Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

BINOL-derived bifunctional sulfide catalysts for asymmetric synthesis of 3,3-disubstituted phthalides via bromolactonization

Megumi Okada,^a Kazuma Kaneko,^b Masahiro Yamanaka^b and Seiji Shirakawa^{*a}

^aDepartment of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

^bDepartment of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

*E-mail: seijishirakawa@nagasaki-u.ac.jp

Table of Contents

General	Information	S-2	
Table S1	Fable S1 and Scheme S1		
Experin	Experimental Section		
1.	Synthesis of catalysts	S-4	
2.	General procedure for asymmetric bromolactonizations	S-12	
3.	Conversions of product 2a	S-16	
4.	Determination of the absolute configuration of products 2, 7, 8, and 9	S-18	
5.	Details of computational method	S-18	
Referen	ces	S-23	
NMR C	harts	S-24	
HPLC C	Charts	S-58	

General Information

¹H and ¹³C NMR spectra were measured on a JEOL JNM-AL 400 NMR instrument (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR). Tetramethylsilane (TMS) served as the internal standard (0 ppm) for ¹H NMR, and CDCl₃ served as the internal standard (77.0 ppm) for ¹³C NMR. The following abbreviations were used to express the multiplicities: s = singlet; d = doublet; t = triplet; m = multiplet; br = broad. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-700N. Infrared spectra (IR) were measured on a JASCO FT/IR-4200 spectrometer. Optical rotations were measured on a JASCO P-2100 polarimeter. High performance liquid chromatography (HPLC) was performed on Shimadzu LC-20AT and SPD-20A instruments using Daicel Chiralpak IA-3, IB-3, IC-3, IE-3, or Chiralcel OD-3 columns (4.6 mm × 250 mm). All reactions were monitored by thin-layer chromatography using Merck precoated TLC plates (silica gel 60GF-254, 0.25 mm), with visualization by the use of UV lamp (254 nm), or dyes such as KMnO₄. The products were purified by flash column chromatography on silica gel. Dehydrated solvents were purchased from Kanto Chemical.

	Ph CO_2H + NBP (1.2 equiv) $(S)-4b(10 mol %)solvent-78 °C, 24 h$	Br, Ph O O 2a	Si-Pr OH (S)- 4b
Entry	Solvent	Yield ^{b} (%)	er ^c
1	CH_2Cl_2 (2 mL)	99	78:22
2	toluene (2 mL)	88	80:20
3	hexane (1 mL)-CH ₂ Cl ₂ (1 mL)	91	85:15
4	toluene (1 mL)-CH ₂ Cl ₂ (1 mL)	94	91: 9
5	toluene (1.5 mL)-CH ₂ Cl ₂ (0.5 mL)	98	94: 6

Table S1 Optimization of the reaction solvents^a

^{*a*} Reaction conditions: **1a** (0.10 mmol), NBP (0.12 mmol), (*S*)-**4b** (10 mol %, 0.010 mmol), solvent (2 mL), -78 °C, 24 h. ^{*b*} Yield of isolated product **2a**. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

Scheme S1 Additional substrate scope.

Experimental Section

1. Synthesis of catalysts.

Catalysts (S)-3a, 4a, and 5a were prepared according to the literature.¹

Synthesis of catalysts (S)-4b and 4c.

To a solution of (S)-10² (1.4 mmol) in CH₃CN (7 mL) was added K₂CO₃ (7.0 mmol) and RSH (7.0 mmol). The mixture was then warmed to 55 °C and stirred for 3 h. The mixture was cooled to room temperature and quenched by saturated aqueous NH₄Cl. The resulting solution was extracted with ethyl acetate for three times. The organic extracts were dried over Na₂SO₄ and evaporated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 100:1–30:1 as eluent) to afford (*S*)-11.

(*S*)-11b: 96% yield. $[\alpha]^{22}_{D}$ -82.0 (*c* = 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.98 (m, 2H), 7.83–7.90 (m, 3H), 7.60 (d, *J* = 9.2 Hz, 1H), 7.41 (dt, *J* = 1.2, 7.6 Hz, 1H), 7.35 (t, *J* = 0.8, 7.6 Hz, 1H), 7.15– 7.24 (m, 3H), 7.04 (d, *J* = 8.8 Hz, 1H), 5.10 (d, *J* = 6.8 Hz, 1H), 4.97 (d, *J* = 7.2 Hz, 1H), 3.56 (d, *J* = 13.6 Hz, 1H), 3.51 (d, *J* = 14.0 Hz, 1H), 3.16 (s, 3H), 2.58 (septet, *J* = 6.8 Hz, 1H), 0.97 (d, *J* = 6.8 Hz, 3H), 0.86 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 135.8, 134.0, 133.0, 132.6, 132.5, 129.74, 129.67, 128.0, 127.9, 127.3, 126.5, 126.4, 126.0, 125.6, 125.4, 124.1, 122.1, 116.5, 94.9, 55.9, 34.8, 33.2, 23.15, 23.06; IR (neat): 3056, 2957, 2923, 1507, 1245, 1149, 1066, 1033, 1013, 814, 751 cm⁻¹; HRMS (FAB) calcd for C₂₆H₂₆O₂S: 402.1654 ([M]⁺), found 402.1654. (*S*)-11c: 96% yield. $[\alpha]^{22}_{D}$ –96.5 (*c* = 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.97 (m, 4H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 9.2 Hz, 1H), 7.40 (dt, *J* = 1.2, 7.2 Hz, 1H), 7.34 (t, *J* = 1.2, 7.6 Hz, 1H), 7.16–7.24 (m, 3H), 7.05 (d, *J* = 8.4 Hz, 1H), 5.10 (d, *J* = 7.2 Hz, 1H), 4.98 (d, *J* = 6.8 Hz, 1H), 3.55 (d, *J* = 12.0 Hz, 1H), 3.50 (d, *J* = 12.4 Hz, 1H), 3.17 (s, 3H), 1.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 135.0, 133.8, 133.0, 132.6, 132.5, 129.5, 127.9, 127.8, 127.7, 127.5, 126.3, 126.1, 125.8, 125.6, 125.2, 123.9, 122.0, 116.3, 94.8, 55.7, 42.3, 31.3, 30.3; IR (neat): 3056, 2958, 2898, 1148, 1033, 1013, 905, 812, 728 cm⁻¹; HRMS (FAB) calcd for C₂₇H₂₈O₂S: 416.1810 ([M]⁺), found 416.1809.

To a solution of (*S*)-**11** (1.3 mmol) in CH₂Cl₂ (4 mL)-MeOH (4 mL) was added *p*-toluenesulfonic acid monohydrate (2.6 mmol), and the mixture was heated at 50 °C for 3 h. After cooled to room temperature, water was added to this reaction mixture and the mixture was evaporated to remove MeOH. Organic compounds were extracted with CH₂Cl₂ for three times. The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 100:1-10:1 as eluent) to afford (*S*)-**4**.

