ELECTRONIC SUPPORTING INFORMATION

Reaction condition controlled nickel-catalyzed C-C cross coupling of alcohols

Meng-Juan Zhang,^a Hong-Xi Li,^{*,a,b} David J. Young,^c Hai-Yan Li,^a and Jian-Ping Lang^{*,a,b}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

^cCollege of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia

Table of Contents

General Information	S3
Synthesis of 1a	S3
Procedure for Synthesis of α-Alkylated Ketones	S3
Procedure for Synthesis of α,β-Unsaturated Ketones	S3
Procedure for Synthesis of β-Alkylated Secondary Alcohols	S4
Procedure for Synthesis of Quinoline Derivatives	S4
Single Crystal X-ray crystallography	
¹ H and ¹³ CNMR Data of Products	
References	S26
Fig. S1 The observed (red) and simulated (black) PXRD patterns for 1a	S27
The ¹ H and ¹³ C NMR Spectra of Products (Fig. S2-S88)	S28

General Information

All catalytic experiments were carried out under anatmosphere of purified nitrogen. Complex [Zn(dmpymt)₂]_n was prepared according to a literaturemethod.^{S1}All reagents obtained from commercial sources were used directly without further purification. All solvents were obtained from commercial sources and were purified according to standard procedures. Column chromatography was performed on silica gel. ¹H NMR spectra were recorded at 400 MHz or 600MHz and ¹³C NMR spectra were measured at 150 MHz or 100 MHz using a Varian UNITY plus-400 spectrometer with CDCl₃ as solvent. Elemental analyses for C, H, and N were performed on a Carlo-Erbo CHNO-S microanalyzer. High resolution mass spectra (HRMS) were obtained with a GCT Premier (Micromass UK limited) chemical ionization time-of-flight mass spectrometer (CI-TOF). IR spectra (KBr disc) were recorded on a Nicolet MagNa-IR550 FT-IR spectrometer (4000-400 cm⁻¹). Product yields were measured on an Agilent 1260 HPLC.

Synthesis of [Ni(dmpymt)₂]₆ (1a)

To a solution of $[Zn(dmpymt)_2]_n (0.68 g, 2 mmol)$ in CH₂Cl₂/MeOH (20 mL, 2/1) was added a MeOH solution (10 mL) of Ni(NO₃)₂·6H₂O (0.58 g, 2 mmol). The mixture was stirred overnight and the resulting dark green solution was reduced to dryness under vacuum. The residue was washed with water, MeOH, diethyl ether, and dried in air. The crude product was dissolved in CH₂Cl₂ and MeOH and filtered. Diethyl ether wasslowly diffused into the filtrate to form dark green crystals of **1a**, which were collected by filtration, washed with Et₂O, and dried *in vacuo*.Yield: 687.0 mg (75%, based on Ni). Anal. Calcd for C₇₂H₈₄Ni₆N₂₄S₁₂: C 42.76, H 4.19, N 16.62. Found: C 42.72, H 4.22, N 16.54 %. IR (KBr pellet, v/cm⁻¹): 1582 (s), 1530 (m), 1435 (m), 1385 (w), 1343 (w), 1263 (s), 1030 (w), 955 (w), 886 (w).

Procedure for Synthesis of α-Alkylated Ketones

1a (5 mol % Ni), KOH (0.5 mmol), primary alcohol (1.5 mmol) and secondary alcohol (1.0 mmol) were mixed with toluene (3.0 mL) in a 50 mL Schlenk tube under N₂. The tube was placed in a 100 °C oil bath and srirred for 24 h under a slow, steady stream of N₂. The mixture was cooled to room temperature and water (10 mL) added. The aqueous solution was extracted with CH_2Cl_2 (3 × 10 mL) and the combined extracts dried over anhydrous Na₂SO₄. The solvent was removed and the crude product purified on a short flash chromatography column.

Procedure for Synthesis of α,β-Unsaturated Ketones

1a (5 mol % Ni), KOH (1.0 mmol), primary alcohol (1.5 mmol) and secondary alcohol (1.0 mmol) were mixed with toluene (2.5 mL)/*t*-BuOH (0.5 mL) in a 50 mL Schlenk tube under N₂. The tube was placed in a 70 °C oil bath and srirred for 36 h under aslow, steady stream of N₂. The mixture

was cooled to room temperature and water (10 mL) was added. The aqueous solution was extracted with CH_2Cl_2 (3 × 10 mL) and the combined extracts dried over anhydrous Na_2SO_4 . The solvent was removed and the crude product purified on a short flash chromatography column.

Procedure for Synthesis of β-AlkylatedSecondary Alcohols

1a (2 mol % Ni), KOH (0.75 mmol), primary alcohol (0.75 mmol) and secondary alcohol (0.5 mmol) were mixed with toluene (1.0 mL) in a 15 mL Teflon Schlenk tube, which was sealed under N₂,. The tube was heated at 120 °C with stirring for 24 h. After cooling to room temperature, water (10 mL) was added and the aqueous solution extracted with CH_2Cl_2 (3 × 10 mL). The combined extracts were dried over anhydrous Na₂SO₄, solvent removed and the crude product was purified on a short flash chromatography column.

Procedure for Synthesis of Quinoline Derivatives

1a (5 mol % Ni), KOH (0.5 mmol), 2-aminobenzyl alcohol (1.0 mmol) and secondary alcohol (1.2 mmol) were mixed withtoluene (3 mL) in a 50 mL Schlenk tube under N₂. The tube was placed in a 110 °C oil bath and srirred for 24 h under a slow, steady stream of N₂. After cooling to room temperature, water (10 mL) was added and the aqueous solution was extracted with CH_2Cl_2 (3 × 10 mL). The combined extracts were dried over anhydrous Na₂SO₄, solvent removed and the crude product purified on a short flash chromatography column.

Single Crystal X-ray Crystallography

Single crystals of **1a** were obtained directly from the above preparation. X-ray diffraction data collection was performed on an Xcalibur, Atlas, Gemini X-ray diffractometer using graphite monochromated Mo K_{α} (λ = 0.71073 Å). The single crystal was mounted on a glass fiber with grease and cooled in a liquid nitrogen stream at 216 K. The crystal structure of [Ni(dmpymt)₂]₆ was solved by direct methods using the SHELXL-2014/7 and refined by full matrix least-squares on F^2 .^{S2} All of the non-H atoms were refined on F^2 anisotropically by the full-matrix least squares method. All H atoms were introduced at the calculated positions and included in the structure-factor calculations. Crystal structural data for **1a**·9MeOH (CCDC 1884968) is contained in the CIF.

The ¹H and ¹³C NMR data of products

3-diphenylpropan-1-one(4aa)⁸³

White solid (193.3 mg, 92% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.94 (d, *J* = 7.8 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.27 (dt, *J* = 14.7, 7.4 Hz, 4H), 7.21–7.16 (m, 1H), 3.27 (t, *J* = 7.7 Hz, 2H), 3.05 (t, *J* = 7.7 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 199.2, 141.4, 136.9, 133.1, 128.7, 128.6, 128.5, 128.1, 40.5, 30.2.HRMS *m/z* calcd for C₁₅H₁₄O [M+H]⁺ 211.1123, found 211.1123.

3-phenyl-1-(p-tolyl)propan-1-one(4ab)⁸³

White solid (199.5 mg, 89% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.30 (dd, *J* = 10.3, 4.2 Hz, 2H), 7.26–7.22 (m, 4H), 7.22–7.16 (m, 1H), 3.30–3.23 (m, 2H), 3.09 – 3.02 (m, 2H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 199.0, 143.9, 141.5, 134.5, 129.4, 128.6, 128.3, 126.2, 40.5, 30.3, 21.7.HRMS *m*/*z* calcd for C₁₆H₁₆O [M+H]⁺225.1279, found 225.1279.

1-(4-methoxyphenyl)-3-phenylpropan-1-one (4ac)^{S3}

White solid (223.2 mg, 93% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.94 (d, *J* = 8.7 Hz, 2H), 7.36–7.16 (m, 5H), 6.92 (d, *J* = 8.7 Hz, 2H), 3.86 (s, 3H), 3.30–3.20 (m, 2H), 3.05 (t, *J* = 7.7 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 197.8, 163.5, 141.5, 130.4, 130.0, 128.5, 126.1, 113.8, 55.5, 40.1, 30.4.HRMS *m/z* calcd for C₁₆H₁₆O₂ [M+H]⁺ 241.1229, found 241.1225.

1-(4-fluorophenyl)-3-phenylpropan-1-one(4ad)⁸⁴

White solid (191.5 mg, 84% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.93 (dd, *J* = 8.5, 5.6 Hz, 2H), 7.33–7.12 (m, 5H), 7.06 (t, *J* = 8.6 Hz, 2H), 3.22 (t, *J* = 7.6 Hz, 2H), 3.03 (t, *J* = 7.6 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 197.5, 166.9, 164.4, 141.2, 133.3, 130.6, 128.5, 126.2, 115.7, 115.5, 40.3, 30.0.HRMS *m/z* calcd for C₁₅H₁₃FO [M+H]⁺229.1029, found 229.1029.

1-(4-chlorophenyl)-3-phenylpropan-1-one(4ae)^{S3}

White solid (212.3 mg, 87% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.88 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.22 (dt, *J* = 14.5, 5.5 Hz, 3H), 3.26 (t, *J* = 7.7 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 198.1, 141.2, 139.6, 135.3, 129.6, 129.0, 128.7, 128.5, 126.4, 40.6, 30.2.HRMS *m*/*z* calcd for C₁₅H₁₃ClO [M+H]⁺ 245.0733, found 245.0729.

1-(4-bromophenyl)-3-phenylpropan-1-one(4af)⁸³

White solid (235.3 mg, 82% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.25–7.16 (m, 3H), 3.25 (t, *J* = 7.6 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 198.2, 141.1, 135.7, 132.0, 129.7, 128.7, 128.5, 128.3, 126.3, 40.5, 30.1. HRMS *m*/*z* calcd for C₁₅H₁₃BrO [M+H]⁺ 288.0150, found 288.0148.

3-phenyl-1-(m-tolyl)propan-1-one(4ag)⁸⁴

White solid (194.9 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.76 (s, 2H), 7.41–7.14 (m, 7H), 3.27 (d, *J* = 6.5 Hz, 2H), 3.06 (d, *J* = 4.4 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 199.5, 141.5, 138.5, 137.0, 133.9, 128.6, 126.2, 125.3, 40.6, 30.3, 21.5.HRMS *m/z* calcd for C₁₆H₁₆O [M+H]⁺ 225.1279, found 225.1273.

