An Efficient Synthesis and Bioactivity Evaluation of Oxazole-Containing

Natural Hinduchelin A-D and Their Derivatives

Shaoyong Ke*, Zhigang Zhang, Liqiao Shi, Manli Liu, Wei Fang, Yani Zhang, Zhaoyuan Wu, Zhongyi Wan, Tong Long, Kaimei Wang*

National Biopesticide Engineering Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Wuhan 430064, People's Republic of China

Address for correspondence: Shaoyong Ke, National Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Tel: +86-27-59101956; E-mail: keshaoyong@163.com or shaoyong.ke@nberc.com

Supporting Information

Experimental Section

Instrumentation and chemicals. All starting materials and reagents commercially available were used without further purification, unless otherwise specified. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance III 600 MHz FT-NMR spectrometer using CDCl₃ or DMSO- d_6 as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are reported in δ (parts per million) values, and coupling constants ⁿJ are reported in Hz. Mass spectra were performed on a WATERS ACQUITY UPLC[®] H-CLASS PDA (Waters[®]) instrument, and Xevo TQD detector was used. Elemental analyses were performed on a Vario EL III elemental analysis instrument. Optical rotations were measured on an Autopol IV, Serial #83376 (Rudolph Research Analytical, Hackettstown, NJ, USA). Analytical thin-layer chromatography was carried out on precoated silica gel plates GF254 (Qindao Haiyang Chemical, China), and spots were visualized with ultraviolet light.

General synthetic procedure for the intermediate 2. To a solution of ethyl acetoacetate **1** (3.25 g, 25 mmol) in acetic acid (15 mL) was added dropwise the solution of sodium nitrite (2.04 g, 30 mmol) in 10 mL of water under ice-bath, which were stirred at 0-5 °C and detected by thin-layer chromatography.

After the completion of reaction, the mixture was poured into 60 mL of ice water with stirring, and then was extracted with ethyl acetate, and the organic layer was washed with saturated aqueous of NaHCO₃ and water, and dried with anhydrous Na₂SO₄. The solvent was removed to give the intermediate **2** as yellowish oil, and which can be directly used for next step reaction without further purification.

General synthetic procedure for the intermediates 5a and 5b. To a solution of intermediate 2 (3.18 g, 20 mmol) and the corresponding aldehyde 3 (22 mmol) in acetic acid (25 mL) was bubbled dry HCl gas under ice-bath, which were stirred at 0-5 °C for 2-3 h. After that, the mixture was diluted with acetone and concentrated, and then the residue was dissolved in acetic acid (20 mL), and zinc (2.34 g, 36 mmol) was added in batches. The mixture was stirred at 45-50 °C for 3-4 h, and then water (60 mL) was added, and which was extracted with ethyl acetate, and the organic layer was washed with H₂O, NaHCO₃ aqueous and brine, and dried with anhydrous Na₂SO₄. The solvent was removed to give intermediate 5. Their basic physico-chemical properties and spectra data are as follows:

Ethyl 2-(2,3-dimethoxyphenyl)-5-methyloxazole-4-carboxylate 5a

This compound was obtained following the above method as yellowish oil, yield 88%. ¹H NMR (600 MHz, CDCl₃): δ = 7.57 (dd, *J* = 6 Hz, 1H, Ph-H), 7.13-7.11 (m, 1H, Ph-H), 7.03 (dd, *J* = 6 Hz, 1H, Ph-H), 4.42 (q, *J* = 6 Hz, 2H, CH₂), 3.93 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 2.72 (s, 3H, CH₃), 1.41 (t, *J* = 7.8 Hz, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 162.6, 158.3, 156.4, 153.6, 147.9, 128.5, 124.2, 122.0, 121.5, 114.7, 61.4, 60.9, 56.0, 14.4, 12.3; MS (ESI) *m/z* calcd. for C₁₅H₁₈NO₅⁺ (M+H)⁺ 292.11, found 292.35.