(*S*)-4b: 85% yield. $[\alpha]^{22}_{D}$ –94.2 (*c* = 0.90, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.91–7.94 (m, 2H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.47 (dt, *J* = 1.2, 7.4 Hz, 1H), 7.28–7.38 (m, 3H), 7.18–7.24 (m, 2H), 6.95 (d, *J* = 8.4 Hz, 1H), 5.09 (s, 1H), 3.64 (d, *J* = 12.8 Hz, 1H), 3.48 (d, *J* = 13.2 Hz, 1H), 2.65 (septet, *J* = 6.6 Hz, 1H), 1.03 (d, *J* = 6.8 Hz, 3H), 1.00 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 137.8, 133.7, 133.2, 133.0, 130.1, 129.5, 129.3, 129.1, 128.13, 128.09, 127.7, 127.0, 126.7, 126.1, 125.9, 124.6, 123.5, 118.2, 117.3, 35.5, 33.2, 23.1, 22.9; IR (neat): 3421, 3057, 2958, 2924, 1507, 1203, 1173, 1146, 911, 818, 749 cm⁻¹; HRMS (FAB) calcd for C₂₄H₂₂OS: 358.1391 ([M]⁺), found 358.1389.

(*S*)-4c: 54% yield. $[\alpha]^{22}_{D}$ -50.8 (*c* = 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.8 Hz, 1H), 7.86–7.93 (m, 3H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.46 (dt, *J* = 1.2, 7.4 Hz, 1H), 7.16–7.38 (m, 5H), 6.95 (d, *J* = 8.8 Hz, 1H), 3.66 (d, J = 10.8 Hz, 1H), 3.49 (d, J = 10.4 Hz, 1H), 1.08 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 136.7, 133.7, 133.3, 133.1, 129.93, 129.88, 129.3, 129.2, 128.1, 128.0, 127.8, 126.9, 126.6, 126.1, 125.9, 124.7, 123.5, 118.6, 117.6, 43.3, 31.5, 30.3; IR (neat): 3394, 3056, 2959, 1507, 1457, 1363, 1203, 1171, 1146, 818, 750 cm⁻¹; HRMS (FAB) calcd for C₂₅H₂₄OS: 372.1548 ([M]⁺), found 372.1550.

Synthesis of catalysts (S)-6a.

To a solution of (R)-12³ (0.60 mmol) in THF (3 mL) was added 1.6 M hexane solution of *n*-BuLi (0.84 mmol) dropwise at -78 °C under N₂ atmosphere. The mixture was then warmed to room temperature and stirred for 1 h. The mixture was again cooled to -78 °C, and to the solution was added Br₂ (0.90 mmol). The mixture was then warmed to room temperature and stirred for 20 h. After cooled to 0 °C, saturated aqueous Na₂SO₃ was added to this reaction mixture and the mixture was evaporated to remove THF. Organic compounds were extracted with ethyl acetate for three times. The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 100:1–10:1 as eluent) to afford (*R*)-13a.

(*R*)-13a: 64% yield. $[\alpha]^{22}_{D}$ -23.6 (*c* = 0.93, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.81–7.89 (m, 3H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.38–7.44 (m, 2H), 7.22–7.28 (m, 2H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 4.78 (d, *J* = 5.2 Hz, 1H), 4.65 (d, *J* = 5.6 Hz, 1H), 2.62 (s,

3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 135.7, 133.2, 132.7, 132.4, 131.9, 131.7, 131.5, 130.4, 128.5, 128.1, 127.8, 127.0, 126.8, 126.3, 126.01, 125.96, 125.92,

124.9, 117.7, 98.7, 56.5, 20.5; IR (neat): 3051, 2949, 2922, 1233, 1157, 1076, 987, 957, 919, 902, 812, 745 cm⁻¹; HRMS (FAB) calcd for $C_{23}H_{19}BrO_2$: 406.0568 ([M]⁺), found 406.0568.

A mixture of (*R*)-13a (0.50 mmol), *N*-bromosuccinimide (NBS) (0.55 mmol), and 2,2'-azobis(isobutyronitrile) (AIBN) (0.075 mmol) in benzene (5 mL) was refluxed for 3 h. After cooled to room temperature, water was added to this reaction mixture. Organic compounds were extracted with ethyl acetate for three times. The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 100:1-10:1 as eluent) to afford (*S*)-14a.

(*S*)-14a: 88% yield. $[\alpha]^{22}_{D}$ +42.6 (*c* = 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.8 Hz, 1H), 7.43–7.50 (m, 2H), 7.25–7.31 (m, 2H), 7.15 (d, *J* = 8.8 Hz, 1H), 7.07 (d, *J* = 8.8 Hz, 1H),

4.82 (d, J = 6.0 Hz, 1H), 4.69 (d, J = 6.0 Hz, 1H), 4.45 (d, J = 10.8 Hz, 1H), 4.30 (d, J = 10.4 Hz, 1H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 134.7, 133.2, 133.0, 132.9, 132.7, 132.4, 131.6, 129.2, 128.5, 127.9, 127.5, 126.94, 126.90, 126.8, 126.7, 126.6, 126.5, 126.3, 117.4, 99.0, 56.4, 32.7; IR (neat): 3056, 2951, 1233, 1203, 1157, 991, 958, 930, 904, 821, 748, 730 cm⁻¹; HRMS (FAB) calcd for C₂₃H₁₉Br₂O₂: 484.9752 ([M+H]⁺), found 484.9752.

(S)-15a was synthesized from (S)-14a in a similar manner for the synthesis of (S)-11b.

(S)-15a: 99% yield. $[\alpha]^{21}_{D}$ +14.2 (c = 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.80–7.89 (m, 3H), 7.40– 7.45 (m, 2H), 7.22–7.28 (m, 2H), 7.15 (d, J = 8.8 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 4.78 (d, J = 5.6 Hz, 1H), 4.61 (d, J = 5.6 Hz, 1H), 3.68 (d,

J = 13.6 Hz, 1H), 3.50 (d, J = 13.6 Hz, 1H), 2.60 (s, 3H), 2.52 (septet, J = 6.8 Hz, 1H), 0.97 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1,

136.5, 133.1, 132.8, 132.4, 131.6, 131.5, 129.4, 128.6, 127.9, 127.3, 126.9, 126.7, 126.5, 126.4, 126.1, 125.6, 117.5, 98.8, 56.5, 35.0, 33.3, 23.0, 22.9; IR (neat): 3053, 2960, 2923, 1158, 991, 957, 814, 750 cm⁻¹; HRMS (FAB) calcd for C₂₆H₂₅BrO₂S: 480.0759 ([M]⁺), found 480.0758.

Catalyst (S)-6a was synthesized from (S)-15a in a similar manner for the synthesis of catalyst (S)-4b.

(*S*)-**6a**: 71% yield. $[\alpha]^{22}_{D}$ -62.6 (*c* = 1.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.76–7.80 (m, 2H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.21–7.30 (m, 2H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 5.58 (s, 1H), 3.60 (d, *J* = 13.2 Hz, 1H), 3.47 (d, *J* = 13.2 Hz, 1H), 2.63 (septet, *J* = 6.6 Hz, 1H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.98 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 137.1, 133.0, 132.9, 132.7, 132.1, 129.8, 129.6, 129.3, 128.1, 127.5, 127.1, 127.0, 126.9, 126.0, 125.7, 125.0, 124.6, 119.3, 112.6, 35.4, 33.1, 23.0, 22.9; IR (neat): 3502, 3056, 2958, 2922, 1507, 1359, 1263, 1200, 1147, 909, 824, 815, 748, 735 cm⁻¹; HRMS (FAB) calcd for C₂₄H₂₁BrOS: 436.0496 ([M]⁺), found 436.0496.