1-(3-bromophenyl)-3-phenylpropan-1-one (4ah)⁸⁵

White solid (230.4 mg, 80% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.08 (s, 1H), 7.87 (d, J = 7.7 Hz, 1H), 7.68 (d, J = 7.7 Hz, 1H), 7.32 (dd, J = 18.1, 7.8 Hz, 3H), 7.26–7.15 (m, 3H), 3.27 (t, J = 7.6 Hz, 2H), 3.06 (t, J = 7.5 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 197.9, 141.1, 138.7, 136.0, 131.3, 130.3, 128.7, 128.5, 127.2, 126.5, 123.1, 40.7, 30.1. HRMS *m/z* calcd for C₁₅H₁₃BrO [M+H]⁺ 289.0228, found 289.0224.

3-phenyl-1-(o-tolyl)propan-1-one (4ai)⁸⁴

White solid (181.4 mg, 81% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.56 (d, *J* = 7.7 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 2H), 7.18 (dd, *J* = 16.2, 7.7 Hz, 5H), 3.19 (t, *J* = 7.6 Hz, 2H), 3.02 (t, *J* = 7.6 Hz, 2H), 2.45 (s, 3H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 203.3, 141.2, 138.1, 137.9, 132.0, 131.3, 128.6, 128.5, 128.4, 126.2, 125.7, 43.2, 30.4, 21.3. HRMS *m/z* calcd for C₁₆H₁₆O [M+H]⁺ 225.1279, found 225.1275.

1-(2-chlorophenyl)-3-phenylpropan-1-one(4aj)⁸⁶

White solid (187.8 mg, 77% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.95 (d, *J* = 7.4 Hz, 2H), 7.54 (t, *J* = 7.0 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 2H), 7.21 (d, *J* = 7.7 Hz, 2H), 3.29 (t, *J* = 7.5 Hz, 2H), 3.07 (t, *J* = 6.5 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 199.2, 141.3, 136.9, 133.1, 128.8, 128.4, 128.1, 126.2, 40.5, 30.2.HRMS *m*/*z* calcd for C₁₅H₁₃ClO [M+H]⁺ 245.0733, found 245.0730.

1-mesityl-3-phenylpropan-1-one (4ak)^{S4}

Yellow solid (189.0 mg, 75% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35–7.12 (m, 5H), 6.80 (s, 2H), 3.10–2.95 (m, 4H), 2.25 (s, 3H), 2.11 (s, 6H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 209.8, 141.0, 139.6, 138.4, 132.6, 128.6, 126.2, 46.4, 29.6, 21.1, 19.1.HRMS *m*/*z* calcd for C₁₈H₂₀O [M+H]⁺ 253.1592, found 253.1588.

1-(naphthalen-2-yl)-3-phenylpropan-1-one(4al)^{S3}

White solid (239.2 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.47 (s, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.99–7.84 (m, 3H), 7.58 (dt, *J* = 14.7, 7.0 Hz, 2H), 7.37–7.29 (m, 4H), 7.28–7.19 (m, 1H), 3.45 (t, *J* = 7.7 Hz, 2H), 3.15 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 199.2, 141.5, 135.7, 134.3, 132.6, 129.8, 129.6, 128.6, 127.9, 126.9, 126.3, 40.7, 30.4.HRMS *m/z* calcd for C₁₉H₁₆O [M+H]⁺ 261.1279, found 261.1275.

3-phenyl-1-(thiophen-2-yl)propan-1-one(4am)^{S3}

Yellow oil (157.7 mg, 73% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.68 (d, J = 3.3 Hz, 1H), 7.61 (d, J = 4.7 Hz, 1H), 7.36–7.27 (m, 2H), 7.25 (s, 1H), 7.23 (d, J = 5.8 Hz, 1H), 7.21–7.14 (m,

1H), 7.10 (t, J = 4.2 Hz, 1H), 3.23 (t, J = 7.7 Hz, 2H), 3.07 (t, J = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 192.3, 144.3, 141.1, 133.7, 131.9, 128.6, 128.2, 126.3, 41.3, 30.5.HRMS *m/z* calcd for C₁₃H₁₂OS [M+H]⁺ 217.0687, found 217.0685.

3-phenyl-1-(ferrocenyl)propan-1-one (4an)⁸³

Red solid (285.3 mg, 90% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.31 (s, 4H), 7.22 (d, *J* = 6.0 Hz, 1H), 4.77 (s, 2H), 4.48 (s, 2H), 4.08 (s, 5H), 3.04 (s, 4H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 203.2, 141.7, 128.7, 126.3, 72.3, 69.8, 69.4, 41.6, 30.3.HRMS *m/z* calcd for C₁₉H₁₈FeO [M+H]⁺318.0707, found 318.0695.

2-methyl-1,3-diphenylpropan-1-one(4ao)⁸³

Colorless oil (197.1 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.25 (t, *J* = 6.9 Hz, 1H), 5.24 (s, 1H), 3.71 (dd, *J* = 9.9, 6.8 Hz, 2H), 1.19 (d, *J* = 7.2 Hz, 3H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 205.8, 142.0, 135.8, 133.7, 128.9, 128.6, 128.4, 127.4, 126.2, 73.2, 47.2, 11.3. HRMS *m/z* calcd for C₁₆H₁₆O [M+H]⁺ 225.1279, found 225.1273.

2-benzyl-1-phenylbutan-1-one(4ap)⁸⁷

Colorless oil (195.2 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.89 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.49–7.36 (m, 4H), 7.30 (t, J = 7.4 Hz, 2H), 7.21 (t, J = 7.1 Hz, 1H), 5.07 (d, J = 4.7 Hz, 1H), 3.75 (dt, J = 8.8, 4.3 Hz, 1H), 3.43–2.81 (m, 1H), 2.11–1.87 (m, 1H), 1.85–1.68 (m, 1H), 0.79 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 205.3, 142.1, 137.5, 133.4, 128.7, 128.3, 127.5, 126.2, 73.9, 54.2, 20.6, 12.2.HRMS *m*/*z* calcd for C₁₇H₁₈O [M+H]⁺ 239.1436, found 239.1432.

2-benzylcyclohexan-1-one(4aq)^{S3}

White solid (161.7 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.25 (t, *J* = 7.4 Hz, 2H), 7.16 (dd, *J* = 13.7, 7.3 Hz, 3H), 3.22 (dd, *J* = 13.8, 4.6 Hz, 1H), 2.53 (dt, *J* = 12.2, 4.9 Hz, 1H), 2.40 (dd, *J* = 13.6, 9.1 Hz, 2H), 2.30 (td, *J* = 12.9, 5.7 Hz, 1H), 2.09–1.95 (m, 2H), 1.80 (d, *J* = 13.0 Hz, 1H), 1.73–1.47 (m, 2H), 1.42–1.23 (m, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 212.4,

140.3, 129.1, 128.3, 125.9, 52.4, 42.1, 35.5, 33.4, 28.0, 25.0.HRMS m/z calcd for C₁₃H₁₆O [M+H]⁺ 189.1279, found 189.1275.

4,4-dimethyl-1-phenylpentan-3-one(4ar)⁸⁵

Colorless oil (152.0 mg, 80% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.31–7.23 (m, 2H), 7.18 (d, *J* = 6.5 Hz, 3H), 2.91–2.83 (m, 2H), 2.83–2.75 (m, 2H), 1.10 (s, 9H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 215.0, 141.7, 128.5, 126.1, 44.2, 38.6, 30.2, 26.4.HRMS *m*/*z* calcd for C₁₃H₁₈O [M+H]⁺ 191.1436, found 191.1432.

1-phenyl-3-(p-tolyl)propan-1-one(4ba)⁸³

White solid (194.9 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.14 (q, *J* = 7.9 Hz, 4H), 3.29 (t, *J* = 7.7 Hz, 2H), 3.04 (t, *J* = 7.7 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 199.5, 138.3, 137.0, 135.8, 133.2, 129.3, 128.7, 128.4, 128.2, 40.8, 29.9, 21.1. HRMS *m/z* calcd for C₁₆H₁₆O [M+H]⁺ 225.1279, found 225.1275.

3-(4-methoxyphenyl)-1-phenylpropan-1-one(4ca)⁸³

White solid (213.6 mg, 89% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.96 (d, *J* = 7.3 Hz, 2H), 7.55 (d, *J* = 6.7 Hz, 1H), 7.46 (d, *J* = 7.3 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 3.79 (s, 3H), 3.27 (dd, *J* = 9.8, 5.1 Hz, 2H), 3.02 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 199.5, 158.1, 137.0, 133.5, 133.2, 129.5, 128.7, 128.2, 114.1, 55.4, 40.9, 29.4.HRMS *m/z* calcd for C₁₆H₁₆O₂ [M+H]⁺ 241,1229, found 241.1229.

3-(4-fluorophenyl)-1-phenylpropan-1-one(4da)^{S4}

White solid (184.7mg, 81% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 6.9 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.25–7.15 (m, 2H), 6.98 (t, *J* = 8.0 Hz, 2H), 3.29 (t, *J* = 7.4 Hz, 2H), 3.05 (t, *J* = 7.3 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 199.0, 162.4, 160.8, 137.0, 133.2, 129.9, 128.7, 128.1, 115.4, 115.3, 40.5, 29.4.HRMS *m/z* calcd for C₁₅H₁₃FO [M+H]⁺229.1029, found 229.1025.

3-(4-chlorophenyl)-1-phenylpropan-1-one(4ea)^{\$3}

White solid (205.0 mg, 84% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.95 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.35–7.27 (m, 2H), 7.25–7.19 (m, 2H), 3.30 (t, *J* = 7.7 Hz, 2H), 3.07 (t, *J* = 7.6 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 199.3, 141.4, 137.0, 133.2, 128.7, 128.6, 128.5, 128.2, 126.3, 40.6, 30.2.HRMS *m/z* calcd for C₁₅H₁₃ClO [M+H]⁺ 245.0733, found 245.0727.

