Systematic Rim Cyano Functionalization of Pillar[5]arene and Corresponding Host-Guest Property Varieties

Guo Wang, Hui Qiang, Yun-Zhe Guo, Jie Yang, Ke Wen, and Wei-Bo Hu

Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

Department of Chemistry, Shanghai University, Shanghai 200444, China

Correspondence Address

Dr. Wei-Bo Hu and Prof. Dr. Ke Wen
Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China

Tel: +86-21-20608039; Fax: +86-21-20325173
Email address: huwb@sari.ac.cn, wenk@sari.ac.cn

Table of Contents

General Methods S4
Synthetic Procedures S4
Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of 2Q-P5 S9
Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of 3Q-P5 S9
Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of 4Q-P5 S10
Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of 2CN-P5 S10
Fig. S5 ${ }^{13} \mathrm{C}$ NMR spectrum of 2CN-P5 S11
Fig. S6 Mass spectrum of 2CN-P5 S11
Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectrum of 4OTf-P5 S12
Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of 4OTf-P5 S12
Fig. S9 Mass spectrum of 4OTf-P5 S13
Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of 4CN-P5 S13
Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of 4CN-P5 S14
Fig. S12 Mass spectrum of 4CN-P5 S14
Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum of 6OTf-P5 S15
Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectrum of 6OTf-P5 S15
Fig. S15 Mass spectrum of 6OTf-P5 S16
Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectra of 6CN-P5 S16
Fig. S17 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6 C N}-\mathbf{P 5}$ S17
Fig. S18 Mass spectrum of 6CN-P5 S17
Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectra of 8OTf-P5 S18
Fig. S20 ${ }^{13} \mathrm{C}$ NMR spectrum of 8OTf-P5 S18
Fig. S21 Mass spectrum of 8OTf-P5 S19
Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectra of 8CN-P5 S19
Fig. S23 ${ }^{13} \mathrm{C}$ NMR spectra of 8CN-P5 S20
Fig. S24 Mass spectrum of 8CN-P5 S20
Fig. S25 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0 C N}$-P5 S21
Fig. S26 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0 C N}$-P5 S21
Fig. $\mathbf{S 2 7}$ Mass spectrum of 10CN-P5 S22
Host-guest complexation of 2nCN-P5 ($\mathrm{n}=1$ or 2) and DB S22
Fig. S28 Chemical structures of 2CN-P5, 4CN-P5 and DB S23
Fig. S29 ${ }^{1} \mathrm{H}$ NMR spectra of 2CN-P5 $(5.0 \mathrm{mM})$ upon addition of DB S23
Fig. S30 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{H}_{2 \mathrm{CN}}$ peak shift of 2CN-P5 S24
Fig. S31 The non-linear curve-fitting of 2CN-P5 and DB S24
Fig. S32 ${ }^{1} \mathrm{H}$ NMR spectra of 4CN-P5 upon addition of DB S25
Fig. S33 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{H}_{4 \mathrm{CN}}$ peak shift of 4CN-P5 S26
Fig. S34 The non-linear curve-fitting of 4CN-P5 and DB S26
Fig. S35 The MCR-3 microwave reactor S27
Fig. S36 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0 C N}-P 5$, phenol and/or resorcinol S28
Reference S28

Materials and Methods:

Unless otherwise noted, all commercial reagents and solvents were used without purification. Separation by flash column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at a 500 MHz spectrometer with TMS as the reference. Mass spectra (ESI analysis) were recorded on an Esquire 6000 spectrometer (LC/MS). Single crystal X-ray diffraction data were collected on a SMART APEX 2 X-ray diffractometer equipped with a normal focus Mo-target X-ray tube ($\lambda=0.71073 \AA$) and data reduction included absorption corrections by the multiscan method. The structures were solved by direct methods and refined by full-matrix least-squares using SHELXS-97. All non-hydrogen atoms were refined anisotropically, while hydrogen atoms were added at their geometrically ideal positions and refined isotropically. Microwave synthesis was conducted in a MCR-3 microwave reactor (Supporting Information, Fig. S32). The reaction vessel was an open one, and the temperature was monitored by an internal probe.

Synthesis of $\mathbf{P 5}^{1}$

Hydroquinone dimethyl (0.2 mol) and polyoxymethylene (0.6 mol) were added into $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}(750 \mathrm{~mL})$ in turn. The mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 10 min , and followed, $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}(0.21 \mathrm{~mol})$ was added into the mixture for once. The reaction was further stirred at $30^{\circ} \mathrm{C}$ for another 30 min , and then quenched by adding $\mathrm{MeOH}(200$ mL). The resulting reaction solution was concentrated and purified by column chromatography to afford $\mathbf{P 5}$ as write solid ($22.5 \mathrm{~g}, 75 \%$).