Synthesis of catalysts (S)-6b and 6c.

A mixture of (*R*)-13a (0.30 mmol), $ArB(OH)_2$ (0.36 mmol), $Pd(OAc)_2$ (0.030 mmol), PPh₃ (0.15 mmol), and K₃PO₄·nH₂O (1.2 mmol) in THF (5 mL) was refluxed for 16 h. The mixture was cooled to room temperature and quenched by saturated aqueous

NH₄Cl. The mixture was evaporated to remove THF. The resulting solution was extracted with ethyl acetate for three times. The organic extracts were dried over Na₂SO₄ and evaporated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 100:1-10:1 as eluent) to afford (*R*)-13b or 13c.

(*R*)-13b: 89% yield. $[\alpha]^{21}_{D}$ -47.9 (*c* = 2.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.96 (m, 4H), 7.71–7.73 (m, 2H), 7.22–7.53 (m, 9H), 7.11 (d, J = 8.0 Hz, 1H), 4.29 (d, J = 6.0 Hz, 1H), 4.23 (d, J = 5.6 Hz, 1H),2.26 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 139.0,

135.6, 133.4, 132.9, 132.5, 132.0, 131.0, 130.3, 129.6, 128.9, 128.6, 128.3, 128.0, 127.8, 127.7, 127.2, 126.4, 126.2, 126.0, 125.8, 125.2, 124.8, 98.4, 55.9, 20.7; IR (neat): 3054, 2923, 1156, 1076, 987, 964, 925, 813, 750, 701 cm⁻¹; HRMS (FAB) calcd for C₂₉H₂₄O₂: 404.1776 ([M]⁺), found 404.1777.

Br

(*R*)-13c: 77% yield. $[\alpha]^{21}D$ -59.6 (*c* = 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.82–7.95 (m, 6H), 7.71–7.73 (m, 4H), 7.24– 7.54 (m, 12H), 7.11 (d, J = 8.4 Hz, 1H), 4.40 (d, J = 6.4 Hz, 1H), 4.34 (d, J = 6.4 Hz, 1H), 2.30 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 141.8, 141.0, 140.1, 135.6, 135.4, 133.4, 133.0, 132.4,

132.0, 131.0, 130.4, 129.0, 128.8, 128.6, 128.1, 127.79, 127.75, 127.50, 127.46, 127.3, 126.5, 126.3, 126.0, 125.8, 125.3, 125.0, 124.8, 98.6, 55.9, 20.7; IR (neat): 3051, 2972, 1168, 1157, 989, 966, 755, 704, 690 cm⁻¹; HRMS (FAB) calcd for C₄₁H₃₂O₂: 556.2402 ([M]⁺), found 556.2402.

(S)-14b and 14c were synthesized from (R)-13b or 13c in a similar manner for the synthesis of (S)-14a.

> (S)-14b: 97% yield. $[\alpha]^{20}_{D}$ +44.1 (c = 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88–8.00 (m, 4H), 7.79 (d, J = 8.4 Hz, 1H), 7.71–7.73 (m, омом 2H), 7.24–7.49 (m, 8H), 7.11 (d, *J* = 8.8 Hz, 1H), 4.52 (d, *J* = 10.4 Hz, 1H), 4.46 (d, J = 10.4 Hz, 1H), 4.29 (d, J = 6.0 Hz, 1H), 4.23 (d, J = 6.4

Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 138.7, 135.2, 134.5, 133.5,

133.1, 133.0, 131.1, 130.9, 129.5, 128.7, 128.4, 127.94, 127.87, 127.6, 127.4, 127.1, 127.0, 126.6, 126.5, 126.33, 126.28, 125.5, 98.5, 55.9, 33.0; IR (neat): 3055, 2952, 2898, 1155, 990, 966, 750, 701 cm⁻¹; HRMS (FAB) calcd for $C_{29}H_{23}BrO_2$: 482.0881 ([M]⁺), found 482.0884.

S*i-*Pr

OMOM

(*S*)-14c: 87% yield. $[\alpha]^{25}_{D}$ +18.1 (*c* = 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.89–7.99 (m, 5H), 7.71–7.83 (m, 6H), 7.25–7.50 (m, 11H), 7.12 (d, *J* = 8.8 Hz, 1H), 4.54 (d, *J* = 10.4 Hz, 1H), 4.48 (d, *J* = 10.8 Hz, 1H), 4.40 (d, *J* = 6.0 Hz, 1H), 4.34 (d, *J* = 6.4 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 141.9, 140.9,

139.7, 135.0, 134.6, 133.5, 133.10, 133.05, 131.2, 130.9, 128.83, 128.77, 127.95, 127.86, 127.6, 127.5, 127.32, 127.27, 127.12, 127.08, 126.61, 126.58, 126.3, 125.6, 125.1, 98.7, 55.9, 33.1; IR (neat): 3056, 2954, 2929, 1155, 1073, 1001, 968, 752, 739, 698 cm⁻¹; HRMS (FAB) calcd for $C_{41}H_{31}BrO_2Na$: 657.1405 ([M+Na]⁺), found 657.1413.

(S)-15b and 15c were synthesized from (S)-14b or 14c in a similar manner for the synthesis of (S)-11b.

(*S*)-15b: 78% yield. $[\alpha]^{21}_{D}$ +45.5 (*c* = 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.97 (m, 5H), 7.71–7.73 (m, 2H), 7.35–7.48 (m, 5H), 7.21–7.29 (m, 3H), 7.12 (d, *J* = 8.4 Hz, 1H), 4.27 (d, *J* = 5.6 Hz, 1H), 4.21 (d, *J* = 5.6 Hz, 1H), 3.80 (d, *J* = 14.0 Hz, 1H), 3.69 (d, *J* = 13.6 Hz, 1H),

1H), 2.56 (septet, J = 6.8 Hz, 1H), 2.20 (s, 3H), 1.01 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 138.9, 136.4, 135.4, 133.32, 133.27, 132.5, 130.9, 130.7, 129.5, 128.3, 128.2, 127.90, 127.87, 127.80, 127.31, 127.27, 126.9, 126.33, 126.26, 126.1, 125.4, 125.3, 98.4, 55.8, 35.0, 33.5, 23.1, 23.0; IR (neat): 3054, 2957, 2925, 1156, 990, 965, 752, 701 cm⁻¹; HRMS (FAB) calcd for C₃₂H₃₀O₂S: 478.1967 ([M]⁺), found 478.1966.