3-(4-bromophenyl)-1-phenylpropan-1-one(4fa)^{S3}

White solid (230.4 mg, 80% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.94 (dd, J = 5.2, 3.4 Hz, 2H), 7.60–7.53 (m, 1H), 7.45 (dd, J = 10.5, 4.7 Hz, 2H), 7.43–7.37 (m, 2H), 7.13 (d, J = 8.3 Hz, 2H), 3.28 (t, J = 7.5 Hz, 2H), 3.03 (t, J = 7.5 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 198.9, 140.4, 136.9, 133.3, 131.7, 130.4, 128.8, 128.1, 120.0, 40.2, 29.6.HRMS *m/z* calcd for C₁₅H₁₃BrO [M+H]⁺ 289.0228, found 289.0224.

4-(3-oxo-3-phenylpropyl)benzonitrile(4ga)⁵⁸

White solid (141.0 mg, 60% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.99–7.91 (m, 2H), 7.57 (dd, J = 10.0, 4.6 Hz, 3H), 7.46 (t, J = 7.6 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 3.33 (t, J = 7.3 Hz, 2H), 3.14 (t, J = 7.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 198.4, 147.1, 136.7, 133.5, 132.5, 129.5, 128.9, 128.1, 119.1, 110.2, 39.6, 30.1.HRMS *m*/*z* calcd for C₁₆H₁₃NO [M+H]⁺ 236.1075, found 236.1069.

3-(2-methoxyphenyl)-1-phenylpropan-1-one(4ha)^{S3}

White solid (192.0 mg, 80% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.96 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.21–7.06 (m, 4H), 3.29–3.18 (m, 2H), 3.09–2.99 (m, 2H), 2.34 (s, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 199.4, 139.4, 136.9, 136.0, 133.1, 130.4, 128.7, 128.1, 126.4, 126.2, 39.2, 27.6, 19.4.HRMS *m/z* calcd for C₁₆H₁₆O₂[M+H]⁺ 241,1229, found 241.1225.

1-phenyl-3-(ferrocenyl)propan-1-one(4ia)⁸³

Red solid (279.8 mg, 88% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.00–7.95 (m, 2H), 7.60–7.53 (m, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 4.15 (d, *J* = 4.1 Hz, 7H), 4.09 (s, 2H), 3.25–3.16 (m, 2H), 2.83–2.75 (m, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 199.6, 137.0, 133.1, 128.7, 128.2, 88.3, 68.8, 68.3, 67.6, 40.4, 24.2.HRMS *m*/*z* calcd for C₁₉H₁₈FeO [M+H]⁺ 319.0785, found 319.0781.

3-(furan-2-yl)-1-phenylpropan-1-one(4ja)⁸³

Yellow solid (158.0 mg, 79% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.98 (d, *J* = 7.7 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.31 (s, 1H), 6.29 (s, 1H), 6.06 (s, 1H), 3.34 (t, *J* = 7.4 Hz, 2H), 3.10 (t, *J* = 7.4 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 198.8, 154.9, 141.2, 136.9, 133.3, 128.7, 128.1, 110.4, 105.4, 37.1, 22.6.HRMS *m/z* calcd for C₁₃H₁₂O₂ [M+H]⁺ 201.0916, found 201.0910.

1-phenyl-3-(thiophen-2-yl)propan-1-one(4ka)⁸⁵

Yellow solid (176.3 mg, 82% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.13 (d, *J* = 4.9 Hz, 1H), 6.97–6.90 (m, 1H), 6.87 (s, 1H), 3.43–3.34 (m, 2H), 3.34–3.25 (m, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 198.7, 144.0, 136.9, 133.3, 128.8, 128.2, 127.0, 124.8, 123.5, 40.7, 24.4.HRMS *m/z* calcd for C₁₃H₁₂OS[M+H]⁺ 216.0609, found 216.0605.

chalcone(5aa)⁸⁹

Yellow solid (183.0 mg, 88% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.06–8.01 (m, 2H), 7.82 (d, *J* = 15.7 Hz, 1H), 7.64 (dd, *J* = 6.4, 2.8 Hz, 2H), 7.57 (dd, *J* = 13.9, 6.6 Hz, 2H), 7.51 (dd, *J* = 16.7, 8.9 Hz, 2H), 7.45–7.39 (m, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.5, 144.8, 138.2, 134.9, 132.8, 130.6, 129.0, 128.6, 128.5, 122.1. HRMS *m*/*z* calcd for C₁₅H₁₂O[M+H]⁺ 209.0966, found 209.0970.

3-phenyl-1-(p-tolyl)prop-2-en-1-one(5ab)⁸⁹

Yellow solid (206.5 mg, 93% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 15.7 Hz, 1H), 7.68–7.62 (m, 2H), 7.54 (d, *J* = 15.6 Hz, 1H), 7.42 (dd, *J* = 4.9, 1.7 Hz, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.1, 144.5, 143.8, 135.8, 135.1, 130.5, 129.5, 129.1, 128.8, 128.5, 122.2, 21.8.HRMS *m/z* calcd for C₁₆H₁₄O[M+H]⁺ 223.1123, found 223.1124.

1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one(5ac)⁸⁹

Yellow solid (216.6 mg, 91% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.05 (d, *J* = 8.3 Hz, 2H), 7.80 (d, *J* = 15.6 Hz, 1H), 7.64 (d, *J* = 7.0 Hz, 2H), 7.55 (d, *J* = 15.6 Hz, 1H), 7.46–7.36 (m, 3H), 6.99 (d, *J* = 8.3 Hz, 2H), 3.89 (s, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 188.8, 163.6, 144.1, 135.2, 131.2, 130.9, 130.4, 129.0, 128.5, 122.0, 114.0, 55.6. HRMS *m*/*z* calcd for C₁₆H₁₄O₂ [M+H]⁺ 239.1072, found 239.1070.

1-(4-fluorophenyl)-3-phenylprop-2-en-1-one(5ad)^{S10}

Yellow solid (185.3 mg, 82% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.08–8.03 (m, 2H), 7.81 (d, *J* = 15.7 Hz, 1H), 7.64 (dd, *J* = 6.3, 2.7 Hz, 2H), 7.50 (d, *J* = 15.6 Hz, 1H), 7.45–7.39 (m, 3H), 7.17 (t, *J* = 8.5 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 188.8, 166.5, 164.8, 145.1, 134.9, 134.6, 131.2, 130.7, 129.1, 128.6, 121.7, 115.9, 115.8.HRMS *m/z* calcd for C₁₅H₁₁FO[M+H]⁺ 227.0872, found 227.0870.

1-(4-chlorophenyl)-3-phenylprop-2-en-1-one(5ae)^{S11}

Yellow solid (205.7 mg, 85% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 15.7 Hz, 1H), 7.68–7.61 (m, 2H), 7.48 (dd, *J* = 12.0, 5.3 Hz, 3H), 7.45–7.39 (m, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 189.3, 145.5, 139.3, 136.6, 134.8, 130.9, 130.0, 129.1, 128.6, 121.6.HRMS *m/z* calcd for C₁₅H₁₁ClO[M+H]⁺ 243.0577, found 243.0573.

1-(4-bromophenyl)-3-phenylprop-2-en-1-one(5af)^{S10}

Yellow solid (228.8 mg, 80% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.81 (d, *J* = 15.7 Hz, 1H), 7.67–7.61 (m, 4H), 7.47 (d, *J* = 15.7 Hz, 1H), 7.44–7.39 (m, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 189.4, 145.5, 137.0, 134.8, 132.0, 130.8, 130.1, 129.1, 128.6, 128.0, 121.5.HRMS *m/z* calcd for C₁₅H₁₁BrO[M+H]⁺ 287.0072, found 287.0060.

3-phenyl-1-(m-tolyl)prop-2-en-1-one(5ag)^{S12}

Yellow solid (195.4 mg, 88% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.81 (d, *J* = 15.7 Hz, 1H), 7.68–7.62 (m, 2H), 7.54 (d, *J* = 15.6 Hz, 1H), 7.42 (dd, *J* = 4.9, 1.7 Hz, 3H), 7.31 (d, *J* = 8.0 Hz, 2H), 2.44 (s, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.7, 144.6, 138.5, 138.3, 135.0, 133.6, 130.5, 129.0, 128.5, 125.8, 122.3, 21.4.HRMS *m/z* calcd for C₁₆H₁₄O[M+H]⁺ 223.1123, found 223.1118.

(3-bromophenyl)-3-phenylprop-2-en-1-one(5ah)^{S12}

Yellow solid (228.8 mg, 80% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.12 (d, *J* = 1.3 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.80 (dd, *J* = 15.7, 1.3 Hz, 1H), 7.69–7.65 (m, 1H), 7.64–7.59 (m, 2H), 7.44 (dd, *J* = 15.7, 1.3 Hz, 1H), 7.40 (dd, *J* = 3.8, 1.6 Hz, 3H), 7.37–7.32 (m, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 188.8, 145.6, 139.9, 135.6, 134.6, 131.5, 130.8, 130.2, 129.0, 128.6, 127.0, 123.0, 121.3.HRMS *m/z* calcd for C₁₅H₁₁BrO[M+H]⁺ 287.0072, found 287.0076.

3-phenyl-1-(o-tolyl)prop-2-en-1-one(5ai)^{S12}

Yellowoil (188.7 mg, 85% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.57 (dd, J = 6.6, 2.9 Hz, 2H), 7.49 (dd, J = 17.0, 11.8 Hz, 2H), 7.43–7.36 (m, 4H), 7.28 (t, J = 7.4 Hz, 2H), 7.15 (d, J = 16.0 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 196.6, 146.0, 139.2, 137.0, 134.7, 131.4, 130.7, 130.6, 129.1, 128.5, 128.2, 126.8, 125.6, 20.3. HRMS *m/z* calcd for C₁₆H₁₄O[M+H]⁺ 223.1123, found 223.1123.

(2-chlorophenyl)-3-phenylprop-2-en-1-one(5aj)^{S13}

Yellowoil (196.0 mg, 81% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.56 (dd, J = 7.1, 2.2 Hz, 2H), 7.50–7.44 (m, 3H), 7.43–7.38 (m, 4H), 7.36 (td, J = 7.4, 1.1 Hz, 1H), 7.14 (d, J = 16.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 193.9, 146.3, 139.2, 134.5, 131.4, 131.0, 130.4, 129.4, 129.1, 128.6, 126.9, 126.3.HRMS *m/z* calcd for C₁₅H₁₁ClO[M+H]⁺ 243.0577, found 243.0571.

