Supporting Information

Direct Access to *Bis-S*-Heterocycle via Copper-Catalyzed Three Component Tandem Cyclization Using S₈ as Sulfur Source

Peiqi Zhou, ‡ Yubing Huang, ‡ Wanqing Wu, Wentao Yu, Jianxiao Li, Zhongzhi Zhu,

and Huanfeng Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

E-mail: jianghf@scut.edu.cn

Table of Contents

Optimization of Reaction Conditions	S2
Proposed Mechanism	S3
X-ray Diffraction Parameters and Data for 3as	S4
X-ray Diffraction Parameters and Data for 10ma	S5
NMR Spectra for All Compounds	S6

1. Optimization of Reaction Conditions

Table S1. Optimization of the reaction conditions ^a

	$\overset{N}{\longleftarrow} \overset{OAc}{+} \overset{O}{\underset{B}{\overset{O}}} + \overset{O}{\underset{H}{\overset{O}}}$	base, solvent	S S S	
	1a 4a		3aa	
entry	solvent	base ^b	[Cu]	yield (%) ^c
1	DMSO	TBD	CuTC	66
2	DMSO	TBD	CuI	56
3	DMSO	TBD	CuCl ₂	58
4	DMSO	TBD	CuCl	80
5	Hexane	TBD	CuCl	22
6	1,4-Dioxane	TBD	CuCl	trace
7	Toluene	TBD	CuCl	trace
8	NMP	TBD	CuCl	12
9	PhCl	TBD	CuCl	8
10	DMSO/Hexane (2:1)	TBD	CuCl	86 (81)
11	DMSO/Hexane (1:1)	TBD	CuCl	52
12	DMSO/Hexane (2:1)	TMEDA	CuCl	23
13	DMSO/Hexane (2:1)	DIPEA	CuCl	12
14	DMSO/Hexane (2:1)	DBU	CuCl	41

^{*a*} Reaction conditions: **1a** (0.2 mmol), S₈ (0.05 mmol), **2a** (0.1 mmol), [Cu] (20 mol %), base (0.7 equiv), additive (0.5 equiv) in 1.5 mL of solvent at 120 °C under N2 for 22 h unless otherwise noted. ^{*b*} TBD = 1,5,7-triazabicyclo[4.4.0]-dec-5-ene. TMEDA = tetramethylethylenediamine. DIPEA = *N*,*N*-diisopropyl-ethylamine. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. ^{*c*} ¹H NMR yield using nitromethane as an internal standard. The number in parentheses is isolated yield.

2. Proposed Mechanism

A proposed mechanism with aldehyde as substrate is shown in Scheme S1. First, intermediate **B** is formed by the oxidative addition of Cu(I) to oxime esters. Coordination of the *in-situ* formed $S_n^$ to **B** gives intermediate **C** and simultaneously releases acetate. Subsequently, tautomerization of intermediate **C** affords the intermediate **D**,¹ which undergoes reductive elimination to form intermediate **E**.² The oxidation of Cu(I) species **E** by S₈ is followed by C–H activation and C–S bond reductive elimination to generate intermediate **G**.³ Next, the condensation of **G** and benzaldehyde generates imine **H**, followed by the nucleophilic attack of S₈ and isomerization to afford intermediate **J**.⁴ Finally, the intramolecular addition of sulfur moiety of **J** to arene and subsequent oxidation provides the desired product **3aa**.⁵

Scheme S1. Proposed Mechanism

Reference:

- (a) X. Tang, W. Wu, W. Zeng and H. Jiang, *Acc. Chem. Res.*, 2018, **51**, 1092; (b) H. Huang, X. Ji, W. Wu and H. Jiang, *Chem. Soc. Rev.*, 2015, **44**, 1155.
- 2 Y. Huang, D. Yan, X. Wang, P. Zhou, W. Wu and H. Jiang, Chem. Commun., 2018, 54, 1742.
- 3 (a) M. Wang, J. Wei, Q. Fan, X. Jiang, *Chem. Commun.*, 2017, 53, 2918; (b) P. Dang, Z. Zheng, Y. Liang, *J. Org. Chem.*, 2017, 82, 2263.
- 4 (a) J. Wei, Y. Li and X. Jiang, Org. Lett. 2016, 18, 340; (b) H. Xu, H. Deng, Z. Li, H. Xiang and X. Zhou, Eur. J. Org. Chem., 2013, 7054.
- 5 G. Revelant, S. Hesse and G. Kirsch, Tetrahedron, 2011, 67, 9352.

3. X-ray Diffraction Parameters and Data for 3as

Compound	3as
CCDC	1867094
Empirical formula	$C_{15}H_8BrNS_2$
Formula weight	346.25
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
Volume/Å ³	645.52(5)
Z	2
$\rho_{calc}g/cm^3$	1.781
μ/mm^{-1}	3.489
F(000)	344.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.9 to 49.986
Index ranges	$-8 \le h \le 8, -8 \le k \le 8, -16 \le l \le 16$
Reflections collected	9909
Independent reflections	2276 [$R_{int} = 0.0447, R_{sigma} = 0.0370$]
Data/restraints/parameters	2276/0/172
Goodness-of-fit on F ²	1.086
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0268, wR_2 = 0.0644$
Final R indexes [all data]	$R_1 = 0.0289, wR_2 = 0.0657$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.51

4. X-ray Diffraction Parameters and Data for 10ma

Compound	10ma
CCDC	1867096
Empirical formula	$C_{16}H_8F_3NS_3$
Formula weight	367.41
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
	$\begin{array}{l} a = 4.2674(3) \ \ \mathring{A} \ \alpha = 77.893(5) \ \circ \\ b = 12.9135(8) \ \ \mathring{A} \ \beta = 87.653(5) \ \circ \\ c = 13.4730(8) \ \ \mathring{A} \ \gamma = 86.789(5) \ \circ \end{array}$
Volume/Å ³	724.48(8)
Z	2
$\rho_{calc}g/cm^3$	1.684
µ/mm ⁻¹	0.541
F(000)	372.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.98 to 50
Index ranges	$-5 \le h \le 5, -15 \le k \le 15, -15 \le l \le 16$
Reflections collected	6627
Independent reflections	2536 [$R_{int} = 0.0275, R_{sigma} = 0.0387$]
Data/restraints/parameters	2536/0/208
Goodness-of-fit on F ²	1.055
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0350, wR_2 = 0.0812$
Final R indexes [all data]	$R_1 = 0.0402, wR_2 = 0.0855$
Largest diff. peak/hole / e Å ⁻³	0.45/-0.37

5. NMR Spectra for All Compounds

S9

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ae

¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3af

S13

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ai

S15

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ao

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3ao

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ap

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3as

¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3at

¹³C NMR (100 MHz, DMSO-d₆) spectrum of compound 3av

S26

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3da

S31

¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3ga

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3ha

S37

¹H NMR (400 MHz, DMSO-d₆) spectrum of compound 3ma

¹H NMR (400 MHz, CDCl₃) spectrum of compound 3na

S40

¹H NMR (400 MHz, CDCl₃) spectrum of compound 10aa

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 10aa

¹H NMR (400 MHz, CDCl₃) spectrum of compound 10ma