Synthesis of $\mathbf{n Q - P 5}{ }^{2}(\mathbf{n}=\mathbf{1 , 2 , 3 , 4)}$

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ solution of $\mathbf{P 5}(15.0 \mathrm{~g}, 20 \mathrm{mmol})$, a solution of $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right](2 \mathrm{n} \mathrm{mmol})$ in water $(50 \mathrm{~mL})$ was added dropwise. The mixture was stirred at r.t. for 30 min , washed with water ($100 \mathrm{~mL} \times 3$), removed solvent under vacuum and purified by column chromatography to nQ-P5 as red solid. The reaction yields of 1Q-P5, 2Q-P5, 3Q-P5 and 4Q-P5 were $65 \%, 40 \%, 39 \%$ and 28% respectively.

Synthesis of 10H-P5 ${ }^{3}$
To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ solution of $\mathbf{P 5}(7.5 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{BBr}_{3}(27.5 \mathrm{~g}, 110 \mathrm{mmol})$ was
added dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at rt for 3 d . Water was added into the reaction mixture dropwise, giving a suspension, which was filtered. The filtration was washed with $\mathrm{HCl}(1 \mathrm{M}, 3 * 20 \mathrm{~mL})$ and water $(3 * 20 \mathrm{~mL})$ in turn to give the crude product as pink solid quantitively, which could be used for next reaction after dried without purification.

Synthesis of 2nOH-P5 ($\mathrm{n}=1,2,3,4$):

$\mathrm{NaHB}_{4}(4 \mathrm{n} \mathrm{mmol})$ was added into a solution of nQ-P5 (1.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $(20 \mathrm{~mL} / 10 \mathrm{~mL})$. The mixture tuned to be a colorless one in minutes. $\mathrm{HCl}(1 \mathrm{M})$ was added into the mixture (adjusting the PH to 7), followed by water $(20 \mathrm{~mL})$. The organic solvents of mixture were removed, and the obtained suspension was filtered to give the crude product as pink solid quantitively, which could be used for next reaction after dried without purification.

Synthesis of 2nOTf-P5 (n=1, 2, 3, 4, 5):

To a solution of $\mathbf{2 n O H}-\mathrm{P} 5(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ pyridine (3 n mmol) was added, resulting in a mixture which was stirred at $0^{\circ} \mathrm{C}$ for 10 min . After triflic anhydride (2.4 n mmol) was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h and washed with aqueous HCl solution ($1.0 \mathrm{M}, 3 \times 50 \mathrm{~mL}$). The solvent was removed under reduced pressure resulting in a residue which was purified by column chromatography to afford the desired product 2nOTf-P5 as white solid.

4OTf-P5:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 5 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.65,150.59,150.55,146.30,146.25,134.05,133.63$, $129.51,125.69,124.66,124.60,124.35,122.42,122.40,119.87,119.85,117.33$, $117.31,114.76,114.01,113.55,113.25,55.73,55.17,55.05,30.72,30.40,29.41$; HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{NO}_{18} \mathrm{~S}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]=1240.1088$, found 1240.1084.

60Tf-P5:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.72,150.46,146.16,146.12,146.09,135.91,133.89$, $130.49,126.09,125.65,125.06,124.56,124.49,113.80,113.20,55.34,55.29,30.49$, 30.38; HRMS (ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~F}_{18} \mathrm{NO}_{22} \mathrm{~S}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]=1475.9760$, found 1475.9825.

8OTf-P5:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.19$ $(\mathrm{s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.67,146.15,146.07,145.94,136.30,132.87,132.21,130.21$, $126.12,125.10,124.92,124.46,113.48,55.50,30.72,30.16$; HRMS(ESI) calcd for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~F}_{24} \mathrm{NO}_{26} \mathrm{~S}_{8} \quad\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]=1711.8433$, found 1711.8264 ; calcd for $\mathrm{C}_{45} \mathrm{H}_{26} \mathrm{~F}_{24} \mathrm{O}_{26} \mathrm{~S}_{8} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]=1716.7987$, found 1716.7891.