1-mesityl-3-phenylprop-2-en-1-one(5ak)^{S14}

White solid (207.5 mg, 83% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.57 – 7.43 (m, 2H), 7.37 (d, *J* = 4.5 Hz, 3H), 7.26–7.13 (m, 1H), 7.00–6.83 (m, 3H), 2.32 (s, 3H), 2.19 (s, 6H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 201.2, 146.5, 138.4, 137.4, 134.6, 134.2, 130.8, 129.0, 128.8, 128.4, 21.2, 19.4.HRMS *m/z* calcd for C₁₈H₁₈O[M+H]⁺ 251.1436, found 251.1427.

1-(naphthalen-2-yl)-3-phenylprop-2-en-1-one(5al)^{S10}

White solid (237.4 mg, 92% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.54 (s, 1H), 8.12 (dd, J = 8.5, 1.3 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.92–7.86 (m, 2H), 7.70 (dd, J = 9.0, 6.6 Hz, 3H), 7.61 (dd, J = 11.0, 3.9 Hz, 1H), 7.57 (t, J = 7.0 Hz, 1H), 7.48–7.41 (m, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.4, 144.8, 135.6, 135.1, 132.7, 130.6, 130.0, 129.6, 129.1, 128.6, 127.9, 126.9, 124.6, 122.2. HRMS *m*/*z* calcd for C₁₉H₁₄O[M+H]⁺ 259.1123, found 259.1130.

3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one(5am)^{S12}

Yellow solid (156.2 mg, 73% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.86 (t, *J* = 10.3 Hz, 2H), 7.70–7.66 (m, 1H), 7.66–7.61 (m, 2H), 7.42 (t, *J* = 9.3 Hz, 4H), 7.20–7.16 (m, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 182.1, 145.6, 144.1, 134.8, 134.0, 131.9, 130.7 129.0, 128.6 128.4 121.7. HRMS *m/z* calcd for C₁₃H₁₀OS[M+H]⁺ 215.0531, found 215.0535.

1-ferrocenyl-3-phenyl-2-propen-1-one(5an)^{S15}

Red solid (284.4 mg, 90% yield).¹H NMR (40 MHz, CDCl₃, ppm) δ 7.81 (d, *J* = 15.4 Hz, 1H), 7.66 (s, 2H), 7.43 (s, 3H), 7.26 (s, 1H), 7.14 (d, *J* = 15.4 Hz, 1H), 4.92 (s, 2H), 4.60 (s, 2H), 4.22 (s, 5H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 193.1, 141.0, 135.3, 130.2, 129.1, 128.4, 123.1, 80.8, 72.9, 70.2, 69.9.HRMS *m/z* calcd for C₁₉H₁₆FeO [M+H]⁺317.0629, found 317.0634.

2-benzylidenecyclohexan-1-one(5aq)^{\$16}

Yellowoil (152.2 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.50 (t, *J* = 2.1 Hz, 1H), 7.43–7.35 (m, 4H), 7.32 (ddd, *J* = 8.5, 5.1, 2.7 Hz, 1H), 2.84 (td, *J* = 6.6, 2.1 Hz, 2H), 2.54 (t, *J* = 6.7 Hz, 2H), 1.99–1.88 (m, 2H), 1.82–1.72 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 201.9, 136.8, 135.7, 130.4, 128.6, 40.5, 29.1, 24.0, 23.5.HRMS *m/z* calcd for C₁₃H₁₄O[M+H]⁺187.1123, found 187.1117.

1-phenyl-3-(p-tolyl)prop-2-en-1-one(5ba)⁸⁹

Yellowsolid (208.7 mg, 94% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.03 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 15.7 Hz, 1H), 7.60–7.53 (m, 3H), 7.53–7.46 (m, 3H), 7.22 (d, *J* = 7.8 Hz, 2H), 2.39 (s, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.7, 145.0, 141.2, 138.4, 132.7, 132.2, 129.8, 128.8, 128.4, 121.2, 21.6.HRMS *m/z* calcd for C₁₆H₁₄O[M+H]⁺ 223.1123, found 223.1127.

3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one(5ca)^{\$9}

Yellowsolid (214.2 mg, 90% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.01 (d, *J* = 7.3 Hz, 2H), 7.78 (d, *J* = 15.6 Hz, 1H), 7.62–7.53 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.41 (d, *J* = 15.6 Hz, 1H), 6.92 (d, *J* = 8.6 Hz, 2H), 3.83 (s, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.6, 161.7, 144.7, 138.6, 132.6, 130.3, 128.6, 128.5, 127.7, 119.8, 114.5, 55.4.HRMS *m*/*z* calcd for C₁₆H₁₄O₂ [M+H]⁺ 239.1072, found 239.1068.

3-(4-fluorophenyl)-1-phenylprop-2-en-1-one(5da)^{S12}

Yellowsolid (198.9 mg, 88% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, *J* = 7.8 Hz, 2H), 7.77 (d, *J* = 15.7 Hz, 1H), 7.69–7.55 (m, 3H), 7.49 (dd, *J* = 19.4, 11.6 Hz, 3H), 7.10 (t, *J* = 8.3 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.4, 165.0, 163.4, 143.5, 138.3, 132.9, 131.4, 130.4,

128.7, 128.6, 122.1, 116.3, 116.2.HRMS m/z calcd for C₁₅H₁₁FO[M+H]⁺ 227.0872, found 227.0873.

3-(4-chlorophenyl)-1-phenylprop-2-en-1-one(5ea)⁸⁹

Yellowsolid (215.4 mg,89% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.01 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 15.7 Hz, 1H), 7.59 (dd, *J* = 12.2, 7.7 Hz, 3H), 7.54–7.44 (m, 3H), 7.39 (d, *J* = 8.2 Hz, 2H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 190.3, 143.4, 138.1, 136.5, 133.5, 133.1, 129.7, 129.4, 128.7, 122.6. HRMS *m/z* calcd for C₁₅H₁₁ClO[M+H]⁺ 243.0577, found 243.0572.

3-(4-bromophenyl)-1-phenylprop-2-en-1-one(5fa)⁵⁹

Yellowsolid (237.4 mg, 83% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.01 (d, *J* = 7.3 Hz, 2H), 7.72 (d, *J* = 15.7 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 9.1 Hz, 3H), 7.49 (dd, *J* = 8.2, 4.3 Hz, 4H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.2, 143.4, 138.1, 133.9, 133.0, 132.3, 129.9, 128.8, 128.6, 124.9, 122.6.HRMS *m*/*z* calcd for C₁₅H₁₁BrO[M+H]⁺ 287.0072, found 287.0063.

4-(3-oxo-3-phenylprop-1-en-1-yl)benzonitrile(5ga)^{S17}

Yellowsolid (177.1 mg, 76% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.76 (d, *J* = 15.7 Hz, 1H), 7.71 (q, *J* = 8.3 Hz, 4H), 7.64–7.58 (m, 2H), 7.52 (t, *J* = 7.6 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 189.8, 142.2, 139.3, 137.7, 133.4, 132.8, 128.8, 128.7, 125.2, 118.5, 113.6.HRMS *m/z* calcd for C₁₆H₁₁NO[M+H]⁺ 234.0919, found 234.0914.

3-(2-methoxyphenyl)-1-phenylprop-2-en-1-one(5ha)^{S12}

Yellowsolid (204.7 mg, 86% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.11 (d, *J* = 15.6 Hz, 1H), 8.02 (d, *J* = 7.5 Hz, 2H), 7.67 (d, *J* = 7.4 Hz, 1H), 7.50 (dt, *J* = 25.6, 12.3 Hz, 4H), 7.32–7.12 (m, 3H), 2.43 (s, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 190.2, 142.3, 138.2, 133.8, 132.7, 130.9, 130.2, 128.5, 126.3, 123.0, 19.8. HRMS *m*/*z* calcd for C₁₆H₁₄O₂ [M+H]⁺ 239.1072, found 239.1070.

3-ferrocenyl-1-phenylprop-2-enone(5ia)^{S18}

Red solid (271.8 mg, 86% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.00 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 15.3 Hz, 1H), 7.55 (t, J = 6.9 Hz, 1H), 7.48 (t, J = 7.1 Hz, 2H), 7.15 (d, J = 15.3 Hz, 1H), 4.59 (s, 2H), 4.47 (s, 2H), 4.16 (s, 4H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 189.7, 146.8, 138.6, 132.4, 128.5, 128.3, 119.1, 79.1, 71.4, 69.8, 69.0. HRMS *m*/*z* calcd for C₁₉H₁₆FeO [M+H]⁺ 317.0629, found 317.0634.

3-(furan-2-yl)-1-phenylprop-2-en-1-one(5ja)^{S12}

Yellow solid (162.4 mg, 82% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.03 (d, *J* = 7.5 Hz, 2H), 7.58 (dd, *J* = 15.2, 11.4 Hz, 2H), 7.54–7.41 (m, 4H), 6.71 (d, *J* = 2.9 Hz, 1H), 6.51 (s, 1H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 189.9, 151.7, 145.0, 138.2, 132.8, 130.7, 128.6, 119.4, 116.3, 112.8.HRMS *m/z* calcd for C₁₃H₁₀O₂ [M+H]⁺ 199.0759, found 199.0764.

1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one(5ka)^{S12}

Yellow solid (179.8 mg, 84% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.02–7.97 (m, 2H), 7.93 (d, *J* = 15.3 Hz, 1H), 7.58–7.53 (m, 1H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.39 (d, *J* = 5.0 Hz, 1H), 7.35–7.29 (m, 2H), 7.08–7.04 (m, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 189.8, 140.4, 138.1, 137.2, 132.8, 132.1, 128.9, 128.6, 128.4, 120.7.HRMS *m*/*z* calcd for C₁₃H₁₀OS[M+H]⁺ 215.0531, found 215.0538.

1,3-diphenylpropan-1-ol(6aa)^{S19}

Colorless oil (188.7 mg, 89% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.42–7.35 (m, 4H), 7.34–7.29 (m, 3H), 7.25–7.20 (m, 3H), 4.70 (dd, J = 7.8, 5.4 Hz, 1H), 2.82–2.74 (m, 1H), 2.74–2.66 (m, 1H), 2.20–2.12 (m, 1H), 2.06 (dq, J = 13.9, 6.2 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.7, 141.9, 128.7, 128.4, 127.7, 126.0, 73.9, 40.6, 32.1.HRMS *m/z* calcd for C₁₅H₁₆O[M] 212.1201, found 212.1201.