Ethyl 2-(2-hydroxy-3-methoxyphenyl)-5-methyloxazole-4-carboxylate 5b

This compound was obtained following the above method as white floc, yield 82%. ¹H NMR (600 MHz, CDCl₃): δ = 7.41 (dd, *J* = 6 Hz, 1H, Ph-H), 6.98 (dd, *J* = 6 Hz, 1H, Ph-H), 6.91-6.88 (m, 1H, Ph-H), 4.39 (q, *J* = 6 Hz, 2H, CH₂), 3.93 (s, 3H, OCH₃), 2.72 (s, 3H, CH₃), 1.40 (t, *J* = 6 Hz, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.7, 159.3, 154.9, 147.6, 127.1, 119.2, 117.5, 114.4, 110.6, 61.0, 56.3, 14.2, 12.0; MS (ESI) *m/z* calcd. for C₁₄H₁₆NO₅⁺ (M+H)⁺ 278.10, found 278.40.

General synthetic procedure for the intermediates 6a and 6b. To a solution of intermediate **5** (10 mmol) in methanol (15 mL) was added aqueous (15 mL) of sodium hydroxide (15 mmol), which were stirred at room temperature overnight, and detected by thin-layer chromatography. After the completion

of reaction, the mixture was adjusted to pH 2-3 with dilute hydrochloric acid, and the precipitate was filtered and dried to obtain **6**. Their basic physico-chemical properties and spectra data are as follows:

2-(2,3-Dimethoxyphenyl)-5-methyloxazole-4-carboxylic acid 6a

This compound was obtained following the above method as white powder, yield 83%. ¹H NMR (600 MHz, CDCl₃): δ = 7.55 (dd, *J* = 6 Hz, 1H, Ph-H), 7.16-7.13 (m, 1H, Ph-H), 7.05 (dd, *J* = 6 Hz, 1H, Ph-H), 3.94 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 2.75 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 164.5, 157.9, 157.2, 153.7, 147.9, 127.7, 124.4, 121.6, 120.9, 114.9, 61.3, 56.1, 12.2; MS (ESI) *m/z* calcd. for C₁₃H₁₄NO₅⁺ (M+H)⁺ 264.08, found 264.27.

2-(2-Hydroxy-3-methoxyphenyl)-5-methyloxazole-4-carboxylic acid 6b

This compound was obtained following the above method as white powder, yield 76%. ¹H NMR (600 MHz, DMSO-*d*₆): δ = 13.29 (br, 1H, COOH), 10.69 (s, 1H, OH), 7.37 (dd, *J* = 6 Hz, 1H, Ph-H), 7.14 (dd, *J* = 7.2 Hz, 1H, Ph-H), 6.96-6.94 (m, 1H, Ph-H), 3.83 (s, 3H, OCH₃), 2.66 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 162.8, 158.9, 155.6, 148.7, 146.9, 127.5, 119.9, 118.1, 115.3, 111.0, 56.0, 12.4; MS (ESI) *m/z* calcd. for C₁₂H₁₂NO₅⁺ (M+H)⁺ 250.06, found 250.59.

General synthetic procedure for the conversion of 5a and 7 to Hinduchelin A. To a solution of intermediate 5a (1 mmol) in EtOH (6 mL) was added compound 7 (0.165 g, 1.2 mmol), and the mixture were heated and stirred at reflux temperature for about 42 h. Then the mixture was concentrated and purified by silica gel column-chromatography (ethyl acetate/petroleum ether) to give pure compound Hinduchelin A (18% yield). Its physico-chemical properties and spectra data are consistent with the compound prepared by coupling method as follows.

General synthetic procedure for Hinduchelin A-D. To a solution of intermediate **6a** or **6b** (0.8 mmol) in DMF (8 mL) was added HOBt (0.162 g, 1.2 mmol), EDCI (0.23 g, 1.2 mmol), Et₃N (0.162 g, 1.6 mmol) and appropriate amine (1.2 mmol), which were stirred at room temperature overnight, and detected by thin-layer chromatography. After the completion of reaction, the mixture was extracted with ethyl acetate, and the organic layer was washed with water and brine, and dried with anhydrous Na₂SO₄. The solvent was removed to give crude target compounds. The crude products were purified by silica gel column-chromatography (ethyl acetate/petroleum ether) or recrystallization to give pure compounds. All the compounds were characterized by ESI-MS, ¹H NMR and ¹³C NMR spectroscopic data. Their

physico-chemical properties and spectra data are as follows:

