.1, 130.0, 129.9, 129.3, 129.2, 116.6, 116.5, 116.3, 116.2, 86.4, 76.1, 75.4, 49.9, 40.8, 23.14. IR(ATR): 2920.5, 2851.1, 1754.2, 1658.1, 1632.5, 1605.0, 1550.7, 1509.7, 1434.1, 1377.3, 1302.1, 1226.1, 1162.4, 1102.1, 1031.7, 917.5, 821.1, 797.4, 719.5, 643.3, 526.8 cm⁻¹. Anal. Calcd for C₂₁H₁₈F₂N₂O₆: C, 58.34; H, 4.20; N, 6.48. Found: C, 58.13; H, 4.09; N, 6.58.

White solid, 75% yield, 92% ee, 99:1 dr, $[\alpha]_D^{20} = -17.00$ (c = 0.100, CH₂Cl₂). m.p. 60.3-62.1°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R(1) = 9.634 min, t_R(2) = 10.720 min, t_R(3) = 12.140 min, t_R(4) = 13.066 min. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.3 Hz, 3H), 7.52-7.46 (m, 1H), 7.23 (s, 1H), 7.17-7.11 (m, 1H), 7.08 (d, J = 8.0 Hz,

2H), 6.96 (d, J = 0.8 Hz, 1H), 4.93 (ddd, J = 26.6, 14.5, 4.6 Hz, 2H), 4.86-4.63 (m, 2H), 4.43-4.40 (m, 1H), 4.00 (dt, J = 10.3, 5.2 Hz, 1H), 1.60 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.7, 153.7, 139.0, 138.4, 132.3, 131.6, 131.4, 129.8, 128.8, 128.5, 128.3, 128.0, 126.7, 126.5, 126.4, 86.3, 75.7, 75.1, 50.3, 41.1, 23.39. IR(ATR): 3194.0, 2920.7, 2850.9, 1757.6, 1658.5, 1620.8, 1554.2, 1423.3, 1377.9, 1323.7, 1260.6, 1165.5, 1112.8, 1068.3, 1017.7, 957.0, 839.4, 794.2, 707.2, 645.6 cm⁻¹. Anal. Calcd for C₂₃H₁₈F₆N₂O₆: C, 51.89; H, 3.41; N, 5.26. Found: C, 51.67; H, 3.53; N, 5.38.

White solid, 59% yield, 94% ee, 98:2 dr, $[\alpha]_D^{20} = -12.00$ (c = 0.100, CH₂Cl₂). m.p. 56.1-58.6°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 90/10, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R(1) = 20.089 min, t_R(2) = 21.572 min, t_R(3) = 24.934 min, t_R(4) = 25.696 min. ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 1H), 7.06 (d, J = 5.9 Hz, 1H), 7.04-7.00 (m, 1H), 6.98-6.93 (m, 1H), 6.91 (s, 1H), 6.87 (d, J = 7.7 Hz, 1H), 6.82-6.76 (m, 2H), 6.67 (dd, J = 9.4, 1.9 Hz, 1H), 5.00-4.88 (m, 2H), 4.86-4.76 (m, 1H), 4.44-4.31 (m, 2H), 3.91 (dd, J = 9.7, 5.0 Hz, 1H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 164.3, 164.2, 161.9, 161.7, 154.1, 137.7, 137.6, 136.8, 136.7, 132.2, 131.2, 131.1, 131.1, 131.0, 123.7, 123.2, 116.2, 116.1, 116.0, 115.9, 115.7, 115.5, 114.9, 114.7, 86.3, 75.7, 75.2, 50.3, 41.1, 23.17. IR(ATR): 3188.2, 2918.8, 2849.8, 1754.0, 1658.3, 1632.1, 1591.3, 1551.4, 1452.1, 1431.6, 1377.1, 1259.1, 1146.1, 1089.6, 1014.1, 875.7, 791.6, 698.0, 651.6, 521.9 cm⁻¹. Anal. Calcd for C₂₁H₁₈F₂N₂O₆: C, 58.34; H, 4.20; N, 6.48. Found: C, 58.45; H, 4.32; N, 6.29.