Cyanation reactions

Oil bath method:

A mixture of 2nOTf-P5 (1.0 mmol$), \mathrm{Zn}(\mathrm{CN})_{2}(2.2 \mathrm{n} \mathrm{mmol})$ and $\operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4} \quad(0.1 \mathrm{n}$ mmol) in DMF (20 mL) was heated at $170{ }^{\circ} \mathrm{C}$ under nitrogen for 24 h , and then cooled to room temperature. The mixture was poured into water (200 mL), filtered and the filtration was collected and purified by chromatography to give the target molecules. ($\mathrm{n}=1,2$, or 3)

Microwave method:

A mixture of 2nOTf-P5 (1.0 mmol), $\mathrm{Zn}(\mathrm{CN})_{2}(2.2 \mathrm{n} \mathrm{mmol})$ and $\operatorname{Pd}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{4}(0.1 \mathrm{n}$ $\mathrm{mmol})$ in DMF (20 mL) was heated at $153{ }^{\circ} \mathrm{C}$ using microwave-heating method under nitrogen for 5 h , and then cooled to room temperature. The mixture was poured into water $(200 \mathrm{~mL})$, filtered and the filtration was collected and purified by chromatography to give the target molecules. ($\mathrm{n}=1,2,3,4$ or 5)

2CN-P5: 68.1 \% (oil bath method) and 90.8 \% (microwave method).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) ~ \delta: 7.71(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 4 \mathrm{H}), 6.80(\mathrm{~s}$, $2 \mathrm{H}), 4.01(\mathrm{~s}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta: 150.8,150.5,150.4,150.1,143.4,134.7,129.9$, $128.4,127.9,124.6,118.1,115.7,113.6,113.5,113.4,113.0,77.3,77.1,76.8,55.7$, 55.6, 55.5, 55.4, 39.7, 34.0, 29.2, 29.1; HRMS (ESI): calcd for $\mathrm{C}_{45} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right]$
$=741.3170$, found 741.3167 .
Crystallographic Data of 2CN-P5: [C95H95.50N6.50O16]; $\mathrm{Mr}=1584.270 ; \mathrm{T}=$ 149.99 K; Monoclinic; space group P $1211 ; a=12.2850(4) ; b=28.8977(11) ; c=$ 25.3483(9) $\AA ; \alpha=90.000 ; \beta=103.049(1) ; \gamma=90.000 ; V=8766.5(5) \AA^{3} ; Z=4 ; \rho$ calcd $=1.200 \mathrm{~g} / \mathrm{cm}^{3} ; \mu=0.082 \mathrm{~mm}^{-1} ;$ reflections collected 114039 ; unique reflections 31014 ; data/restraints/parameters 31014 / 3 / 2163; GOF on F2 0.991; Rint for independent data 0.0627; final $R 1=0.0453, w R 2=0.1030 ; \mathrm{R}$ indices (all data) $R 1=0.0787, w R 2$ $=0.1195$; largest diff. peak and hole: 0.391 and $-0.265 \mathrm{e} . \AA^{-3}$.

4CN-P5: 50.4% (oil bath method) and 68% (microwave method)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $8: 7.73(\mathrm{~s}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}$, $2 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.83(\mathrm{~s}, 8 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta: 150.7,150.5,150.4,143.5,143.0,134.9,134.7$, 129.7, 125.1, 118.0, 118.0, 116.0, 115.9, 113.7, 113.6, 113.5, 77.4, 77.1, 76.8; HRMS: calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]=748.3130$, found 748.3129 .

6CN-P5: 39.4 \% (oil bath method) and 67.5 \% (microwave method)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta: 7,73$ (s, 2H), 7.71 (s, 2H), 7.00 (s, 2H), 6.95 (s, 2H), 6.83 (s, 2H), 4.03 ($\mathrm{s}, 4 \mathrm{H}$), 4.02 ($\mathrm{s}, 4 \mathrm{H}$), 3.84 ($\mathrm{s}, 6 \mathrm{H}), 3.83(\mathrm{~m}, 8 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta: 150.7,150.5,150.4,143.5,143.0,134.9,134.7$, 129.7, 126.3, 125.1, 118.1, 118.0, 118.0, 116.0, 115.9, 113.7, 113.6, 113.6, 77.3, 77.1, 76.8, 56.2, 55.9, 55.6, 34.0, 34.0, 29.1; HRMS (ESI): calcd for $\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ $=721.2558$, found 721.2555 .