(S)-15c: 65% yield. $[\alpha]^{24}_{D}$ +22.3 (c = 1.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.82–7.96 (m, 7H), 7.72–7.74 (m, 4H), 7.37–7.50 (m, 8H), 7.22–7.31 (m, 3H), 7.13 (d, J = 8.4 Hz, 1H), 4.37 (d, J = 6.0 Hz, 1H), 4.32 (d, J = 5.6 Hz, 1H), 3.82 (d, J = 14.4 Hz, 1H), 3.70 (d, J = 13.6 Hz, 1H), 2.60 (septet, J = 6.8 Hz, 1H), 2.24 (s, 3H), 1.04

 $(d, J = 6.8 \text{ Hz}, 3\text{H}), 0.85 (d, J = 6.8 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 150.8, 141.9, 141.0, 139.9, 136.4, 135.2, 133.4, 133.3, 132.5, 130.9, 130.8, 128.8, 128.2, 127.99, 127.96, 127.8, 127.5, 127.4, 127.3, 126.9, 126.4, 126.3, 126.2, 125.45, 125.41, 125.0, 98.6, 55.9, 35.1, 33.6, 23.2, 23.1; IR (neat): 3056, 2956, 2924, 1154, 1000, 966, 912, 882, 752, 738, 697 cm⁻¹; HRMS (FAB) calcd for C₄₄H₃₉O₂S: 631.2671 ([M+H]⁺), found 631.2673.$

Catalyst (S)-6b and 6c were synthesized from (S)-15b or 15c in a similar manner for the synthesis of catalyst (S)-4b.

(*S*)-**6b**: 61% yield. $[\alpha]^{22}_{D}$ -87.7 (*c* = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.89–8.02 (m, 4H), 7.72–7.81 (m, 3H), 7.30–7.52 (m, 7H), 7.23 (dt, *J* = 1.6, 7.6 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 5.18 (s, 1H), 3.66 (d, *J* = 13.2 Hz, 1H), 3.55 (d, *J* = 13.2 Hz, 1H), 2.65 (septet, *J* = 6.8 Hz, 1H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 137.9, 137.7, 133.2, 133.1, 130.8, 130.2, 129.9, 129.6, 129.3, 129.1, 128.4, 128.1, 127.7, 127.5, 126.9, 126.6, 126.1, 125.9, 124.6, 123.9, 118.0, 35.3, 33.2, 23.1, 23.0; IR (neat): 3521, 3055, 2969, 1739, 1427, 1362, 1231, 751, 701 cm⁻¹; HRMS (FAB) calcd for C₃₀H₂₆OS: 434.1704 ([M]⁺), found 434.1703.

(*S*)-**6c**: 97% yield. $[\alpha]^{19}_{D}$ -37.5 (*c* = 0.74, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.91–7.96 (m, 4H), 7.79–7.84 (m, 2H), 7.71–7.73 (m, 4H), 7.45–7.50 (m, 5H), 7.32–7.40 (m, 5H), 7.23–7.27 (m, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 5.27 (s, 1H), 3.68 (d, *J* = 13.2 Hz, 1H), 3.57 (d, *J* = 12.8 Hz, 1H), 2.69 (septet, *J* =

6.8 Hz, 1H), 1.04 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 141.9, 141.1, 138.9, 137.8, 133.3, 133.1, 130.6, 130.3, 129.8, 129.4,

129.2, 128.8, 128.21, 128.18, 127.7, 127.6, 127.5, 127.4, 127.0, 126.8, 126.2, 125.9, 125.3, 124.6, 124.0, 118.2, 35.4, 33.3, 23.1, 23.0; IR (neat): 3525, 3057, 2960, 2925, 1742, 1709, 1507, 1227, 1159, 838, 738 cm⁻¹; HRMS (FAB) calcd for C₄₂H₃₄OS: 586.2330 ([M]⁺), found 586.2330.

2. General procedure for asymmetric bromolactonizations.

To a solution of substrate 1^4 (0.10 mmol) and catalyst (*S*)-**4b** (10 mol %, 0.010 mmol) in toluene (1.5 mL)-CH₂Cl₂ (0.5 mL) was cooled to -78 °C. After stirring for 10 min at -78 °C, *N*-bromophthalimide (NBP) (0.12 mmol) was added to the cooled reaction solution. The reaction mixture was stirred for 24 h at -78 °C. After 24 h, the reaction mixture was quenched with saturated aqueous Na₂SO₃ (4.0 mL) at -78 °C and stirred for 10 min at -78 °C. The quenched reaction mixture was diluted with CH₂Cl₂ (2 mL) and H₂O (2 mL), and warmed to room temperature. The organic materials were extracted with CH₂Cl₂ for three times (5.0 mL × 3). The combined extracts were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 30:1-5:1 as eluent) to give product **2**. The enantioselectivity of the product **2** was determined by HPLC analysis on a chiral stationary phase.

^{Br}, Ph
2a:⁵ [α]²³_D +1.1 (c = 1.8, CHCl₃, 96:4 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 15.1 min (major) and 16.9 min (minor). ¹H NMR (400 MHz, CDCl₃) δ
7.94 (d, J = 7.6 Hz, 1H), 7.75 (dt, J = 1.2, 7.6 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.56–
7.62 (m, 3H), 7.35–7.43 (m, 3H), 4.15 (d, J = 11.2 Hz, 1H), 4.09 (d, J = 11.2 Hz, 1H);
¹³C NMR (100 MHz, CDCl₃) δ 168.9, 149.7, 137.4, 134.3, 129.9, 129.1, 129.0, 126.5, 126.0, 125.4, 122.5, 87.2, 37.9; IR (neat): 1766, 1287, 1086, 983, 754, 698 cm⁻¹.

2b: $[\alpha]^{24}_{D}$ –5.0 (*c* = 0.96, CHCl₃, 90:10 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 17.5 min (major) and 19.3 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 0.8, 8.0 Hz, 1H), 7.73 (dt, *J* = 0.8, 7.6 Hz,

1H), 7.65 (dd, J = 0.8, 7.6 Hz, 1H), 7.58 (dt, J = 0.8, 7.6 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 4.13 (d, J = 11.2 Hz, 1H), 4.07 (d, J = 11.2 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 149.9, 139.2, 134.4, 134.3, 129.9, 129.6, 126.5, 125.9, 125.4, 122.5, 87.3, 37.9, 21.0; IR (neat): 1763, 1286, 1082, 981, 819, 756, 718, 688 cm⁻¹; HRMS (FAB) calcd for C₁₆H₁₄BrO₂: 317.0177 ([M+H]⁺), found 317.0177.

2c: $[\alpha]^{21}_{D}$ +1.8 (*c* = 1.2, CHCl₃, 91:9 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 5:1, flow rate = 0.5 mL/min, 254 nm; retention time: 21.6 min (major) and 23.4 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 7.6 Hz, 1H), 7.76 (dt, *J* = 1.2, 7.6 Hz, 1H),

7.65 (d, J = 8.0 Hz, 1H), 7.61 (dt, J = 0.8, 7.2 Hz, 1H), 7.51 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 4.10 (d, J = 11.6 Hz, 1H), 4.04 (d, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 149.3, 136.0, 135.3, 134.5, 130.2, 129.2, 127.0, 126.3, 126.2, 122.5, 86.7, 37.5; IR (neat): 1765, 1492, 1286, 1080, 982, 829, 759, 686 cm⁻¹; HRMS (FAB) calcd for C₁₅H₁₁BrClO₂: 336.9631 ([M+H]⁺), found 336.9632.