White solid, 69% yield, 91% ee, 99:1 dr, $[\alpha]_D^{20} = 92.71$ (c = 0.325, CH₂Cl₂). m.p. 122.7-124.2°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 93/7, flow rate 1.0 mL/min, $\lambda = 210$ nm), t_R(1) = 33.571 min, t_R(2) = 36.698 min, t_R(3) = 41.158 min, t_R(4) = 41.963 min. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 7.5 Hz, 1H), 7.13-7.05 (m, 3H), 6.93 (m, 1H), 6.87 (m, 3H), 6.43 (d, J = 6.4 Hz, 1H), 4.92-4.72 (m, 3H), 4.66 (dd, J = 13.3, 7.1 Hz, 1H), 4.32 (t, J = 7.7 Hz, 1H), 3.89 (dd, J = 9.7, 5.0 Hz, 1H), 2.30 (s, 3H), 2.25 (s, 3H), 1.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 153.1, 139.2, 139.1, 135.2, 134.4, 132.7, 129.7, 129.2, 129.0, 128.5, 125.3, 124.1, 86.7, 76.6, 75.6, 50.7, 41.0, 29.8, 23.7, 21.51. IR(ATR): 3084.1, 2920.9, 2852.2, 1749.1, 1651.9, 1606.3, 1549.5, 1489.1, 1456.8, 1375.3, 1308.8, 1256.1, 1196.9, 1116.1, 1040.4, 987.2, 905.2, 799.0, 709.3, 653.2 cm⁻¹. Anal. Calcd for C₂₃H₂₄N₂O₆: C, 65.08; H, 5.70; N, 6.60. Found: C, 64.93; H, 5.58; N, 6.43.

White solid, 65% yield, 90% ee, 97:3 dr, $[\alpha]_D^{20} = -10.11$ (c = 0.150, CH₂Cl₂). m.p. 63.4-65.6°C, HPLC: Chiralpak IC column (n-hexane/EtOH = 93/7, flow rate 1.0 mL/min, λ = 210 nm), t_R(1) = 23.533 min, t_R(2) = 28.138 min, t_R(3) = 31.978 min, t_R(4) = 34.295 min. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.27 (m, 1H), 7.21 (m, 1H), 7.05 (q, *J* = 4.5 Hz, 2H), 6.98 (dt, *J* = 5.6, 2.7 Hz, 2H), 6.88 (dd, *J* = 13.5, 3.6 Hz, 3H), 4.95 (ddd, *J* = 15.6, 13.0, 5.9 Hz, 2H), 4.85-4.76 (m, 2H), 4.31 (dd, *J* = 12.0, 4.5 Hz, 1H), 3.88 (dd, *J* = 9.7, 5.0 Hz, 1H), 1.57 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 154.3, 137.3, 136.4, 135.7, 135.3, 135.3, 132.2, 130.8, 130.6, 129.3, 129.0, 128.7, 127.8, 125.7, 86.2, 75.6, 75.1, 50.2, 41.1, 23.07. IR(ATR): 2920.1, 2851.4, 1753.6, 1596.2, 1550.4, 1477.0, 1433.5, 1376.5, 1260.5, 1197.9, 1169.6, 1083.4, 1035.8, 960.1, 880.8, 791.0, 697.7 cm⁻¹. Anal. Calcd for C₂₁H₁₈Cl₂N₂O₆: C, 54.21; H, 3.90; N, 6.02. Found: C, 54.03; H, 3.99; N, 5.85.

References

- Rombola M, Rawal V H. Dicyclopentyl Dithiosquarate as an Intermediate for the Synthesis of Thiosquaramides. Organic Letters, 2018, 20(3):514.
- 2 Yang M, Zhang M, Wang Z, *et al.* Highly enantioselective Michael addition of pyrazolin-5ones to nitroolefins catalyzed by cinchona alkaloid derived 4-methylbenzoylthioureas. Chirality, 2018, 30:1096-1104.
- 3 Michael Rombola, Chintan S. Sumaria, Thomas D. Montgomery, *et al.* Development of Chiral, Bifunctional Thiosquaramides:Enantioselective Michael Additions of Barbituric Acids to Nitroalkenes. Journal of the American Chemical Society, 2017, 139:5297-5300.
- 4 Konishi H, Lam T Y, Malerich J P, et al. Enantioselective α-Amination of 1,3-Dicarbonyl

Compounds Using Squaramide Derivatives as Hydrogen Bonding Catalysts. Organic Letters, 2010, 41(38):2028-2031.

- 5 Malerich J P, Hagihara K, Rawal V H. Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Journal of the American Chemical Society, 2008, 130(44):14416-14417.
- 6 Wang Z, Ban S, Yang M, *et al.* Switching the Enantioselectivities in Michael Addition of Pyrazolin -5- Ones to Nitroolefins by Benzoylthiourea Organocatalysts. Chemistryselect, 2017, 2(12):3419-3422.