Crystallographic Data of 6CN-P5: [C47 H35 C15 N6 O4]; $M r=925.06 ; \mathrm{T}=150.0$ K ; triclinic; space group $\mathrm{P} \overline{1} ; a=11.8381(5) ; b=12.1136(5) ; c=16.2757(8) \AA ; \alpha$ $=91.438(3) ; \beta=99.204(2) ; \gamma=99.741(2) ; V=2267.44(18) \AA^{3} ; \mathrm{Z}=2 ; \rho \mathrm{calcd}=1.355$ $\mathrm{g} / \mathrm{cm}^{3} ; \mu=0.370 \mathrm{~mm}^{-1}$; reflections collected 52356; unique reflections 9894; data/restraints/parameters 9894/0/564; GOF on F2 1.191; Rint for independent data 0.1333 ; final $R 1=0.1147, w R 2=0.3011$; R indices (all data) $R 1=0.1953, w R 2=$ 0.3600 ; largest diff. peak and hole: 1.301 and $-1.432 \mathrm{e}^{-3}{ }^{-3}$.

8CN-P5: 58.2 \% (microwave method)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3,298 \mathrm{~K}$) $\delta: 8.07$ ($\mathrm{s}, 2 \mathrm{H}$), 7.99 ($\left.\mathrm{s}, 2 \mathrm{H}\right), 7.91$ (s, 2H), 7.87 (s , $2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 4 \mathrm{H}), 4.10(\mathrm{~s}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMF) $\delta 151.2,144.7,142.0,141.8,140.5,136.1,135.8,135.7,135.6,127.1$, 117.2, 116.7, 116.5, 114.4, 79.4, 55.8, 36.8, 33.8; HRMS (ESI): calcd for $\mathrm{C}_{45} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]=733.2071$, found 733.2207.

Synthesis of 10CN-P5: 47.4 \% (microwave method)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta: 7.77$ (s, 10H), 4.38 (s, 10H); ${ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right) \delta: 146.6,140.9,140.7,121.5,121.2,41.4$. HRMS (ESI): calcd for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~N}_{11}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]=718.2211$, found 718.2195.

Crystallographic Data of 10CN-P5: [C51 H29 N13]; $M r=823.87 ; \mathrm{T}=149.99 \mathrm{~K}$; triclinic; space group $\mathrm{P} \overline{1} ; a=13.9003(17) ; b=13.9234(16) ; c=13.9234(16) \AA ; \alpha=$ 78.58; $\beta=63.598(2) ; \gamma=63.598(2) ; V=2161.9(4) \AA^{3} ; \mathrm{Z}=2 ; \rho \mathrm{calcd}=1.266 \mathrm{~g} / \mathrm{cm}^{3}$; $\mu=0.080 \mathrm{~mm}^{-1}$; reflections collected 40087; unique reflections 7607; data/restraints/parameters 7607/23/581; GOF on F2 0.901; Rint for independent data 0.1300 ; final $R 1=0.0655, w R 2=0.1480$; R indices (all data) $R 1=0.1494, w R 2=$ 0.1715 ; largest diff. peak and hole: 0.467 and $-0.283 \mathrm{e}^{-3}{ }^{-3}$.

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of $3 \mathrm{Q}-\mathrm{P} 5$ in CDCl_{3}

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of 4Q-P5 in CDCl_{3}

Fig. S4 ${ }^{1} \mathrm{H}$ NMR spectrum of $2 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}

Fig. $\mathrm{S} 5{ }^{13} \mathrm{C}$ NMR spectrum of $2 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}.

Fig. S6 HRMS (ESI) of 2CN-P5: calcd for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 741.3177$, found 741.3167.

Fig. S7 ${ }^{1} \mathrm{H}$ NMR spectrum of $4 \mathrm{OTf}-\mathrm{P} 5$ in CDCl_{3}.

Fig. S8 ${ }^{13} \mathrm{C}$ NMR spectrum of 4OTf-P5 in CDCl_{3}.

Fig. S9 HRMS(ESI) of 4OTf-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~F}_{12} \mathrm{NO}_{18} \mathrm{~S}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right] \mathrm{m} / \mathrm{z} 1240.1088$, found 1240.1084 .

Fig. S10 ${ }^{1} \mathrm{H}$ NMR spectrum of $4 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}.

Fig. S11 ${ }^{13} \mathrm{C}$ NMR spectrum of $4 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}.

Fig. S12 HRMS(ESI) of 4CN-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{42} \mathrm{~N}_{5} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right] \mathrm{m} / \mathrm{z} 748.3130$, found 748.3129 .