3-phenyl-1-(p-tolyl)propan-1-ol(6ab)^{\$19}

Colorless oil (205.7 mg, 91% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.31 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 5.6 Hz, 2H), 7.24–7.20 (m, 3H), 7.19 (d, *J* = 7.9 Hz, 2H), 4.65 (dd, *J* = 7.3, 5.9 Hz, 1H), 2.79–2.72 (m, 1H), 2.71–2.64 (m, 1H), 2.38 (s, 3H), 2.20–2.11 (m, 1H), 2.10–1.98 (m, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 142.0, 141.7, 137.3, 129.3, 128.5, 126.0, 73.8, 40.5, 32.2, 21.2.HRMS *m/z* calcd for C₁₆H₁₈O[M]226.1358, found 206.1351.

1-(4-methoxyphenyl)-3-phenylpropan-1-ol(6ac)^{S19}

Colorless oil (201.3 mg, 94% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.28 (d, *J* = 8.0 Hz, 4H), 7.18 (t, *J* = 7.3 Hz, 3H), 6.89 (d, *J* = 8.5 Hz, 2H), 4.64 (t, *J* = 6.6 Hz, 1H), 3.81 (s, 3H), 2.77–2.69 (m, 1H), 2.69–2.61 (m, 1H), 2.14 (dt, *J* = 14.0, 8.0 Hz, 1H), 2.05–1.96 (m, 1H), 1.76 (s, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.3, 142.0, 136.8, 128.6, 127.4, 126.0, 114.0, 73.7, 55.5, 40.5, 32.3.HRMS *m/z* calcd for C₁₆H₁₈O₂ [M]242.1307, found 242.1307.

1-(4-fluorophenyl)-3-phenylpropan-1-ol(6ad)^{S19}

Colorless oil (179.5 mg,78% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.35–7.27 (m, 4H), 7.23–7.17 (m, 3H), 7.07–7.02 (m, 2H), 4.67 (dd, J = 7.7, 5.5 Hz, 1H), 2.77–2.70 (m, 1H), 2.70–2.63 (m, 1H), 2.16–2.09 (m, 1H), 2.07–1.94 (m, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 163.1, 161.5, 141.7, 140.4, 128.5, 127.7, 126.1, 115.5, 115.4, 73.3, 40.7, 32.1.HRMS *m/z* calcd for C₁₅H₁₅FO[M] 230.1107, found 230.1106.

1-(4-chlorophenyl)-3-phenylpropan-1-ol(6ae)^{S19}

Colorless oil (196.9 mg, 80% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.33 (d, *J* = 8.3 Hz, 2H), 7.29 (t, *J* = 7.7 Hz, 4H), 7.20 (t, *J* = 8.6 Hz, 3H), 4.69–4.65 (m, 1H), 2.77–2.70 (m, 1H), 2.70–2.63 (m, 1H), 2.14–2.07 (m, 1H), 2.04–1.96 (m, 1H), 1.83 (s, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 143.2, 141.6, 133.4, 128.8, 128.6, 127.4, 126.1, 73.3, 40.6, 32.1.HRMS *m/z* calcd for C₁₅H₁₅ClO[M] 246.0811, found 246.0810.

1-(4-bromophenyl)-3-phenylpropan-1-ol(6af)^{\$19}

Colorless oil (240.7 mg, 83% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.48 (d, *J* = 8.3 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 7.19 (t, *J* = 8.3 Hz, 3H), 4.66 (dd, *J* = 7.6, 5.5 Hz, 1H), 2.73 (ddd, *J* = 15.1, 9.6, 5.9 Hz, 1H), 2.70–2.63 (m, 1H), 2.14–2.06 (m, 1H), 2.03–1.95 (m, 1H), 1.79 (s, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 143.7, 141.6, 131.7, 128.6, 127.8, 126.1, 121.5, 73.3, 40.6, 32.1.HRMS *m/z* calcd for C₁₅H₁₅BrO[M] 290.0306, found 290.0300.

3-phenyl-1-(m-tolyl)propan-1-ol(6ag)^{\$20}

Colorless oil (196.7 mg, 87% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.29 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 7.5 Hz, 1H), 7.23–7.18 (m, 3H), 7.18 (s, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 4.66 (dd, J = 7.8, 5.4 Hz, 1H), 2.80–2.73 (m, 1H), 2.71–2.64 (m, 1H), 2.36 (s, 3H), 2.18–2.10 (m, 1H), 2.07–2.00 (m, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.7, 142.0, 138.3, 128.5, 126.8, 126.0, 123.1, 74.0, 40.6, 32.3, 21.6.HRMS *m*/*z* calcd for C₁₆H₁₈O[M] 226.1358, found 226.1353.

1-(3-bromophenyl)-3-phenylpropan-1-ol(6ah)^{S20}

Colorless oil (234.9 mg, 81% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.55 (s, 1H), 7.45 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 7.4 Hz, 2H), 7.29 (d, J = 7.4 Hz, 1H), 7.25–7.21 (m, 3H), 4.66 (dd, J = 7.3, 5.7 Hz, 1H), 2.82–2.75 (m, 1H), 2.75–2.67 (m, 1H), 2.18 (s, 1H), 2.12 (td, J = 14.2, 8.4 Hz, 1H), 2.03 (dt, J = 14.2, 6.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 147.0, 141.5, 130.7, 130.2, 129.1, 128.5, 126.1, 124.6, 122.7, 73.2, 40.5, 32.0. HRMS *m*/*z* calcd for C₁₅H₁₅BrO[M] 290.0306, found 290.0305.

3-phenyl-1-(o-tolyl)propan-1-ol(6ai)^{\$20}

Colorless oil (185.4 mg, 82% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.50 (d, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.20 (dd, *J* = 19.7, 7.4 Hz, 5H), 7.13 (d, *J* = 7.3 Hz, 1H), 4.91 (dd, *J* = 8.1, 4.4 Hz, 1H), 2.91–2.80 (m, 1H), 2.79–2.67 (m, 1H), 2.24 (s, 3H), 2.12–1.95 (m, 3H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 142.8, 141.9, 134.5, 130.5, 128.5, 127.3, 126.4, 126.0, 125.2, 67.0, 39.5, 32.4, 19.0.HRMS *m/z* calcd for C₁₆H₁₈O[M] 226.1358, found 226.1352.

1-(2-chlorophenyl)-3-phenylpropan-1-ol(6aj)^{S19}

Colorless oil (187.0 mg, 76% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 7.59 (dd, J = 7.7, 1.6 Hz, 1H), 7.35–7.32 (m, 1H), 7.30–7.29 (m, 1H), 7.27 (s, 1H), 7.22 (dd, J = 7.0, 5.3 Hz, 3H), 7.19 (t, J

= 5.7 Hz, 2H), 5.15 (dd, J = 8.4, 4.1 Hz, 1H), 2.93–2.82 (m, 1H), 2.76 (ddd, J = 13.8, 9.8, 6.7 Hz, 1H), 2.19–2.08 (m, 1H), 2.07–1.96 (m, 1H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 142.0, 141.7, 131.9, 129.5, 129.1, 128.6, 128.2, 127.1, 125.9, 125.3, 70.3, 39.0, 32.2.HRMS *m/z* calcd for C₁₅H₁₅ClO[M] 246.0811, found 246.0810.

1-(naphthalen-2-yl)-3-phenylpropan-1-ol(6al)^{\$19}

White solid (238.4 mg, 91% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.85 (t, *J* = 6.5 Hz, 3H), 7.79 (s, 1H), 7.48 (dd, *J* = 13.1, 7.8 Hz, 3H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.24–7.17 (m, 3H), 4.89–4.85 (m, 1H), 2.83–2.75 (m, 1H), 2.75–2.67 (m, 1H), 2.23 (dt, *J* = 14.3, 8.0 Hz, 1H), 2.14 (dt, *J* = 14.6, 6.1 Hz, 1H), 1.99 (s, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 142.0, 141.9, 133.4, 133.2, 128.7, 128.4, 128.1, 127.8, 126.3, 126.0, 124.8, 124.2, 74.1, 40.5, 32.2. HRMS *m/z* calcd for C₁₉H₁₈O[M] 262.1358, found 262.1357.

3-phenyl-1-(thiophen-2-yl)propan-1-ol(6am)^{S21}

Yellow oil (170.0 mg, 78% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.29 (t, *J* = 7.6 Hz, 2H), 7.25 (s, 1H), 7.23–7.17 (m, 3H), 7.03–6.94 (m, 2H), 4.95–4.90 (m, 1H), 2.78 (ddd, *J* = 15.2, 9.5, 6.0 Hz, 1H), 2.74–2.68 (m, 1H), 2.26–2.18 (m, 1H), 2.18–2.11 (m, 1H), 2.04 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 148.6, 141.6, 128.6, 126.8, 126.1, 124.8, 124.1, 69.7, 40.8, 32.2.HRMS *m/z* calcd for C₁₃H₁₄OS[M] 218.0765, found 218.0759.

1-ferrocenyl-2-phenyl-ethanol(6an)⁸²²

Red oil (291.2 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.39 (t, *J* = 13.6 Hz, 5H), 4.68 (t, *J* = 6.2 Hz, 1H), 4.15 (d, *J* = 13.4 Hz, 9H), 2.61 (s, 1H), 2.57–2.45 (m, 1H), 2.45–2.28 (m, 1H), 2.22–1.89 (m, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 142.1, 128.5, 125.8, 94.2, 68.8, 68.3, 68.0, 67.2, 65.5, 39.7, 32.3.HRMS *m/z* calcd for C₁₉H₂₀FeO [M] 320.0864, found 320.0861.

1-phenyl-3-(p-tolyl)propan-1-ol(6ba)^{\$19}

Colorless oil (207.9 mg, 92% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.43–7.34 (m, 4H), 7.34–7.27 (m, 1H), 7.16–7.09 (m, 4H), 4.69 (dd, J = 7.5, 5.7 Hz, 1H), 2.77–2.69 (m, 1H), 2.69–2.61 (m, 1H), 2.34 (s, 3H), 2.13 (ddd, J = 14.0, 11.4, 7.6 Hz, 1H), 2.07–2.00 (m, 1H).¹³C

NMR (151 MHz, CDCl₃, ppm) δ 144.7, 138.8, 135.4, 129.2, 128.6, 128.4, 127.7, 126.1, 74.0, 40.7, 31.7, 21.1.HRMS *m/z* calcd for C₁₆H₁₈O[M] 226.1358, found 226.1357.