Copies of ¹H NMR, ¹³C NMR, HRMS and IR spectra of selected Michael addition products

135-DEPTNMR spectrum of 3a

HMBC spectrum of 3a

HSQC spectrum of 3a

Crystallographic data for 3a

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: mo_180912a_0m

Bond precision:	C-C = 0.0090 A	Wavelengt	ch=0.71073
Cell:	a=6.5334(7)	b=16.5353(19)	c=9.6045(11)
Temperature:	297 K	beca=99.396(4)	gamma=90
	Calculated	Reported	1
Volume	1023.7(2)	1023.7(2	2)
Space group	P 21	P 1 21 3	L
Hall group	P 2yb	P 2yb	
Moiety formula	C21 H20 N2 07	0.5(C21	H20 N2 O7)
Sum formula	C21 H20 N2 O7	C10.50 H	110 N 03.50
Mr	412.39	206.19	
Dx,g cm-3	1.338	1.338	
Z	2	4	
Mu (mm-1)	0.102	0.102	
F000	432.0	432.0	
F000'	432.25		
h,k,lmax	7,19,11	7,19,11	
Nref	3614[1875]	3446	
Tmin, Tmax		0.674,0	.747
Tmin'			
Correction metho AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.674	Tmax=0.747
Data completene:	ss= 1.84/0.95	Theta(max) = 25.0	000
R(reflections) =	0.0663(3325)	wR2(reflections))= 0.1842(3446)
S = 1.071	Npar=	272	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

 Alert level B

 PLAT035_ALERT_1_B _chemical_absolute_configuration Info Not Given
 Please Do !

 PLAT230_ALERT_2_B Hirshfeld Test Diff for 01 --000T .
 8.0 s.u.

 PLAT230_ALERT_2_B Hirshfeld Test Diff for 000T --N00E .
 15.2 s.u.

 PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
 N00E Check

Alert level C STRVA01 ALERT 4 C Flack test results are ambiguous. From the CIF: _refine_ls_abs_structure_Flack 0.600 From the CIF: _refine ls_abs_structure_Flack_su 0.300 PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full value Low . 0.975 Why? PLAT053 ALERT 1 C Minimum Crystal Dimension Missing (or Error) ... Please Check PLAT054 ALERT 1 C Medium Crystal Dimension Missing (or Error) ... Please Check PLAT055_ALERT_1_C Maximum Crystal Dimension Missing (or Error) ... Please Check PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 6.89 Note PLAT220_ALERT_2_C Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range PLAT220_ALERT_2_C Non-Solvent Resd 1 O Ueq(max)/Ueq(min) Range 3.7 Ratio 5.0 Ratio PLAT234_ALERT_4_C Large Hirshfeld Difference O1 --NOOE 0.23 Ang. PLAT234 ALERT 4 C Large Hirshfeld Difference COOR --C00S 0.16 Ang. PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of COOS Check N003 Check PLAT340 ALERT 3 C Low Bond Precision on C-C Bonds 0.00895 Ang. PLAT907_ALERT_2_C Flack x > 0.5, Structure Needs to be Inverted? . 0.60 Check

Alert level G PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 1 Report PLAT032 ALERT 4 G Std. Uncertainty on Flack Parameter Value High . 0.300 Report PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.50 Check PLAT072 ALERT 2 G SHELXL First Parameter in WGHT Unusually Large 0.11 Report PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 1 Report PLAT398_ALERT_2_G Deviating C-O-C Angle From 120 for 0001 PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels 109.7 Degree 49 Note PLAT789_ALERT_4_G Atoms with Negative _atom_site_disorder_group # 1 Check (Chiral SPGR) PLAT791 ALERT 4 G Model has Chirality at C008 R Verify S Verify PLAT791 ALERT 4 G Model has Chirality at COOA (Chiral SPGR) PLAT791_ALERT_4_G Model has Chirality at COOD (Chiral SPGR) S Verify PLAT860 ALERT 3 G Number of Least-Squares Restraints 7 Note

0 ALERT level A = Most likely a serious problem - resolve or explain
4 ALERT level B = A potentially serious problem, consider carefully
14 ALERT level C = Check. Ensure it is not caused by an omission or oversight
13 ALERT level G = General information/check it is not something unexpected
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
11 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ALERT type 3 Indicator that the structure quality may be low
10 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 20/08/2018; check.def file version of 20/08/2018

Copies of HPLC profiles of Michael addition products (impurities associated to the solvent were indicated by *).