2-(2,3-Dimethoxyphenyl)-N-(2-hydroxy-2-phenylethyl)-5-methyloxazole-4-carboxamide Hinduchelin A

This compound was obtained following the above method as white powder, yield 64%. ¹H NMR (600 MHz, CDCl₃): δ = 7.56 (bs, 1H, NH), 7.47-7.43 (m, 3H, Ph-H), 7.36 (t, *J* = 7.5 Hz, 2H, Ph-H), 7.29 (t, *J* = 7.2 Hz, 1H, Ph-H), 7.13 (t, *J* = 7.8 Hz, 1H, Ph-H), 7.03 (d, *J* = 8.4 Hz, 1H, Ph-H), 4.97 (dd, *J* = 7.8 Hz, 1H, CH), 3.91 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.83-3.79 (m, 1H, CH₂), 3.58-3.53 (m, 1H, CH₂), 2.74 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 163.5, 156.9, 153.8, 153.4, 147.8, 141.9, 129.8, 128.5, 127.8, 125.9, 124.4, 121.3, 121.2, 114.7, 74.2, 61.3, 56.1, 47.5, 11.9; MS (ESI) *m/z* calcd. for C₂₁H₂₃N₂O₅⁺ (M+H)⁺ 383.15, found 383.44; Anal. Calcd for C₂₁H₂₂N₂O₅: C, 65.96; H, 5.80; N, 7.33; Found: C, 65.84; H, 5.71; N, 7.42; [*α*]_D²⁵ –11.0 (*c* 0.1, MeOH).

2-(2,3-Dimethoxyphenyl)-N-(2-hydroxyphenethyl)-5-methyloxazole-4-carboxamide Hinduchelin B

This compound was obtained following the above method as white powder, yield 65%. ¹H NMR (600 MHz, CDCl₃): δ = 7.67 (bs, 1H, NH), 7.41 (d, *J* = 12 Hz, 1H, Ph-H), 7.09-6.97 (m, 4H, Ph-H), 6.84 (d, *J* = 6 Hz, 1H, Ph-H), 6.76-6.73 (m, 1H, Ph-H), 3.86 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.49 (q, *J* = 6 Hz, 2H, CH₂), 2.90 (t, *J* = 6 Hz, 2H, CH₂), 2.68 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 162.4, 155.7, 154.3, 152.7, 152.3, 146.7, 129.3, 128.6, 127.1, 123.6, 123.4, 120.1, 119.0, 115.4, 113.7, 60.2, 55.0, 39.1, 29.9, 10.8; MS (ESI) *m/z* calcd. for C₂₁H₂₃N₂O₅⁺ (M+H)⁺ 383.15, found 383.62; Anal. Calcd for C₂₁H₂₂N₂O₅: C, 65.96; H, 5.80; N, 7.33; Found: C, 65.81; H, 5.73; N, 7.47.

2-(2-Hydroxy-3-methoxyphenyl)-N-(2-hydroxyphenethyl)-5-methyloxazole-4-carboxamide Hinduchelin C

This compound was obtained following the above method as white powder, yield 74%. ¹H NMR (600 MHz, CDCl₃): δ = 7.42 (bs, 1H, NH), 7.37 (d, *J* = 6 Hz, 1H, Ph-H), 7.08-7.05 (m, 2H, Ph-H), 6.94-6.92 (m, 1H, Ph-H), 6.88-6.85 (m, 2H, Ph-H), 6.81-6.79 (m, 1H, Ph-H), 3.88 (s, 3H, OCH₃), 3.54 (q, *J* = 6 Hz, 2H, CH₂), 2.92 (t, *J* = 6 Hz, 2H, CH₂), 2.67 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 160.9, 153.5, 151.4, 147.4, 145.8, 129.7, 127.2, 124.1, 119.6, 118.6, 116.7, 114.9, 113.2, 109.7, 98.9, 55.2, 40.1, 28.6, 10.6; MS (ESI) *m*/*z* calcd. for C₂₀H₂₁N₂O₅⁺ (M+H)⁺ 369.14, found 369.58; Anal. Calcd for C₂₀H₂₀N₂O₅: C, 65.21; H, 5.47; N, 7.60; Found: C, 65.34; H, 5.40; N, 7.68.