F 2d: $[\alpha]^{22}_{D}$ -13.0 (c = 2.3, CHCl₃, 93:7 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 14.1 min (major) and 14.9 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.76 (dt, J = 1.2, 7.6 Hz, 1H),

7.60–7.67 (m, 2H), 7.52–7.57 (m, 2H), 7.06–7.12 (m, 2H), 4.11 (d, J = 11.2 Hz, 1H), 4.05 (d, J = 11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 162.9 (d, J = 249 Hz), 149.5, 134.4, 133.3 (d, J = 3.3 Hz), 130.1, 127.6 (d, J = 9.1 Hz), 126.5, 126.1, 122.6, 116.0 (d, J = 21.4 Hz), 86.8, 37.7; IR (neat): 1764, 1508, 1232, 1081, 983, 837, 689 cm⁻¹; HRMS (FAB) calcd for C₁₅H₁₁BrFO₂: 320.9926 ([M+H]⁺), found 320.9925.

2e: $[\alpha]^{22}_{D}$ –18.9 (c = 1.6, CHCl₃, 82:18 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 22.7 min (major) and 26.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.2 Hz, 1H), 7.75 (dt, J = 0.8, 7.2 Hz,

1H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.60 (dt, *J* = 0.8, 7.2 Hz, 1H), 7.46 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 4.12 (d, *J* = 12.0 Hz, 1H), 4.06 (d, *J* = 11.2 Hz, 1H), 3.80 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃) δ 168.9, 160.1, 149.9, 134.2, 129.9, 129.3, 127.0, 126.7, 126.0, 122.6, 114.2, 87.2, 55.3, 37.9; IR (neat): 1763, 1608, 1511, 1466, 1285, 1254, 1180, 1084, 1031, 982, 832, 729, 689 cm⁻¹; HRMS (FAB) calcd for C₁₆H₁₄BrO₃: 333.0126 ([M+H]⁺), found 333.0126.

2f: $[\alpha]^{20}_{D}$ –4.0 (*c* = 1.2, CHCl₃, 96:4 er); HPLC analysis: Daicel Chiralcel OD-3, hexane/2-propanol = 4:1, flow rate = 0.5 mL/min, 254 nm; retention time: 14.2 min (major) and 17.5 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, *J* = 0.8, 7.6 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.71 (t, J = 7.6 Hz), 7.81 (t, J

1H), 7.68 (d, J = 7.6 Hz, 1H), 7.61–7.65 (m, 3H), 7.26 (d, J = 8.8 Hz, 2H), 4.11 (d, J = 11.2 Hz, 1H), 4.06 (d, J = 11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 149.6, 149.3, 136.1, 134.6, 130.2, 127.3, 126.4, 126.2, 122.5, 121.2, 120.3 (q, J = 257 Hz), 86.6, 37.5; IR (neat): 1773, 1257, 1167, 1083, 984, 760 cm⁻¹; HRMS (FAB) calcd for C₁₆H₁₁BrF₃O₃: 386.9844 ([M+H]⁺), found 386.9844.

2g: $[\alpha]^{25}_{D}$ +3.9 (*c* = 1.0, CHCl₃, 88:12 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 18.6 min (major) and 21.5 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, *J* = 0.8, 7.6 Hz, 1H), 7.76 (dt, J = 0.8, 7.6 Hz, 1H), 7.76 (dt, J = 0.8, 7.6 Hz, 1H), 7.8 Hz, 1H), 7.

1H), 7.70 (d, J = 8.0 Hz, 1H), 7.54–7.65 (m, 7H), 7.42–7.46 (m, 2H), 7.36 (dt, J = 1.6, 7.6 Hz, 1H), 4.18 (d, J = 11.2 Hz, 1H), 4.12 (d, J = 11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 149.7, 142.1, 139.9, 136.3, 134.4, 130.0, 128.9, 127.8, 127.6, 127.1, 126.5, 126.0, 125.9, 122.5, 87.2, 37.8; IR (neat): 1766, 1286, 1083, 983, 765, 731, 695 cm⁻¹; HRMS (FAB) calcd for C₂₁H₁₆BrO₂: 379.0334 ([M+H]⁺), found 379.0334.

2h: $[\alpha]^{19}_{D}$ +3.6 (c = 0.63, CHCl₃, 93:7 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 12.4 min (major) and 14.5 min (minor). ¹H NMR (400

MHz, CDCl₃) δ 7.95 (d, J = 7.6 Hz, 1H), 7.76 (dt, J = 0.8, 7.6 Hz, 1H), 7.60–7.67 (m, 2H), 7.35–7.42 (m, 2H), 7.26–7.30 (m, 1H), 7.05–7.10 (m, 1H), 4.11 (d, J = 11.2 Hz, 1H), 4.05 (d, J = 11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 162.8 (d, J = 247 Hz), 149.3, 140.0 (d, J = 6.6 Hz), 134.5, 130.7 (d, J = 8.3 Hz), 130.2, 126.4, 126.2, 122.5,

121.1 (d, J = 3.3 Hz), 116.2 (d, J = 21.4 Hz), 113.0 (d, J = 23.9 Hz), 86.6, 37.5; IR (neat): 1767, 1285, 1084, 963, 756, 701 cm⁻¹; HRMS (FAB) calcd for C₁₅H₁₁BrFO₂: 320.9926 ([M+H]⁺), found 320.9926.

Br Me 2i:⁵ HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 17.6 min (major) and 20.1 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.6 Hz, 1H), 7.71 (dt, J = 0.8, 7.2 Hz, 1H), 7.58 (dt, J = 1.2, 7.6 Hz, 1H), 7.52 (dd, J = 0.8, 7.6 Hz, 1H), 3.75 (d, J = 11.2 Hz, 1H), 3.72 (d, J = 11.2 Hz, 1H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 151.1, 134.3, 129.8, 126.2, 125.9, 121.4, 84.5, 37.8, 24.2; IR (neat): 1756, 1286, 1100, 1031, 764, 696 cm⁻¹.

F $(\alpha)^{Ph}$ **2k**: $[\alpha]^{23}D - 3.2$ (*c* = 1.0, CHCl₃, 91:9 er); HPLC analysis: Daicel Chiralpak IB-3, hexane/2-propanol = 10:1, flow rate = 0.5 mL/min, 254 nm; retention time: 23.6 min (minor) and 24.9 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 4.8, 8.4 Hz, 1H), 7.52–7.55 (m, 2H), 7.39–7.45 (m, 3H), 7.28–7.34 (m, 2H), 4.12 (d, *J* = 11.2 Hz, 1H), 4.08 (d, *J* = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 166.4 (d, *J* = 243 Hz), 152.5 (d, *J* = 9.0 Hz), 137.0, 129.4, 129.1, 128.3 (d, *J* = 10.7 Hz), 125.3, 122.7 (d, *J* = 1.7 Hz), 118.2 (d, *J* = 23.9 Hz), 110.1 (d, *J* = 24.7 Hz), 86.6, 37.4; IR (neat): 2956, 2923, 2851, 1774, 1290, 1262, 1077, 700 cm⁻¹; HRMS (FAB) calcd for C₁₅H₁₁BrFO₂: 320.9926 ([M+H]⁺), found 320.9928.