3-(4-methoxyphenyl)-1-phenylpropan-1-ol(6ca)^{S19}

Colorless oil (225.1 mg, 93% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.41–7.33 (m, 4H), 7.33–7.28 (m, 1H), 7.13 (d, *J* = 8.4 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 4.67 (dd, *J* = 7.7, 5.4 Hz, 1H), 3.80 (s, 3H), 2.75–2.67 (m, 1H), 2.67–2.59 (m, 1H), 2.16–2.05 (m, 2H), 2.05–1.95 (m, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 157.9, 144.7, 133.9, 129.4, 128.6, 127.7, 126.0, 113.9, 73.9, 55.3, 40.8, 31.2.HRMS *m/z* calcd for C₁₆H₁₈O₂[M]242.1307, found 242.1304.

3-(4-fluorophenyl)-1-phenylpropan-1-ol(6da)^{S19}

Colorless oil (184.0 mg, 80% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 7.39–7.33 (m, 4H), 7.33–7.29 (m, 1H), 7.14 (dd, *J* = 8.3, 5.6 Hz, 2H), 6.98 (t, *J* = 8.7 Hz, 2H), 4.66 (dd, *J* = 7.7, 5.4 Hz, 1H), 2.77–2.69 (m, 1H), 2.68–2.61 (m, 1H), 2.22–2.16 (m, 1H), 2.15–2.06 (m, 1H), 2.04–1.95 (m, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 162.1, 160.5, 144.6, 137.5, 129.8, 128.6, 127.8, 126.0, 115.2, 115.1, 73.8, 40.6, 31.3.HRMS *m/z* calcd for C₁₅H₁₅FO[M] 230.1107, found 230.1107.

3-(4-chlorophenyl)-1-phenylpropan-1-ol(6ea)^{S19}

Colorless oil (204.2 mg, 83% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.37–7.31 (m, 4H), 7.29 (t, *J* = 6.8 Hz, 1H), 7.24 (d, *J* = 8.6 Hz, 2H), 7.11 (d, *J* = 8.2 Hz, 2H), 4.65 (dd, *J* = 7.7, 5.5 Hz, 1H), 2.75–2.67 (m, 1H), 2.67–2.60 (m, 1H), 2.14–2.05 (m, 1H), 1.98 (ddd, *J* = 14.0, 9.4, 5.2 Hz, 1H), 1.94 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.5, 140.3, 131.7, 129.9, 128.6, 127.8, 126.0, 73.8, 40.4, 31.5. HRMS *m/z* calcd for C₁₅H₁₅ClO[M] 246.0811, found 246.0810.

3-(4-bromophenyl)-1-phenylpropan-1-ol(6fa)^{S19}

Colorless oil (232.0 mg, 80% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.36–7.30 (m, 4H), 7.27 (t, *J* = 6.8 Hz, 1H), 7.22 (d, *J* = 8.6 Hz, 2H), 7.09 (d, *J* = 8.2 Hz, 2H), 4.63 (dd, *J* = 7.7, 5.5 Hz,

1H), 2.73–2.66 (m, 1H), 2.65–2.58 (m, 1H), 2.12–2.03 (m, 1H), 1.97 (ddd, J = 14.0, 9.4, 5.2 Hz, 1H), 1.92 (s, 1H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.5, 140.3, 131.7, 129.9, 128.6, 127.8, 126.0, 73.8, 40.4, 31.5.HRMS *m/z* calcd for C₁₅H₁₅BrO[M] 290.0306, found 290.0302.

3-(2-methoxyphenyl)-1-phenylpropan-1-ol(6ha)^{S19}

Colorless oil (205.7 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.42 (d, *J* = 4.1 Hz, 4H), 7.38–7.31 (m, 1H), 7.20 (s, 4H), 4.81–4.69 (m, 1H), 2.88–2.75 (m, 1H), 2.73–2.61 (m, 1H), 2.33 (s, 3H), 2.22–1.93 (m, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.6, 140.1, 136.0, 130.2, 128.8, 128.5, 127.6, 126.0, 74.2, 39.3, 29.4, 19.3.HRMS *m*/*z* calcd for C₁₆H₁₈O₂[M] 242.1307, found 242.1306.

3-ferrocenyl-1-phenylpropan-1-ol(6ia)^{S23}

Red oil (288.0 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.25 (t, *J* = 13.6 Hz, 5H), 4.54 (t, *J* = 6.2 Hz, 1H), 4.01 (d, *J* = 13.4 Hz, 9H), 2.47 (s, 1H), 2.43–2.31 (m, 1H), 2.31–2.14 (m, 1H), 2.08–1.75 (m, 2H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 144.7, 128.5, 127.6, 126.0, 88.6, 74.1, 68.6, 68.0, 67.2, 40.0, 25.7.HRMS *m/z* calcd for C₁₉H₁₈FeO [M] 320.0867, found 320.0864.

3-(furan-2-yl)-1-phenylpropan-1-ol(6ja)^{S19}

Yellow oil (159.6 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.36 (d, *J* = 4.2 Hz, 4H), 7.29 (dd, *J* = 8.9, 4.2 Hz, 2H), 6.29 (s, 1H), 6.01 (d, *J* = 2.2 Hz, 1H), 4.71 (dd, *J* = 7.3, 5.9 Hz, 1H), 2.81–2.65 (m, 2H), 2.12 (ddd, *J* = 30.2, 14.7, 7.6 Hz, 2H), 1.98 (s, 1H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 155.7, 144.5, 141.1, 128.7, 127.8, 126.0, 110.3, 105.2, 73.8, 37.3, 24.5.HRMS *m/z* calcd for C₁₃H₁₄O₂ [M] 202.0994, found 202.0996.

2-phenylquinoline(8a)^{S3}

Yellow solid (131.2 mg, 64% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.20 (dd, J = 12.6, 8.3 Hz, 4H), 7.85 (dd, J = 19.3, 8.3 Hz, 2H), 7.74 (t, J = 7.3 Hz, 1H), 7.62–7.43 (m, 4H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 157.4, 148.3, 139.7, 137.0, 129.8, 129.5, 129.0, 127.7, 127.3, 126.4, 119.1.HRMS *m*/*z* calcd for C₁₅H₁₁N [M+H]⁺ 206.0970, found 206.0966.

2-(p-tolyl)quinoline(8b)⁸²⁴

Yellow solid (146.7 mg, 67% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.24–8.16 (m, 2H), 8.09 (d, *J* = 7.1 Hz, 2H), 7.83 (dd, *J* = 17.8, 8.3 Hz, 2H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 2H), 2.44 (s, 3H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 157.4, 148.3, 139.6, 136.9, 129.7, 127.6, 127.2, 126.2, 119.0, 21.5.HRMS *m/z* calcd for C₁₆H₁₃N [M+H]⁺ 220.1126, found 220.1122.

2-(4-methoxyphenyl)quinolone(8c)⁸³

Yellow solid (164.5 mg, 70% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.16 (t, *J* = 8.7 Hz, 4H), 7.87–7.76 (m, 2H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.1 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 3.88 (d, *J* = 1.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 161.0, 157.0, 148.3, 136.9, 132.2, 130.1, 129.9, 129.7, 129.1, 127.6, 127.0, 126.1, 118.7, 114.4, 55.5.HRMS *m/z* calcd for C₁₆H₁₃NO [M+H]⁺ 236.1075, found 236.1069.

2-(4-fluorophenyl)quinolone(8d)⁸³

Yellow solid (116.0 mg,52% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.20 (d, *J* = 8.6 Hz, 1H), 8.17 (d, *J* = 8.5 Hz, 3H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.21 (t, *J* = 8.5 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 164.8, 163.1, 156.3, 148.3, 137.0, 135.9, 129.9, 129.7, 129.5, 127.6, 127.2, 126.5, 118.7, 116.0, 115.8.HRMS *m/z* calcd for C₁₅H₁₀FN [M+H]⁺ 224.0876, found 224.0880.

2-(4-chlorophenyl)quinolone(8e)^{S3}

Yellow solid (136.2 mg, 57% yield).¹H NMR (600 MHz, CDCl₃, ppm) δ 8.23 (d, *J* = 8.6 Hz, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 8.13 (d, *J* = 8.5 Hz, 2H), 7.84 (dd, *J* = 8.2, 4.3 Hz, 2H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 2H).¹³C NMR (151 MHz, CDCl₃, ppm) δ 156.1, 148.2, 138.0, 137.2, 135.8, 130.0, 129.7, 129.2, 129.0, 127.6, 127.4, 126.7, 118.7.HRMS *m/z* calcd for C₁₅H₁₀ClN [M+H]⁺ 240.0580, found 240.0572.

2-(4-bromophenyl)quinolone(8f)^{S3}

Yellow solid (149.5 mg, 53% yield). ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.22 (d, *J* = 8.6 Hz, 1H), 8.19 (d, *J* = 8.5 Hz, 1H), 8.06 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 1H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 156.1, 148.2, 138.4, 137.3, 132.1, 130.1, 129.7, 129.3, 127.6, 127.4, 126.7, 124.1, 118.7.HRMS *m/z* calcd for C₁₅H₁₀BrN [M+H]⁺ 282.9997, found 282.9990.

2-(4-(trifluoromethyl)phenyl)quinolone(8g)⁸²⁵

Yellow solid (136.0 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.27 (t, *J* = 8.5 Hz, 3H), 8.21 (d, *J* = 8.5 Hz, 1H), 7.94–7.82 (m, 2H), 7.77 (t, *J* = 8.7 Hz, 3H), 7.57 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 155.8, 148.3, 143.0, 137.3, 130.2, 129.9, 128.0, 127.6, 127.0, 125.9, 118.9. HRMS *m/z* calcd for C₁₆H₁₀F₃N [M+H]⁺ 273.0765, found 273.0770.

2-(m-tolyl)quinolone(8h)^{S3}

Yellow solid (133.6 mg, 61% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.22 (t, *J* = 7.7 Hz, 2H), 8.03 (s, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.85 (dd, *J* = 16.9, 8.3 Hz, 2H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.4 Hz, 1H), 2.49 (s, 3H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 157.6, 138.7, 137.2, 130.4, 130.0, 129.6, 128.9, 128.5, 127.6, 127.3, 126.5, 125.0, 119.4, 21.7.HRMS *m/z* calcd for C₁₆H₁₃N [M+H]⁺ 220.1126, found 220.1125.