2-(2-Hydroxy-3-methoxyphenyl)-5-methyl-N-phenethyloxazole-4-carboxamide Hinduchelin D

This compound was obtained following the above method as white powder, yield 82%. ¹H NMR (600 MHz, CDCl₃): δ = 7.36 (dd, *J* = 6 Hz, 1H, Ph-H), 7.28-7.26 (m, 2H, Ph-H), 7.18-7.17 (m, 3H, Ph-H), 6.92 (dd, *J* = 12 Hz, 1H, Ph-H), 6.86-6.84 (m, 1H, Ph-H), 6.67 (bs, 1H, NH), 3.87 (s, 3H, OCH₃), 3.62 (q, *J* = 6 Hz, 2H, CH₂), 2.86 (t, *J* = 8.4 Hz, 2H, Ph-H), 2.68 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.0, 158.4, 152.3, 148.5, 146.9, 138.6, 128.8, 128.7, 128.6, 126.7, 119.5, 117.8, 114.4, 110.7, 56.2, 40.4, 35.8, 11.7; MS (ESI) *m*/*z* calcd. for C₂₀H₂₁N₂O₄⁺ (M+H)⁺ 353.14, found 353.56; Anal. Calcd for C₂₀H₂₀N₂O₄: C, 68.17; H, 5.72; N, 7.95; Found: C, 68.06; H, 5.63; N, 8.01.

General synthesis of Hinduchelin A-D derivatives 11a-d and 12a-c. The derivatives of natural Hinduchelin A-D have been prepared using a similar method to the aforementioned procedure. All the compounds were characterized by ESI-MS, ¹H NMR and ¹³C NMR spectroscopic data. Their physico-chemical properties and spectra data are as follows:

This compound was obtained following the above method as white powder, yield 78%. ¹H NMR (600 MHz, CDCl₃): δ = 7.39 (dd, *J* = 6 Hz, 1H, Ph-H), 7.25 (br, 1H, NH), 7.24-7.22 (m, 1H, Ph-H), 7.18-7.14 (m, 3H, Ph-H), 7.07-7.05 (m, 1H, Ph-H), 6.96 (dd, *J* = 6 Hz, 1H, Ph-H), 3.83 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.61 (q, *J* = 7.8 Hz, 2H, CH₂), 2.85 (t, *J* = 7.8 Hz, 2H, CH₂), 2.67 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.9, 156.6, 153.8, 152.9, 147.8, 138.9, 129.9, 128.8, 128.6, 126.4, 124.3, 121.3, 121.2, 114.6, 61.2, 56.1, 40.2, 36.0, 11.8; MS (ESI) *m/z* calcd. for C₂₁H₂₃N₂O₄⁺ (M+H)⁺ 367.16, found 367.69.

2-(2,3-Dimethoxyphenyl)-N-(2-methoxyphenethyl)-5-methyloxazole-4-carboxamide 11b

This compound was obtained following the above method as white powder, yield 73%. ¹H NMR (600 MHz, CDCl₃): δ = 7.41 (dd, *J* = 6 Hz, 1H, Ph-H), 7.34 (br, 1H, NH), 7.14-7.12 (m, 2H, Ph-H), 7.08-7.05 (m, 1H, Ph-H), 6.96 (dd, *J* = 6 Hz, 1H, Ph-H), 6.83-6.79 (m, 2H, Ph-H), 3.84 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.59 (q, *J* = 7.8 Hz, 2H, CH₂), 2.88 (t, *J* = 7.8 Hz, 2H, CH₂), 2.66 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.8, 157.6, 156.7, 153.7, 152.9, 147.8, 130.6, 130.0, 127.8, 127.4, 124.3, 121.3, 121.3, 120.5, 114.6, 110.2, 61.2, 56.1, 55.3, 39.2, 30.5, 11.8; MS (ESI) *m/z* calcd. for C₂₂H₂₅N₂O₅⁺ (M+H)⁺ 397.17, found 397.84.