^{Br} Ph Cl $(a)^{Ph}$ 2l: $[\alpha]^{18}_{D}$ -34.5 (c = 1.1, CHCl₃, 82:18 er); HPLC analysis: Daicel Chiralpak IE-3, hexane/2-propanol = 10:1, flow rate = 0.5 mL/min, 254 mm; retention time: 25.4 min (minor) and 27.7 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.74 (s, 1H), 7.50–7.52 (m, 2H), 7.40–7.46 (m, 3H), 4.12 (d, J = 11.2 Hz, 1H), 4.08 (d, J = 11.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 148.8, 139.4, 136.5, 135.2, 129.6, 129.2, 127.5, 126.4, 125.2, 124.6, 86.9, 37.3; IR (neat): 1774, 1448, 1386, 1300, 1274, 1181, 1087, 991, 957, 893, 762, 701, 636 cm⁻¹; HRMS (FAB) calcd for C₁₅H₁₀BrCl₂O₂: 370.9241 ([M+H]⁺), found 370.9239.

 $\begin{array}{l} {}^{\text{Me}} & \overset{\text{Ph}}{\longrightarrow} \\ {}^{\text{Me}} & \overset{\text{Ph}}{\longrightarrow} \end{array} \begin{array}{l} 2\text{m}: \ [\alpha]^{23}\text{_D} \ -9.4 \ (c = 1.9, \ \text{CHCl}_3, \ 90:10 \ \text{er}); \ \text{HPLC} \ \text{analysis: Daicel} \\ {}^{\text{Chiralpak IC-3, hexane/2-propanol} = 2:1, \ \text{flow rate} = 0.5 \ \text{mL/min, } 254 \ \text{nm}; \\ {}^{\text{retention time: } 21.4 \ \text{min} \ (\text{major}) \ \text{and} \ 23.2 \ \text{min} \ (\text{minor}). \ ^{1}\text{H} \ \text{NMR} \ (400 \ \text{MHz}, \\ \text{CDCl}_3) \ \delta \ 7.67 \ (\text{s}, \ 1\text{H}), \ 7.54-7.57 \ (\text{m}, \ 2\text{H}), \ 7.34-7.42 \ (\text{m}, \ 4\text{H}), \ 4.12 \ (\text{d}, \ J = 11.6 \ \text{Hz}, \ 1\text{H}), \\ 4.05 \ (\text{d}, \ J = 11.2 \ \text{Hz}, \ 1\text{H}), \ 2.42 \ (\text{s}, \ 3\text{H}), \ 2.36 \ (\text{s}, \ 3\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (100 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 169.2, \\ 147.9, \ 144.6, \ 139.3, \ 137.9, \ 128.95, \ 128.90, \ 126.2, \ 125.4, \ 124.4, \ 123.2, \ 86.8, \ 38.1, \ 21.0, \\ 20.0; \ \text{IR} \ (\text{neat}): \ 1765, \ 1090, \ 763, \ 748, \ 695 \ \text{cm}^{-1}; \ \text{HRMS} \ (\text{FAB}) \ \text{calcd} \ \text{for} \ C_{17}\text{H}_{16}\text{BrO}_{2}: \\ 331.0334 \ ([\text{M+H}]^+), \ \text{found} \ 331.0333. \end{array}$

Br Ph 2n: $[α]^{22}D -77.6$ (c = 1.0, CHCl₃, 88:12 er); HPLC analysis: Daicel Chiralpak IE-3, hexane/2-propanol = 4:1, flow rate = 0.5 mL/min, 254 nm; retention time: 38.5 min (minor) and 41.9 min (major). ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.99–8.07 (m, 3H), 7.56–7.70 (m, 4H), 7.35–7.44 (m, 3H), 4.23 (d, J = 11.2 Hz, 1H), 4.19 (d, J = 11.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 143.6, 138.0, 136.1, 133.4, 129.9, 129.3, 129.1, 129.0, 128.6, 127.5, 127.4, 125.5, 124.0, 121.8, 87.4, 38.6; IR (neat): 1762, 1169, 1087, 1075, 980, 765, 747, 737, 697, 659 cm⁻¹; HRMS (FAB) calcd for C₁₉H₁₄BrO₂: 353.0177 ([M+H]⁺), found 353.0179.

3. Conversions of product 2a.

To a solution of product 2a (0.10 mmol) in toluene (5 mL) was added 2,2'azobis(isobutyronitrile) (AIBN) (0.010 mmol) and tributyltin hydride (0.30 mmol). The reaction mixture was warmed to 100 °C and stirred for 24 h. After 24 h, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ (10 mL). The organic materials were extracted with ethyl acetate for three times (5.0 mL \times 3). The combined extracts were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 70:1–10:1 as eluent) to give product 7.

Me, Ph
7:⁶ [α]²⁸_D +61.3 (c = 0.97, CHCl₃, 96:4 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 15.7 min (major) and 16.8 min (minor). ¹H NMR (400 MHz, CDCl₃) δ
7.91 (d, J = 7.6 Hz, 1H), 7.66 (dt, J = 0.8, 7.2 Hz, 1H), 7.52 (t, J = 7.2 Hz, 1H), 7.44–7.48 (m, 3H), 7.30–7.38 (m, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 154.2, 140.7, 134.3, 129.1, 128.7, 128.3, 125.8, 125.1, 122.0, 87.5, 27.3; IR (neat): 1756, 1286, 1267, 1027, 768, 755, 694 cm⁻¹.

To a solution of product **2a** (0.10 mmol) in benzene (2 mL) was added 2,2'azobis(isobutyronitrile) (AIBN) (0.30 mmol) and allyltributyltin (1.0 mmol). The reaction mixture was warmed to 80 °C and stirred for 24 h. After 24 h, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NaHCO₃ (10 mL). The organic materials were extracted with ethyl acetate for three times (5.0 mL × 3). The combined extracts were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 70:1–10:1 as eluent) to give product **8**.

8: $[\alpha]^{21}_{D}$ +92.5 (c = 1.7, CHCl₃, 96:4 er); HPLC analysis: Daicel Chiralpak IC-3, hexane/2-propanol = 2:1, flow rate = 0.5 mL/min, 254 nm; retention time: 11.4 min (major) and 12.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ

7.89 (d, J = 7.6 Hz, 1H), 7.67 (dt, J = 1.2, 7.6 Hz, 1H), 7.50–7.56 (m, 4H), 7.28–7.39 (m, 3H), 5.68–5.78 (m, 1H), 4.90–4.96 (m, 2H), 2.54–2.62 (m, 1H), 2.25–2.32 (m, 1H), 1.99–2.08 (m, 1H), 1.84–1.94 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 152.7, 140.3, 137.0, 134.3, 129.2, 128.8, 128.1, 125.9, 125.5, 124.9, 122.1, 115.2, 89.7, 39.4, 28.0; IR (neat): 3065, 2920, 1761, 1286, 1089, 772, 752, 700 cm⁻¹; HRMS (FAB) calcd for C₁₈H₁₇O₂: 265.1229 ([M+H]⁺), found 265.1228. To a solution of product **2a** (0.10 mmol) in CH₃CN (1 mL) was added K₂CO₃ (0.20 mmol) and thiophenol (0.30 mmol). The reaction mixture was warmed to 75 °C and stirred for 24 h. After 24 h, the reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl (5 mL). The organic materials were extracted with ethyl acetate for three times (5.0 mL \times 3). The combined extracts were dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ethyl acetate = 30:1–5:1 as eluent) to give product **9**.