Fig. S13 ${ }^{1} \mathrm{H}$ NMR spectrum of 6OTf-P5 in CDCl_{3}.
W.
in
in

Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectrum of 6OTf-P5 in CDCl_{3}.

Fig. S15 HRMS (ESI) of 6OTf-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{~F}_{18} \mathrm{NO}_{22} \mathrm{~S}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right] \mathrm{m} / \mathrm{z}$ 1475.9760 , found 1475.9825 .

Fig. S16 ${ }^{1} \mathrm{H}$ NMR spectrum of $6 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}.

Fig. S17 ${ }^{13} \mathrm{C}$ NMR spectrum of $6 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}.

Fig. S18 HRMS(ESI) of 6CN-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 721.2558$, found 721.2555.

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectrum of 8OTf-P5 in CDCl_{3}.

Fig. S20 ${ }^{13} \mathrm{C}$ NMR spectrum of 8OTf-P5 in CDCl_{3}.

Fig. S21 HRMS(ESI) of 8OTf-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~F}_{24} \mathrm{NO}_{26} \mathrm{~S}_{8}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right] \mathrm{m} / \mathrm{z}$ 1711.8433, found 1711.8264, calcd for $\mathrm{C}_{45} \mathrm{H}_{26} \mathrm{~F}_{24} \mathrm{O}_{26} \mathrm{~S}_{8} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z}$ 1716.7987, found $\mathrm{m} / \mathrm{z} 1716.7891$.

Fig. S22 ${ }^{1} \mathrm{H}$ NMR spectrum of $8 \mathrm{CN}-\mathrm{P} 5$ in CDCl_{3}

Fig. S23 ${ }^{1} \mathrm{H}$ NMR spectrum of $8 \mathrm{CN}-\mathrm{P} 5$ in DMF

Fig. S24 HRMS(ESI) of 8CN-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z}$ 733.2071, found 733.2207.

Fig. S25 ${ }^{1} \mathrm{H}$ NMR spectrum of $10 \mathrm{CN}-\mathrm{P} 5$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Fig. S26 ${ }^{13} \mathrm{C}$ NMR spectrum of $10 \mathrm{CN}-\mathrm{P} 5$ in CDCN.

Fig. S27 HRMS(ESI) of 10CN-P5: calcd for $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{~N}_{11}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right] \mathrm{m} / \mathrm{z} 718.2211$, found 718.2195.

Host-guest complexation of $2 \mathrm{nCN}-\mathrm{P} 5$ ($\mathrm{n}=1$ or 2) and DB in CDCl_{3}

Stoichiometry and association constant determination for the complexation between $2 \mathrm{nCN}-\mathrm{P} 5$ ($\mathrm{n}=1$ or 2) and G
To determine the stoichiometry and association constant between $2 \mathbf{n C N}-P 5$ and DB, ${ }^{1} \mathrm{H}$ NMR titration was carried out with solutions which had a constant concentration of $2 \mathbf{n C N}-\mathbf{P 5}(5.0 \mathrm{mM})$ and varying concentrations of DB. By a non-linear curve-fitting method, the association constant between the guest DB and host $2 \mathbf{n C N}-P 5$ was calculated. The non-linear curve-fitting was based on the equation: ${ }^{4}$

$$
\begin{aligned}
& \Delta \delta \quad=\quad\left(\Delta \delta_{\infty} /[2 \mathbf{n C N}-\mathbf{P 5}]_{0}\right) \quad\left(0.5[\mathbf{D B}]_{0} \quad+\quad 0.5\left([2 \mathbf{n C N}-\mathbf{P} 5]_{0}+1 / K \mathrm{a}\right)-(0.5\right. \\
& \left.\left.\left([\mathbf{D B}]_{0}{ }^{2+}\left(2[\mathbf{D B}]_{0}\left(1 / K a-[\mathbf{2 n C N}-\mathbf{P 5}]_{0}\right)\right)+\left(1 / K \mathrm{a}+[2 \mathbf{n C N}-\mathbf{P 5}]_{0}\right)^{2}\right)^{0.5}\right)\right)
\end{aligned}
$$

Where $\Delta \delta$ is the chemical shift change of $\mathrm{H}_{2 \mathrm{ncN}}$ on $2 \mathbf{n C N}$-P5 at $[\mathbf{D B}]_{0}, \Delta \delta_{\infty}$ is the chemical shift change of $\mathrm{H}_{2 \mathrm{nCN}}$ when 2nCN-P5 is completely complexed, [2nCN-P5] ${ }_{0}$ is the fixed initial concentration of $2 \mathbf{n C N}-\mathbf{P 5}$, and $[\mathbf{D B}]_{0}$ is the varying concentrations of guest (Fig. S29, Fig. S32).