2-(2,3-Dimethoxyphenyl)-N-(3-methoxyphenethyl)-5-methyloxazole-4-carboxamide 11c

This compound was obtained following the above method as white powder, yield 77%. ¹H NMR (600 MHz, CDCl₃): δ = 7.40 (dd, *J* = 7.8 Hz, 1H, Ph-H), 7.25 (br, 1H, NH), 7.17-7.14 (m, 1H, Ph-H), 7.08-7.05 (m, 1H, Ph-H), 6.96 (dd, *J* = 7.8 Hz, 1H, Ph-H), 6.79 (d, *J* = 6 Hz, 1H, Ph-H), 6.73-6.70 (m, 2H, Ph-H), 3.84 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.71 (s, 3H, OCH₃), 3.61 (q, *J* = 6 Hz, 2H, CH₂), 2.83 (t, *J* = 6 Hz, 2H, CH₂), 2.67 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.8, 159.8, 156.7, 153.7, 153.0, 147.8, 140.5, 129.8, 129.6, 124.3, 121.2, 121.2, 121.1, 114.7, 114.3, 112.0, 61.2, 56.1, 55.1, 40.1, 36.0, 11.8; MS (ESI) *m/z* calcd. for C₂₂H₂₅N₂O₅⁺ (M+H)⁺ 397.17, found 397.57.

2-(2,3-Dimethoxyphenyl)-N-(3-hydroxyphenethyl)-5-methyloxazole-4-carboxamide 11d

This compound was obtained following the above method as white powder, yield 58%. ¹H NMR (600 MHz, CDCl₃): δ = 7.46 (br, 1H, NH), 7.42 (d, *J* = 7.8 Hz, 1H, Ph-H), 7.12-7.06 (m, 2H, Ph-H), 6.98 (dd, *J* = 8.4 Hz, 1H, Ph-H), 6.73-6.64 (m, 3H, Ph-H), 3.84 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.60 (q, *J* = 6 Hz, 2H, CH₂), 2.80 (t, *J* = 6 Hz, 2H, CH₂), 2.67 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.7, 156.6, 156.2, 153.7, 153.1, 147.7, 140.5, 129.8, 129.6, 124.5, 121.1, 120.8, 115.8, 114.9, 113.6, 61.2, 56.1, 40.1, 35.7, 11.8; MS (ESI) *m/z* calcd. for C₂₁H₂₃N₂O₅⁺ (M+H)⁺ 383.15, found 383.71.

2-(2-Hydroxy-3-methoxyphenyl)-N-(2-methoxyphenethyl)-5-methyloxazole-4-carboxamide 12a

This compound was obtained following the above method as white powder, yield 74%. ¹H NMR (600 MHz, CDCl₃): δ = 7.36 (dd, *J* = 6 Hz, 1H, Ph-H), 7.17-7.14 (m, 1H, Ph-H), 7.11 (dd, *J* = 6 Hz, 1H, Ph-H), 6.93 (dd, *J* = 6 Hz, 1H, Ph-H), 6.87-6.82 (m, 4H, Ph-H and OH), 3.87 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.60 (q, *J* = 7.8 Hz, 2H, CH₂), 2.88 (t, *J* = 7.8 Hz, 2H, CH₂), 2.67 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): δ = 161.0, 158.4, 157.5, 152.1, 148.5, 146.9, 130.5, 128.7, 128.0, 127.2, 120.8, 119.5, 117.8, 114.4, 110.8, 110.6, 56.2, 55.6, 39.7, 30.1, 11.7; MS (ESI) *m*/*z* calcd. for C₂₁H₂₃N₂O₅⁺ (M+H)⁺ 383.15, found 383.62.