2-(o-tolyl)quinolone(8i)^{S3}

Yellow solid (122.6 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.21 (dd, *J* = 19.1, 8.5 Hz, 2H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.55 (dd, *J* = 11.9, 6.0 Hz, 3H), 7.37 (s, 3H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 160.2, 147.8, 140.7, 136.0, 130.8, 129.8, 129.4, 128.5, 127.5, 126.7, 126.4, 126.0, 122.3, 20.4.HRMS *m*/*z* calcd for C₁₆H₁₃N [M+H]⁺ 220.1126, found 220.1125.

2-(naphthalen-2-yl)quinoline(8j)⁸²⁴

Yellow solid (181.1 mg, 71% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.63 (s, 1H), 8.38 (d, J = 8.5 Hz, 1H), 8.31–8.21 (m, 2H), 8.06–7.98 (m, 3H), 7.91 (dd, J = 5.9, 3.4 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.59–7.51 (m, 3H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 157.2, 148.3, 137.1, 136.9, 134.0, 133.6, 129.9, 129.7, 129.0, 128.7, 127.8, 127.6, 127.4, 126.9, 126.5, 125.2, 119.3.HRMS *m/z* calcd for C₁₉H₁₃N [M+H]⁺ 256.1126, found 256.1136.

2-(pyridin-3-yl)quinolone(8k)^{S3}

Brown solid (133.9 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 9.35 (s, 1H), 8.69 (d, J = 4.6 Hz, 1H), 8.50 (d, J = 7.9 Hz, 1H), 8.24 (d, J = 8.6 Hz, 1H), 8.17 (d, J = 8.5 Hz, 1H), 7.91–7.79 (m, 2H), 7.74 (t, J = 7.7 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 7.7, 4.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 154.7, 150.2, 148.9, 148.5, 137.3, 135.2, 130.1, 129.9, 127.6, 126.9, 123.8, 118.6.HRMS *m/z* calcd for C₁₄H₁₀N₂ [M+H]⁺ 207.0922, found 207.0923.

2-(thiophen-2-yl)quinoline(81)^{S3}

Yellow solid (128.7 mg, 61% yield).¹H NMR (400 MHz, CDCl₃, ppm) δ 8.18–8.07 (m, 2H), 7.84–7.73 (m, 3H), 7.70 (t, *J* = 7.7 Hz, 1H), 7.48 (dd, *J* = 8.4, 6.7 Hz, 2H), 7.20–7.12 (m, 1H).¹³C NMR (101 MHz, CDCl₃, ppm) δ 152.4, 148.1, 145.4, 136.8, 130.0, 129.3, 128.8, 128.2, 127.6, 127.3, 126.2, 117.8.HRMS *m/z* calcd for C₁₃H₉NS [M+H]⁺ 212.0534, found 212.0539.

2-(ferrocenyl)quinoline(8m)^{S3}

Red solid (209.7 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.06 (t, *J* = 9.5 Hz, 2H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.3 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.48 (t, *J* = 7.1 Hz, 1H), 5.09 (s, 2H), 4.48 (s, 2H), 4.07 (s, 5H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ 159.6, 148.4, 135.6, 129.5, 129.1, 127.6, 126.8, 125.5, 119.6, 84.0, 70.6, 69.8, 68.1.HRMS *m/z* calcd for C₁₉H₁₅FeN [M+H]⁺ 314.0632, found 314.0630.

References

- S1 M. L. Godino-Salido, M. D. Gutiérrez-Valero, R. López-Garzón and J. M. Moreno-Sánchez, *Inorg. Chim. Acta*, 1994, 221, 177–181.
- S2 G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- S3 D. W. Tan, H. X. Li, D. L. Zhu, H. Y. Li, D. J. Young, J. L. Yao and J. P. Lang, Org. Lett., 2018, 20, 608–611.
- S4 S. Elangovan, J. P. Sortais, M. Beller and C. Darcel, *Angew. Chem. Int. Ed.*, 2015, 54, 14483–14486.
- S5 P. C. Liu, R. Liang, L. Lu, Z. T. Yu and F. Li, J. Org. Chem., 2017, 82, 1943–1950.
- S6 Y. F. Zhu, C. Cai and G. P. Lu, Helvetica Chimica Acta, 2014, 97, 1666–1671.
- S7 H. Kaku, T. Imai, R. Kondo, S. Mamba, Y. Watanabe, M. Inai, T. Nishii, M. Horikawa and T. A Tsunoda, *Eur. J. Org. Chem.*, 2013, 8208–8213.
- S8 M. Schedler, D.-S. Wang and F. Glorius, Angew. Chem. Int. Ed., 2013, 52, 2585–2589.
- S9 Z. F. Li, H. Y. Zhao, H. T. Han, Y. Liu, J. Y. Song, W. H. Guo, W. Y. Chu and Z. Z. Sun, *Tetrahedron Lett.*, 2017, 58, 3984–3988.
- S10 C. W. Downey, H. M. Glist, A. Takashima, S. R. Bottum and G. J. Dixon, *Tetrahedron Lett.*, 2018, 59, 3080–3083.
- S11 A. Sultan, A. R. Raza, M. Abbas, K. M. Khan, M. N. Tahir and N. Saari, *Molecules*, 2013, 18, 10081–10094.
- S12 Q. Jiang, J. Jia, B. Xu, A. Zhao and C.C. Guo, J. Org. Chem., 2015, 80, 3586-3596.
- S13 Y. F. Wu, G. L. Zhou, Q. W. Meng, Y. F. Tang, G. Z. Liu, H. Yin, J. N. Zhao, F. Yang, Z. Y. Yu and Y. Luo, *J. Org. Chem.*, 2018, 83, 13051–13062.
- S14 P. E. More, B. P. Bandgar and V. T. Kamble, Catal. Commun., 2012, 27, 30-32.
- S15 T, J. Muller, J. Conradie and E. A Erasmus, Polyhedron, 2012, 33, 257-266.
- S16 R. H. Qiu, Y. M. Qiu, S. F. Yin, X. X. Song, Z. G. Meng, X. H. Xu, X. W. Zhang, S. L. Luo, C.T. Au and W.Y. Wong, *Green Chem.*, 2010, **12**, 1767–1771.
- S17 D. Batovska, S. Parushev, A. Slavova, V. Bankova, I. Tsvetkova, M. Ninova and H. Najdenski, *Eur. J. Med. Chem.*, 2007, **42**, 87–92.
- S18 M. I. Daniel, K. Tataina, K. Elena, H. O. Simon and P. F. Javier, J. Organomet. Chem., 2004, 689, 2503–2510.
- S19 S Shee, B. Paul, D. Panja, B. C. Roy, K. Chakrabarti, K. Ganguli, A. Das, G. K. Das and S. Kundu, *Adv. Synth.Catal.*, 2017, **359**, 3888–3893.
- S20 Q. F. Wang, K. K. Wu and Z. K. Yu, Organometallics, 2016, 35, 1251–1256.
- S21 F. Freitag, T. Irrgang and R. Kempe, Chem. Eur. J, 2017, 23, 12110-12113.
- S22 B. Lu, Q. Wang, M. M. Zhao, X. M. Xie and Z. G. Zhang, J. Org. Chem., 2015, 80, 9563–9569.
- S23 C. S. Cho, Organometallics, 2003, 22, 3608-3610.
- S24 S. Das, D. Maiti and S. D. Sarkar, J. Org. Chem., 2018, 83, 2309-2316.
- S25 R. Z. Wang, H. J. Fan, W. Zhao and F. Li, Org. Lett., 2016, 18, 3558-3561.

Fig. S1 The observed (red) and simulated (black) PXRD patterns for 1a.

The ¹H and ¹³C NMR spectra of products

Fig. S2 The ¹H and ¹³C NMR spectra for 1,3-diphenylpropan-1-one (4aa)

S	3	4	0	, 	4	0	$^{\circ}$	$^{\circ}$	∞		S	\mathbf{c}	, 	0 0	-
σ	6	5	5	5	4	4	4	3	0	0	2	0	0		-
5	5	5	5	5	5	5	5	5	5	5	5	5	5	- r	2
<u>`</u> _	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	26	S	<u> </u>	<u> </u>	<u> </u>	- L	<u> </u>	<u> </u>	

.29

-3.07 -3.05 -3.04

S29

Fig. S5 The ¹H and ¹³C NMR spectra for 1-(4-fluorophenyl)-3-phenylpropan-1-one (4ad)

95 93 93 93 93 93 93 93 93 93 93 93 93 93	04

Fig. S6 The ¹H and ¹³C NMR spectra for 1-(4-chlorophenyl)-3-phenylpropan-1-one(4ae)

Fig. S7 The ¹H and ¹³C NMR spectra for 1-(4-bromophenyl)-3-phenylpropan-1-one(4af)

0	6	∞	9	0	6	∞	4	\mathfrak{c}	-	$^{\circ}$	6
×.	P.	Ś	Ś	(n)	0	0	0	0	0	0	-
1	5	5	1	1	5	5	1	5	5	1	F
<u> </u>	- ° L.	С° С.	ъ.	<u> </u>	<u> </u>	<u> </u>	<u> </u>				

Fig. S8 The ¹H and ¹³C NMR spectra for 3-phenyl-1-(m-tolyl)propan-1-one(4ag)

Fig. S9 The ¹H and ¹³C NMR spectra for 1-(3-bromophenyl)-3-phenylpropan-1-one(4ah)

Fig. S11 The ¹H and ¹³C NMR spectra for 1-(2-chlorophenyl)-3-phenylpropan-1-one(4aj) $9 \neq 9 \neq 0 = 0$

22	00
22	00
22	00
23	00
23	00
22	00
23	00
22	00
23	00
23	00
22	00
23	00
23	00
2	

Fig. S13 The ¹H and ¹³C NMR spectra for 1-(naphthalen-2-yl)-3-phenylpropan-1-one(4al)

P P Q Q Q Q - Q P Q - Q P Q Q Q Q Q Q Q	1 v v l v v l
400000000000000000000000000000000000000	444
88.88.77.77.77.77.77.77.77.77.77.77.77.7	m m m m m m
	n In

Fig. S14 The ¹H and ¹³C NMR spectra for 1-(naphthalen-2-yl)-3-phenylpropan-1-one(4am)

69	55	333	88	25	4 2	50	<u>20</u>	16	Ξ	10	60
6.6	6.0		<u> </u>	5.0	5. 5.	5	5	5	5	5	5