2CN-P5

4CN-P5

DB

Fig. S28 Chemical structures of 2CN-P5, 4CN-P5 and DB

Fig. S29 ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{2 C N}$-P5 at a concentration of 5.0 mM upon addition of DB. From bottom to top, the concentrations of DB were 0 , $0.2,0.6,1.0,2.0,4.0,8.0,22.1,44.1,66.2,88.2,132.3 \mathrm{mM}$, respectively
\qquad
Fig. S30 ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathrm{H}_{2 \mathrm{CN}}$ peak shift of 2CN-P5 at a concentration of 5.0 mM upon addition of DB. From bottom to top, the concentrations of DB were $0,0.2,0.6,1.0,2.0,4.0,8.0,22.1,44.1,66.2,88.2,132.3 \mathrm{mM}$, respectively.

Fig. S21 The non-linear curve-fitting (NMR titrations, $\Delta \delta$ of $\mathrm{H}_{2 \mathrm{CN}}$) for the complexation of 2CN-P5 $(5.0 \mathrm{mM})$ with $\mathbf{D B}$ in CDCl_{3} at 298 K . The concentrations of DB were $0,0.2,0.6,1.0,2.0,4.0,8.0,22.1,44.1,66.2,88.2,132.3 \mathrm{mM}$, respectively. The K a value for $\mathbf{D B C 2 C N}-\mathbf{P 5}$ complex in CDCl_{3} at 298 K is determined to be 383.5 $\pm 16.0 \mathrm{M}^{-1}$ (Adj. R-Square: 0.99949).

Fig. S32 ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathbf{4 C N}-\mathrm{P} 5$ at a concentration of 5.0 mM upon addition of DB. From bottom to top, the concentrations of DB were 0 , $0.6,1.0,2.0,4.0,8.0,22.1,44.1,66.2,88.2,132.3,176.43 \mathrm{mM}$, respectively
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Fig. S33 ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $\mathrm{H}_{4 \mathrm{CN}}$ peak shift of 4CN-P5 at a concentration of 5.0 mM upon addition of DB. From bottom to top, the concentrations of DB were $0,0.6,1.0,2.0,4.0,8.0,22.1,44.1,66.2,88.2,132.3,176.43 \mathrm{mM}$, respectively

Fig. S34 The non-linear curve-fitting (NMR titrations, $\Delta \delta$ of $\mathrm{H}_{4 \mathrm{CN}}$) for the complexation of $\mathbf{4 C N}-\mathrm{P} 5(5.0 \mathrm{mM})$ with $\mathbf{D B}$ in CDCl_{3} at 298 K . The concentrations of DB were $0,0.6,1.0,2.0,4.0,8.0,22.1,44.1,66.2,88.2,132.3,176.43 \mathrm{mM}$, respectively. The Ka value for $\mathbf{D B C} \mathbf{2 C N}-\mathbf{P 5}$ complex in CDCl_{3} at 298 K is determined to be $2.1 \pm 0.3 \mathrm{M}^{-1}$ (Adj. R-Square: 0.9987).

Fig. S35 The MCR-3 microwave reactor.

Fig. S36 ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of a) resorcinol, b) $\mathbf{1 0 C N}-\mathbf{P 5}+$ resorcinol, c) $\mathbf{1 0 C N}-\mathrm{P} 5$, d) $\mathbf{1 0 C N}-\mathrm{P} 5+$ phenol and d) phenol

References:

1 T. Ogoshi, T. Aoki, K. Kitajima, S. Fujinami, T. A. Yamagishi and Y. Nakamoto, J. Org. Chem., 2011, 76, 328-331.
2 C. Xie, W. Hu, W. Hu, Y. A. Liu, J. Huo, J. Li, B. Jiang and K. Wen, Chin. J. Chem., 2015, 33, 379-383.
3 T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023.
4 (a) K. A. Connors, Binding Constants, Wiley, New York, 1987; (b) R. P. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, J. Am. Chem. Soc., 1996, 118, 4931-4951; (c) Y. Inoue, K. Yamamoto, T. Wada, S. Everitt, X.-M. Gao, Z.-J. Hou, L.-H. Tong, S.-K. Jiang and H.-M. Wu, J. Chem. Soc., Perkin Trans. 2, 1998, 1807-1816.