2-(2-Hydroxy-3-methoxyphenyl)-N-(3-methoxyphenethyl)-5-methyloxazole-4-carboxamide 12b

This compound was obtained following the above method as white powder, yield 71%. ¹H NMR (600 MHz, CDCl₃): δ = 7.36 (dd, *J* = 6 Hz, 1H, Ph-H), 7.19 (dd, *J* = 7.8 Hz, 1H, Ph-H), 6.92 (dd, *J* = 6 Hz, 1H, Ph-H), 6.86-6.84 (m, 1H, Ph-H), 6.78 (d, *J* = 6 Hz, 1H, Ph-H), 6.74-6.67 (m, 3H, Ph-H and OH),

3.87 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 3.62 (q, J = 6 Hz, 2H, CH₂), 2.83 (t, J = 6 Hz, 2H, CH₂), 2.68 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃): $\delta = 161.0$, 159.9, 158.4, 152.3, 148.5, 146.9, 140.1, 129.8, 128.5, 121.0, 119.5, 117.8, 114.4, 114.3, 112.1, 110.7, 56.2, 55.1, 40.3, 35.9, 11.7; MS (ESI) *m/z* calcd. for C₂₁H₂₃N₂O₅⁺ (M+H)⁺ 383.15, found 383.62.

2-(2-Hydroxy-3-methoxyphenyl)-N-(3-hydroxyphenethyl)-5-methyloxazole-4-carboxamide 12c

This compound was obtained following the above method as white powder, yield 62%. ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.32 (br, 1H, NH), 9.30 (br, 1H, OH), 8.85-8.83 (m, 1H, Ph-H), 7.38 (dd, *J* = 6 Hz, 1H, Ph-H), 7.14-7.08 (m, 2H, Ph-H), 6.96-6.93 (m, 1H, Ph-H), 6.67-6.60 (m, 3H, Ph-H), 3.84 (s, 3H, OCH₃), 3.44-3.41 (m, 2H, CH₂), 2.77-2.73 (m, 2H, CH₂), 2.67 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 160.8, 157.8, 157.8, 152.1, 148.8, 146.7, 141.2, 129.8, 129.2, 119.9, 119.6, 118.1, 115.9, 115.3, 113.6, 110.9, 56.4, 40.6, 35.8, 11.8; MS (ESI) *m/z* calcd. for C₂₀H₂₁N₂O₅⁺ (M+H)⁺ 369.14, found 369.67.

Antibacterial assays. Susceptibility tests were conducted by the standard broth dilution method in accordance with the National Committee for Clinical Laboratory Standards (2008) in Mueller–Hinton broth (MHB, Oxoid Ltd., Basingstoke, UK) with an inoculum of approximately 10⁵ colony-forming units (CFU)/MI. Standard test strains included: *Staphylococcus aureus subsp. aureus Rosenbach* ATCC25923, *Erysipelothrix rhusiopathiae* ATCC 19414, *Escherichia coli* ATCC25922, and *Pasteurella multocida subsp. multocida* ATCC 43137. The MHB was supplemented with the compounds (testing samples or positive-controls), concentrations ranging from 30 to 60 μg/mL. Data were reported as MIC values, the lowest concentration of the compound inhibiting visible growth after 24 h of incubation at 37 °C.

In vitro cytotoxicity assays. The *in vitro* cytotoxicity of the synthesized compounds against different cell lines (SGC-7901, A875, HepG2, and MARC) were measured with the MTT assay. All data were analyzed with SPSS software, and the 50% inhibitory concentrations (IC_{50}) of each compound for the different cell lines were determined. A control was run for each test, and all assays were performed in triplicate on three independent experiments, and measurement data were expressed as the mean \pm S.D.

In vitro fungicidal assays. All natural Hinduchelin A-D and their derivatives were also screened for their potential antifungal activities against seven plant fungal pathogens including *Ralstonia solanacearum*, *Botrytis cinereal*, *Septoria nodorum*, *Alternaria Solani*, *Fusarium culmorum*,

Rhizoctonia solani, and *Uromyces fabae* which was evaluated according to the mycelium growth rate method at the concentration of 50 µg/mL.

Insecticidal activity screening. *Helicoverpa armigera* and *Aphis craccivora Koch* from our laboratory cultivate were used as general tested species. For *H. armigera*, the assay was performed by placing artificial diets (300μ L) in a 24-well microtiter plates, which were covered with the solution of different tested concentration compounds in ethanol (20μ L). When the ethanol was completely evaporated leaving the effective compounds as a coat on the surface of the artificial diets, the tested species were introduced and the culture plates was closed with a plastic cover. Ethanol alone was used as a control. For *Aphis craccivora Koch*, the standard FAO dipping method was adopted. Mortality in these assays was recorded at 72 h, and each treatment was replicated 3 times.