Fig. S19 The ¹H and ¹³C NMR spectra for 4,4-dimethyl-1-phenylpentan-3-one(4ar)

9198	919191	0
	$\infty \infty \infty \infty \sim r$	
	ййййй	

Fig. S20 The ¹H and ¹³C NMR spectra for 1-phenyl-3-(p-tolyl)propan-1-one(4ba)

99 58 58 58 58 58 58 58 58 58 58 58 58 58	33 229 33 33 33
	ຕໍ່ຕໍ່ຕໍ່ຕໍ່ຕໍ່ ຕ

Fig. S21 The ¹H and ¹³C NMR spectra for 3-(4-methoxyphenyl)-1-phenylpropan-1-one(4ca)

7.95 7.75 7.75 7.75 7.75 7.15 7.15 7.15 7.1	6.84 6.84	-3.75 -3.25 -3.25 -3.25 -3.25 -3.26 -3.26	3.00		
8.5 8.0 7.5 7.0	6.5 6.0 5.5 5.0 4.5 fl (4.0 3.5 3.0 2	.5 2.0 1.5	1.0 0.5	0.0
-199.5	-158.1 137.0 133.2 128.2 -114.1		-55.4 -40.9	4.67	
i			<u> </u>		
200 180 1	60 140 120 fl	100 80 6	0 40	20	0

Fig. S22 The ¹H and ¹³C NMR spectra for 3-(4-fluorophenyl)-1-phenylpropan-1-one(4da) ----3.30 3.29 3.07 -3.05 -3.03 3.27

6	6	58	Se	55	4	4	4	8	5	ă	ğ	6	96	
5	5	5	5	4	4	5	5	5	5	5	5	ý	<u>`</u>	

Fig. S23 The ¹H and ¹³C NMR spectra for 3-(4-chlorophenyl)-1-phenylpropan-1-one(4ea)

の 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
00000444000000

3.32

-3.28 -3.09 -3.07 -3.05

Fig. S24 The ¹H and ¹³C NMR spectra for 3-(4-bromophenyl)-1-phenylpropan-1-one(**4fa**)

Fig. S25 The ¹H and ¹³C NMR spectra for 4-(3-oxo-3-phenylpropyl)benzonitrile(4ga)

55555555555555555555555555555555555555	335 333 114 124 124
	سَ سَ سَ مَ مَ مَ مَ مَ مَ

Fig. S27 The ¹H and ¹³C NMR spectra for 1-phenyl-3-(ferrocenyl)propan-1-one(4ia)

Fig. S28 The ¹H and ¹³C NMR spectra for 3-(furan-2-yl)-1-phenylpropan-1-one(4ja)

9191919191	6 0	9 -
000004440	00	(Ú) (
	Ŭ Ŭ	
	1 1	

-3.12 -3.10 -3.08

Fig. S29 The ¹H and ¹³C NMR spectra for 1-phenyl-3-(thiophen-2-yl)propan-1-one(4ka)

98 59 7	55	- 6 {	, 4	$\frac{1}{4}$ $\frac{1}{6}$	4	33	8	8
666	66	e t		F F	Ģ	Ģ	9	6

3.39 3.37 3.36 3.36 3.30 3.29

Fig. S31 The ¹H and ¹³C NMR spectra for 3-phenyl-1-(p-tolyl)prop-2-en-1-one(5ab)

Fig. S32 The ¹H and ¹³C NMR spectra for 1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one(5ac)

Fig. S33 The ¹H and ¹³C NMR spectra for 1-(4-fluorophenyl)-3-phenylprop-2-en-1-one(5ad) $\begin{array}{c} & & & \\ & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

Fig. S34 The ¹H and ¹³C NMR spectra for 1-(4-chlorophenyl)-3-phenylprop-2-en-1-one(**5ae**)

Fig. S37 The ¹H and ¹³C NMR spectra for (3-bromophenyl)-3-phenylprop-2-en-1-one(5ah) 7.33 7.33 7.33 7.34 $\frac{4}{6}$

Fig. S38 The ¹H and ¹³C NMR spectra for 3-phenyl-1-(o-tolyl)prop-2-en-1-one(5ai)

555 555 555 555 555 555 555 555 555 55	46
	· 12

Fig. S39 The ¹H and ¹³C NMR spectra for (2-chlorophenyl)-3-phenylprop-2-en-1-one(**5aj**) 9997 5257

Fig. S41 The ¹H and ¹³C NMR spectra for 1-(naphthalen-2-yl)-3-phenylprop-2-en-1-one(**5al**)

Fig. S42 The ¹H and ¹³C NMR spectra for 3-phenyl-1-(thiophen-2-yl)prop-2-en-1-one(**5am**)

Fig. S43 The ¹H and ¹³C NMR spectra for 1-ferrocenyl-3-phenyl-2-propen-1-one(5an)

83 66 116 12	92 60 22
	444

200 180 160 140 120 100 80 60 40 20 0 fl (ppm)

Fig. S45 The ¹H and ¹³C NMR spectra for 1-phenyl-3-(p-tolyl)prop-2-en-1-one(5ba)

m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6
0 0 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3
8877777777777777777	6

Fig. S47 The ¹H and ¹³C NMR spectra for 3-(4-fluorophenyl)-1-phenylprop-2-en-1-one(5da)

Fig. S48 The ¹H and ¹³C NMR spectra for 3-(4-chlorophenyl)-1-phenylprop-2-en-1-one(**5ea**)

Fig. S50 The ¹H and ¹³C NMR spectra for 4-(3-oxo-3-phenylprop-1-en-1-yl)benzonitrile(5ga) $\begin{array}{c} 0 \\ 0 \\ \infty \end{array}$

S77

Fig. S52 The ¹H and ¹³C NMR spectra for 3-ferrocenyl-1-phenylprop-2-enone (5ia)

Fig. S53 The ¹H and ¹³C NMR spectra for 3-(furan-2-yl)-1-phenylprop-2-en-1-one(**5ja**)

8.04 8.02 7.57 7.57 7.57 7.52 7.52 7.49 7.49 6.71 6.51

Fig. S54 The ¹H and ¹³C NMR spectra for 1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one(**5ka**)

Fig. S55 The ¹H and ¹³C NMR spectra for 1,3-diphenylpropan-1-ol(**6aa**)

 $\begin{array}{c} 7.40\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.33\\ 7.23\\ 7.23\\ 7.22\\$

Fig. S56 The ¹H and ¹³C NMR spectra for 3-phenyl-1-(p-tolyl)propan-1-ol(**6ab**)

800532405	- 0 n 4 h 0 n 4 n 0 e	- 6 8 8 9 9 9 6 6 6 7	0 v v 4 4 v v 0
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 9 9 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	00000000
******	+ + + + + + + + + + + + + + + + + +	IN N N N N N N N N N	<u>d d d d d d d d</u>

Fig. S57 The 1 H and 13 C	C NMR spectra for 1-	-(4-methoxyphenyl))-3-phenylpropan-1-ol(6ac)
7.29 7.28 7.18 7.17 6.90 6.90 6.89 7.17 7.17 7.17 7.17 7.17 7.18 7.18 7.17 7.18 7.18	-4.63 -3.81 -2.75 -2.74 -2.74 -2.73 -2.73 -2.73 -2.73 -2.73	-2.70 -2.67 -2.66 -2.66 -2.64 -2.63 -2.63	2.15 2.15 2.15 2.15 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13

Fig.	S58	The	¹ H a	nd ¹³	³ C N	IMR	spec	tra	for 1	-(4	-flu	orop	hen	yl)-	3-р	hen	ylpr	opan	-1-0	l(6a	d)			
7.33	-7.33 -7.32	7.32	7.29	7.22	7.19	-7.06 -7.05	7.03	₇ 4.68	-4.67 -4.67	\4.66	2.74	2.72	-2./1 -2.69	2.68	2.67	/2.13 /2.13	2.12	2.11	2.02	2.02	2.01	-2.01	2.00	o c

Fig. S60 The ¹H and ¹³C NMR spectra for 1-(4-bromophenyl)-3-phenylpropan-1-ol(6af) 4.65 2.73 2.72 2.72 2.71 2.10 69 .68 7.48 7.47 7.30 7.30 7.29 7.27 7.23 7.23 7.23 7.23 7.21 7.21 7.19 7.18 68 .67 2.09 2.02 2.01 2.01 2.00 2.00 2.00 1.99 t.67 .66 .65 2 2.09 2.08 2.08 2.08 .66

Fig. S62 The ¹H and ¹³C NMR spectra for 1-(3-bromophenyl)-3-phenylpropan-1-ol(6ah) 4.65 2.81 2.80 2.79 2.78 2.77 2.77 2.69 2.18 2.10 2.09 2.05 2.05 2.04 2.01 7.55 7.46 7.44 7.35 7.35 7.35 7.33 7.29 7.28 7.28 7.28 7.28 7.28 2.15 76 20 2.14 2.13 2.11 .66 1.66 17 74 2 5 .67

8 9 4 0 8 9 4	00004	0 8 1 0 80 1 0 8 9 4 6 - 0
	$\omega \omega \phi \phi -$	$\nu \nu \nu \nu \omega 00000000000000000000000000000$
	4444	

S99

Fig. S74 The ¹H and ¹³C NMR spectra for 3-ferrocenyl-1-phenylpropan-1-ol (6ia)

Fig. S76 The ¹H and ¹³C NMR spectra for 2-phenylquinoline(8a) $\begin{array}{c} & & \\ & & &$

S102

Fig. S80 The ¹H and ¹³C NMR spectra for 2-(4-chlorophenyl)quinolone (8e) $\frac{12}{80} \times \frac{12}{80} \times \frac{12}{80}$

Fig. S81 The ¹H and ¹³C NMR spectra for 2-(4-bromophenyl)quinolone (8f)

Fig. S82 The ¹H and ¹³C NMR spectra for 2-(4-(trifluoromethyl)phenyl)quinolone(8g) $\frac{5}{8}$ $\frac{5}{8}$

Fig. S84 The ¹H and ¹³C NMR spectra for 2-(o-tolyl)quinolone (8i)

Fig. S85 The ¹H and ¹³C NMR spectra for 2-(naphthalen-2-yl)quinolone (**8**j)

9.35

Fig. S87 The ¹H and ¹³C NMR spectra for 2-(thiophen-2-yl)quinolone (**8**)

S114