4. Determination of the absolute configuration of products 2, 7, 8, and 9.

The absolute configurations of products 2, 7, 8, and 9 were confirmed by comparison of an optical rotation value for product 7 with the literature.⁶

5. Details of computational method.

All calculations were performed with the Gaussian 09 package.⁷ The transition structure was partially optimized at the B3LYP/6-31LAN (LANL2DZ for Br and 6-31G* for the rest) level. The structure around the reaction center was only frozen (forming C¹- O length: 2.33 Å, C²-Br bond: 2.13 Å, C¹-C²-Br angle: 102.3°) corresponding to the previous TS model¹ while the other moiety was fully optimized. For the major enantiomer, two possible plausible TS models (**TS-O** and **TS-N**) were investigated depending on the position of deprotonation by succinimide anion. **TS-N** is energetically more favored than

TS-O (Fig. S1). The molecular structures were depicted by using the CYLview v1.0.561 β .⁸

Fig. S1 3D structures of plausible TS models.

Cartesian coordination

TS-N

SCF Done: E(RB3LYP) = -2543.00706396 A.U.

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
1	6	0	2.429662	3.631282	3.221177	
2	6	0	2.630432	2.868687	2.091483	
3	6	0	2.805187	1.458179	2.172968	
4	6	0	2.786561	0.854864	3.473118	
5	6	0	2.575190	1.667756	4.620180	
6	6	0	2.395805	3.027290	4.501575	
7	1	0	2.301132	4.706750	3.130671	
8	1	0	2.662413	3.343584	1.117217	
9	6	0	3.001304	0.637998	1.008437	
10	6	0	2.991536	-0.543949	3.579884	
11	1	0	2.564182	1.191717	5.598231	
12	1	0	2.238955	3.639570	5.385725	
13	6	0	3.188766	-1.309923	2.458453	
14	6	0	3.180086	-0.738166	1.156026	
15	1	0	2.993306	-1.003634	4.565574	
16	1	0	3.345172	-2.379606	2.556235	
17	6	0	3.046024	1.280779	-0.345161	
18	6	0	4.289405	1.445568	-1.042019	
19	6	0	1.876184	1.733786	-0.947978	
20	6	0	5.538914	1.066388	-0.472602	
21	6	0	4.303551	2.026321	-2.354861	

22	6	0	1.893682	2.305503	-2.249161
23	6	0	6.719660	1.232652	-1.163825
24	1	0	5.554086	0.652675	0.530492
25	6	0	5.537181	2.178753	-3.041489
26	6	0	3.075237	2.440685	-2.932851
27	1	0	0.951764	2.620316	-2.690721
28	6	0	6.724784	1.788760	-2.465029
29	1	0	7.658485	0.938376	-0.701673
30	1	0	5,524919	2,616377	-4.037391
31	- 1	0	3 081581	2 872512	-3 930918
32	- 1	0	7 662516	1 911929	-2 999704
22	1	0	3 /10072	_1 622005	-0 055243
21	1	0	2 024445	1 124624	-0.055245
24	1	0	3.034443	-1.134034	-0.950424
30	1	0	4.49/300	-1.//3/92	-0.196104
36	16	0	2.624395	-3.283/58	0.10///1
37	6	0	3.288597	-4.220916	-1.370677
38	8	0	0.702249	1.628195	-0.270270
39	1	0	-0.028811	2.027720	-0.791016
40	6	0	2.521254	-5.553912	-1.337809
41	1	0	1.443563	-5.395688	-1.450320
42	1	0	2.860355	-6.192891	-2.162670
43	1	0	2.694951	-6.093250	-0.399929
44	6	0	4.795314	-4.478749	-1.217322
45	1	0	5.371002	-3.547139	-1.211599
46	1	0	5.011667	-5.022351	-0.292314
47	1	0	5.157262	-5.079868	-2.062267
4.8	-	0	-4 546877	4 275240	-1 510262
49	6	0	-3 564014	5 417583	-1 788956
50	6	0	-2 179/00	4 754420	_1 000000
50	6	0	-2.1/0499	2 271406	1 570400
51	0	0	-2.455615	3.271490	-1.370400
52	/	0	-3.799003	3.089618	-1.434789
53	1	0	-3.8328/9	5.88//23	-2.739960
54	1	0	-1.509255	5.114607	-1.019793
55	1	0	-3.675518	6.178978	-1.011425
56	1	0	-1.645908	4.872334	-2.757468
57	8	0	-1.607939	2.379842	-1.532959
58	8	0	-5.743292	4.356239	-1.373013
59	35	0	-0.622260	-2.187481	-0.576712
60	1	0	-0.812763	0.422182	0.962253
61	6	0	-1.535996	0.313878	1.761025
62	6	0	-2.723202	-0.436788	1.574633
63	6	0	-1.257594	0.891736	2.992505
64	6	0	-3.059603	-1.023809	0.297443
65	6	0	-3.617108	-0.579032	2.664965
66	6	0	-2.155008	0.743125	4.056086
67	1	0	-0.337596	1,452523	3,123285
68	-	0	-4.133451	-2.044744	0.187054
69	6	0	-2 219863	-0 824324	-0 907382
70	6	0	-3 335236	0 009454	3 889933
71	1	0	-1 539/07	_1 122222	2 529679
71	1	0	1 022177	1 100622	5 017072
12	1 C	0	-1.9331//	1 707675	J.UI/U/2
13	6	U	-5.2/6200	-1./3/6/5	-0.5/2645
/4	6	0	-4.004534	-3.311329	0.//5/49
75	1	0	-2.683749	-1.178410	-1.820408
76	1	0	-1.746475	0.145185	-1.013952
77	1	0	-4.033396	-0.097212	4.714736
78	6	0	-6.263222	-2.702302	-0.764544
79	6	0	-5.453486	-0.328984	-1.104539
80	6	0	-4.997310	-4.271345	0.570864

81	1	0	-3.120468	-3.550614	1.358636
82	6	0	-6.123237	-3.970980	-0.201073
83	1	0	-7.137177	-2.420917	-1.344469
84	8	0	-6.427356	-0.032616	-1.790604
85	8	0	-4.498187	0.481677	-0.747969
86	1	0	-4.887562	-5.256191	1.016163
87	1	0	-6.895039	-4.721156	-0.349791
88	1	0	-4.215480	2.155718	-1.239050
89	6	0	2.991986	-3.475310	-2.679894
90	1	0	1.922908	-3.264659	-2.781694
91	1	0	3.537000	-2.527897	-2.742562
92	1	0	3.305516	-4.090946	-3.533506

TS-O

SCF Done: E(RB3LYP) = -2542.99019534 A.U.