Spectroscopy for intermediates

The structures of obtained intermediates **5a-b**, and **6a-b** were confirmed by LC-MS, ¹H NMR, and ¹³C NMR spectra analyses, and the typical spectra are described as follows.

Compd. 5a

Compd. 5b

Compd. 6b

Spectroscopy for target compounds

The structures of target compounds were confirmed by their ¹H NMR, ¹³C NMR and ESI-MS spectra analyses, and all the ¹H NMR, ¹³C NMR and ESI-MS spectra analyses were in good agreement with the proposed structures. The typical ¹H NMR, ¹³C NMR and ESI-MS spectra for all target compounds have been presented in the following, which can further confirm the result.

Compd. Hinduchelin A

	DLPH						Friday, 08	MAR-2019
ANALY	TICAL							14:39:00 ?
Specific I Method hua Live Readi $\alpha = -0.011$	Rotation [ɑ ^{ing} 'Arc	1	-'	11.	.0			Start
Set Temp	Temp	T Corr.	WLG	Resp.	Me	easure		Automation
25.0°C	24.7°C	OFF	589 nm	2 Sec	M	ultiple		
Delay 3 Sec	Stable T	Cell 100.00 mm	Conc./I	Density	Sp.	Rot	0	
5 560	10.5 0	100.00 11111	0.001	g/mi			0	Zero
Main I	Menu 📿	Setup	🔊 Wa	velength	6			
ſ	Status Bari Maar	uroment Deedu						
	Status Dar: Meas	surement Ready			Probe	Status: Not	in holder	
n Aver 3 -11	age Std.Dev. 00 0.00	% RSD	Max M 11.00 -1	1 00		P	XX	. 🗋 🔽
S.No	Sample ID	Time	Result	Scale	OR *Arc	WLG.nm	Lg.mm	Conc. a/ml
1	220	14:38:17	-11.00	SR	-0.011	589	100.00	0.001
With the Low Party Street Line & Street Street	220	14:38:22	-11.00	SR	-0.011	589	100.00	0.001
2								
2 3	220	14:38:28	-11.00	SR	-0.011	589	100.00	0.001
2	220	14:38:28	-11.00 III	SR	-0.011	589	100.00	0.001
2 3 859792		14:38:28	-11.00	SR 28 88 88 88 88 88 88 88 88 88 88 88 88 8		589	100.00	0.001
2 3 95494000 21111	220	14:38:28 $Me0 \qquad \qquad$	-11.00 III 55858 558283 5477 64844 6474 6474 6474 6474 6474 6474 6474	SR	93 85 93 85 95 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 9	589	100.00	0.001 0.001
2 3 859 703 211111		14:38:28 $Meo \int OMe \int f$ Hinduchelins	-11.00 III 5.555 6.507 0.00 N OH SA	SR		589	100.00	0.001 —
		14:38:28 $Me_{f} \in OMe_{f} = \int_{1}^{16} \frac{1}{100}$ Hinducheline		SR		589	100.00	0.001
2 3 95497000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		14.38.28 Meo = OMe = f Hinducheline	-11.00	SR 2014 20			100.00	0.001

Compd. Hinduchelin B

Compd. Hinduchelin C

23 23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	 -0.00
Meo Hinduchelins C	

Compd. Hinduchelin D

Compd. 11a

Compd. 11b

79 881 888 888 888 888 888 888 888 888 88	558 559 559 558	88888999
	n'n'n'n'n'n'	aididi
	SIL	VI

Compd. 11c

Compd. 11d

884 559 559 559	81 80 80
	cicicici
Y YY	V
	2,84 2,83 2,60 2,55 2,55 2,55 2,55 2,55 2,55 2,55 2,5

Compd. 12a

Compd. 12b

335 335 335 335 335 335 335 335 335 335	60 60 60 60	883 84
	n'n'n'n'n'	aniaiai
		T C

Compd. 12c

-0,00

-10.32 -9.30 -9.50