NO.	Time	Area	Height	Area%
1	9.546	101084544	4009315	39.582
2	10.221	102839529	4008915	40.270
3	11.039	25283537	1208183	9.900
4	12.998	26170405	1010907	10.248

NO.	Time	Area	Height	Area%
1	9.221	86296004	4009984	86.129
2	9.788	6565029	331517	6.552
3	10.793	2005863	43582	2.002
4	12.538	5326430	199137	5.316

NO.	Time	Area	Height	Area%
1	9.496	90322261	3997967	45.565
2	10.121	101619194	3997772	51.264
3	11.309	4409286	93303	2.224
4	12.245	1874855	67170	0.946

NO.	Time	Area	Height	Area%
1	9.288	79871289	4000946	92.764
2	9.799	5923523	313571	6.880
3	11.127	52995	3229	0.062
4	11.820	253554	8506	0.294

NO.	Time	Area	Height	Area%
1	7.213	53052014	3968857	49.330
2	8.021	52702695	3404910	49.006
3	9.079	1065339	72474	0.991
4	9.645	724279	48002	0.673

NO.	Time	Area	Height	Area%
1	7.205	1057346	81681	3.027
2	8.032	33565491	2084868	96.092
3	9.071	211087	13935	0.604
4	9.694	96771	5097	0.277

NO.	Time	Area	Height	Area%
1	7.536	1543271	98561	2.574
2	8.321	56672674	3833731	94.513
3	8.813	1529098	110278	2.550
4	9.372	217961	13464	0.363

NO.	Time	Area	Height	Area%
1	6.913	65842339	4001139	47.283
2	7.404	69096427	4000997	49.620
3	7.837	3622164	247371	2.601
4	8.313	689278	72239	0.495

NO.	Time	Area	Height	Area%
1	6.969	18807243	1114093	18.314
2	7.404	83397611	4012886	81.209
3	8.620	450084	22917	0.438
4	9.305	39562	2885	0.039

NO.	Time	Alea	neight	Alea70
1	6.867	12506159	916358	45.942
2	7.655	12595760	773830	46.271
3	8.849	919228	55802	3.377
4	9.475	1200481	52910	4.410

NO.	Time	Area	Height	Area%
1	7.009	2105776	149014	3.458
2	7.905	57359726	3080162	94.180
3	9.119	420664	26113	0.691
4	9.719	1018327	38636	1.672

NO.	Time	Area	Height	Area%
1	9.896	38055439	1286744	50.422
2	11.370	37027622	1389711	49.060
3	12.371	370150	18542	0.490
4	13.411	21189	359	0.028

NO.	Time	Area	Height	Area%
1	9.634	593267	23772	3.865
2	10.720	14620130	645225	95.256
3	12.140	3654	290	0.024
4	13.066	131164	3166	0.855

NO.	Time	Area	Height	Area%
1	19.533	46079826	1282954	46.449
2	21.207	49246417	1287496	49.641
3	24.107	1962860	31113	1.979
4	25.011	1915075	52581	1.930
3 4	24.107 25.011	1962860 1915075	31113 52581	1.979 1.930

-	NO.	Time	Area	Height	Area%
	1	20.089	1661637	47027	3.194
	2	21.572	49412079	1245951	94.977
	3	24.934	594643	14916	1.143
	4	25.696	357175	12903	0.687

NO.	Time	Area	Height	Area%
1	33.020	137067045	1993622	48.831
2	36.027	141233830	1814205	50.315
3	40.109	417292	8622	0.149
4	41.501	1979742	26050	0.705

NO.	Time	Area	Height	Area%
1	33.571	273640432	4022292	94.458
2	36.698	13186373	181284	4.552
3	41.158	952255	3734	0.329
4	41.963	1915951	44934	0.661

NO.	Time	Area	Height	Area%
1	23.002	4860109	74105	2.762
2	27.503	4499850	61290	2.557
3	30.899	85157978	1128408	48.391
4	33.550	81461172	1207778	46.290

数把文件45.215.00 株務省:ymb-366-ysyc-ymb-09 _CI 0₂N 1250-1000 750 NO₂ Ć/CH₃ 500 0″ 0 31 230 Сĺ 4 7.5 10.0 125 15.0 17.5 20.0 27.5 375 25 5.0 225 250 30.0 325 35.0

NO.	Time	Area	Height	Area%
1	23.533	1699587	33281	1.526
2	28.113	922057	8507	0.828
3	31.978	6334462	63731	5.686
4	34.295	102455090	1589081	91.961