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Z	
1	6	0	2.696207	1.292955	4.530148	
2	6	0	2.792414	1.228230	3.157177	
3	6	0	2.809195	-0.022308	2.476471	
4	6	0	2.725316	-1.217842	3.263495	
5	6	0	2.632502	-1.118659	4.678727	
6	6	0	2.617286	0.108468	5.303270	
7	1	0	2.686539	2.260131	5.025673	
8	1	0	2.861005	2.140166	2.574261	
9	6	0	2.921882	-0.114992	1.047391	
10	6	0	2.750063	-2.472308	2.603610	
11	1	0	2.578192	-2.036249	5.260654	
12	1	0	2.551948	0.172301	6.386386	
13	6	0	2.849793	-2.541829	1.236133	
14	6	0	2.930643	-1.368709	0.436986	
15	1	0	2.694173	-3.382295	3.196700	
16	1	0	2.873388	-3.511340	0.748002	
17	6	0	3.129813	1.132610	0.241570	
18	6	0	4.456756	1.495295	-0.171012	
19	6	0	2.064232	1.953933	-0.116678	
20	6	0	5.603338	0.727410	0.183756	
21	6	0	4.664251	2.672204	-0.964780	
22	6	0	2.277223	3.124859	-0.899221	
23	6	0	6.866171	1.092691	-0.231249	
24	1	0	5.474521	-0.156000	0.800485	
25	6	0	5.977475	3.019601	-1.377014	
26	6	0	3.539387	3.465174	-1.312343	
27	1	0	1.417690	3.736222	-1.155537	
28	6	0	7.061869	2.248201	-1.023474	
29	1	0	7.722007	0.487944	0.057948	
30	1	0	6.110409	3.915475	-1.979918	
31	1	0	3.691510	4.359374	-1.912712	
32	1	0	8.062436	2.524703	-1.344479	
33	6	0	3.101519	-1.479837	-1.067620	
34	1	0	2.735578	-0.569110	-1.542346	
35	1	0	4.165939	-1.579695	-1.311678	
36	16	0	2.207421	-2.926288	-1.787105	
37	6	0	2.605441	-2.805287	-3.613905	

38	Q	0	0 806751	1 635259	0 291/82
30	1	0	0.162756	2 270396	-0.000143
10	L C	0	1 025171	2.270300	4 240126
40	0	0	1.825171	-3.9/3/5/	-4.240136
41	1	0	0./4///8	-3.868427	-4.074180
42	1	0	2.002171	-3.993387	-5.322699
43	1	0	2.146274	-4.936276	-3.826938
44	6	0	4.111580	-2.991250	-3.852956
45	1	0	4.699162	-2.181465	-3.408218
46	1	0	4.464643	-3.940848	-3.438421
47	1	0	4.317442	-2.989606	-4.931742
48	6	0	-4.215326	4.038495	-1.045700
49	6	0	-3.854335	5.511322	-1.140103
50	6	0	-2.324382	5.452422	-1.142761
51	6	0	-2.042607	3.948886	-0.976619
52	7	0	-3.203069	3.200368	-0.991150
53	1	0	-4 293818	5 946943	-2 043642
54	1	0	-1 954024	6 009453	-0 326242
54	1	0	-1.034024	0.000433	-0.520242
55	1	0	-4.2/5/51	6.052049	-0.285786
56	1	0	-1.8/3/11	5.805068	-2.076543
57	8	0	-0.910285	3.489572	-0.837304
58	8	0	-5.467267	3.722683	-1.019662
59	35	0	-0.790960	-1.490887	-1.084437
60	1	0	-0.697228	0.009125	1.725649
61	6	0	-1.365193	-0.525886	2.392036
62	6	0	-2.581364	-1.078216	1.917635
63	6	0	-0.994999	-0.687677	3.720420
64	6	0	-3.023048	-0.878735	0.557218
65	6	0	-3.403828	-1.793624	2.822416
66	6	0	-1.822184	-1.396759	4.598699
67	1	0	-0.059115	-0.266919	4.071774
68	6	0	-4 149363	-1 656829	-0 020267
69	6	0	-2 231562	_0 081781	-0 406972
70	6	0	-3 026146	-1 040652	1 149470
70	1	0	-3.020140	-1.949652	4.140470
71	1	0	-4.34/326	-2.199559	2.476030
72	1	0	-1.526800	-1.517266	5.637579
73	6	0	-5.255834	-0.940690	-0.513930
74	6	0	-4.099446	-3.048497	-0.170492
75	1	0	-2.768658	0.201161	-1.303802
76	1	0	-1.643733	0.734279	-0.007499
77	1	0	-3.669692	-2.492024	4.834687
78	6	0	-6.282262	-1.604856	-1.179936
79	6	0	-5.287019	0.540209	-0.229156
80	6	0	-5.140728	-3.709307	-0.827020
81	1	0	-3.237853	-3.602023	0.189389
82	6	0	-6.226895	-2.991946	-1.334255
83	1	0	-7 119710	-1 021886	-1 550055
0.0 Q /I	۰ ۵	0	-6 096753	1 265001	-0.878672
04	0	0	-0.000/33	1.20JUUI	0.070072
85	Ŭ 1	U	-4.4/0/0/	0.94440/	0.010000
86	T	U	-5.095635	-4./8/895	-0.948206
87	1	0	-7.033296	-3.514720	-1.840945
88	1	0	-5.662012	2.697786	-0.906859
89	6	0	2.118536	-1.472312	-4.200535
90	1	0	1.050007	-1.325065	-4.016766
91	1	0	2.658824	-0.617699	-3.780808
0.2	1	0	2.287144	-1 464625	-5 285628

References

- R. Nishiyori, A. Tsuchihashi, A. Mochizuki, K. Kaneko, M. Yamanaka and S. Shirakawa, *Chem. Eur. J.*, 2018, 24, 16747.
- A. Hasegawa, Y. Naganawa, M. Fushimi, K. Ishihara and Y. Yamamoto, *Org. Lett.*, 2006, **8**, 3175.
- N. Hosoya, A. Hatayama, R. Irie, H. Sasaki and T. Katsuki, *Tetrahedron*, 1994, 50, 4311.
- 4 (a) S. Song, S.-F. Zhu, Y.-B. Yu and Q.-L. Zhou, *Angew. Chem., Int. Ed.*, 2013, 52, 1556; (b) B. N. Hemric, K. Shen and Q. Wang, *J. Am. Chem. Soc.*, 2016, 138, 5813;
 (c) W. Sha, W. Zhang, S. Ni, H. Mei, J. Han and Y. Pan, *J. Org. Chem.*, 2017, 82, 9824; (d) Z.-C. Liu, Q.-Q. Zhao, J. Chen, Q. Tang, J.-R. Chen and W.-J. Xiao, *Adv. Synth. Catal.*, 2018, 360, 2087.
- 5 S. Song, X. Li, X. Sun, Y. Yuan and N. Jiao, Green Chem., 2015, 17, 3285.
- A. I. Meyers, M. A. Hanagan, L. M. Trefonas and R. J. Baker, *Tetrahedron*, 1983, 39, 1991.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.
- 8 CYLview, 1.0b, Legault, C. Y. Université de Sherbrooke, 2009.

NMR Charts

S-59

S-62

S-70

Daicel Chiralpak IA-3, hexane/2-propanol = 10:1, flow rate = 0.5 mL/min, 254 nm

S-74

