Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Nickel(II)-catalyzed C(sp²)-H sulfuration/annulation with elemental sulfur: selective access to benzoisothiazolones

Jun-Ru Guo, Jun-Fang Gong* and Mao-Ping Song*

College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China

E-mail: gongjf@zzu.edu.cn (J.-F. Gong) or mpsong@zzu.edu.cn (M.-P. Song).

Table of Contents

Preparation of amide substrates	S2
Optimization of reaction conditions	S6
Crystal reports for 2a	S7
Kinetic isotope experiments	S10
References	S11
Spectra	S12

Preparation of amide substrates

Benzamides **1** were prepared by the known method.¹ **1a-1c**, **1f**, **1h**, **1i**, **1l**, **1q**, **1s** and **1aa** were known compounds, **1d**, **1e**, **1g**, **1j**, **1k**, **1m-1p**, **1r**, **1t-1z**, and **1ab** were new compounds. Other chemical reagents were commercially available and used without further purification.

4-Bromo-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1d). R_f = 0.3 (Petroleum ether/EtOAc =1/1). White solid (1.024 g, 55% yield), m.p. 192-193 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 8.49 (s, 1H), 7.82 – 7.73 (m, 3H), 7.65 – 7.58 (m, 2H), 7.37 – 7.27 (m, 3H), 3.92 (s, 3H), 2.04 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta: 165.0, 157.1, 140.7, 137.4, 134.0, 131.8, 128.7, 126.1, 122.9, 122.4, 119.6, 109.2, 54.4, 31.9, 25.7. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉BrN₃O⁺: 372.0706, found 372.0709.**

4-Iodo-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1e). R_f = 0.2 (Petroleum ether/EtOAc =1/1). White solid (1.048 g, 50% yield), m.p. 197-199 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 8.46 (s, 1H), 7.84 – 7.80 (m, 2H), 7.79 – 7.45 (m, 1H), 7.66 – 7.59 (m, 2H), 7.35 – 7.27 (m, 3H), 3.91 (s, 3H), 2.03 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta: 165.2, 157.2, 140.7, 137.8, 137.4, 134.6, 128.7, 122.9, 122.4, 119.6, 109.3, 98.4, 54.3, 31.9, 25.6. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉IN₃O⁺: 420.0567, found 420.0574.**

N-(2-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)propan-2-yl)-4-nitrobenzamide (1g). $R_f = 0.3$ (Petroleum ether/EtOAc =1/1). White solid (0.845 g, 50% yield), m.p. 189-191 °C. ¹H NMR (400 MHz, CDCl₃) δ : 9.05 (s, 1H), 8.35 (d, *J* = 8.8 Hz, 2H), 8.10 (d, *J* = 8.8 Hz, 2H), 7.82 - 7.73 (m, 1H), 7.41 - 7.29 (m, 3H), 3.96 (s, 3H), 2.08 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 163.7, 157.0, 149.6, 141.0, 140.3, 137.5, 128.2, 123.8, 123.1, 122.6, 119.6, 109.4, 54.7, 32.0, 25.1. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉N₄O₃⁺: 339.1452, found 339.1455.

N-(2-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)propan-2-yl)-[1,1'-biphenyl]-4-carboxami de (1j). $R_f = 0.3$ (Petroleum ether/EtOAc =1/1). White solid (1.126 g, 61% yield), m.p. 230-232 ℃. ¹H NMR (400 MHz, CDCl₃) δ : 8.25 (s, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.81 – 7.77 (m, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.66 – 7.61 (m, 2H), 7.51 – 7.45 (m, 2H), 7.42 – 7.27 (m, 4H), 3.93 (s, 3H), 2.06 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.7, 157.3, 144.3, 140.9, 140.1, 137.4, 133.7, 128.9, 128.0, 127.5, 127.3, 127.2, 122.8, 122.3, 119.7, 109.2, 54.3, 31.9, 26.0. HRMS (positive ESI): $[M+H]^+$ calcd for $C_{24}H_{24}N_3O^+$: 370.1914, found 370.1918.

4-Isopropyl-*N***-(2-(1-methyl-1***H***-benzo**[*d*]**imidazol-2-yl)propan-2-yl)benzamide** (1k). $R_f = 0.3$ (Petroleum ether/EtOAc =1/1). White solid (0.906 g, 54% yield), m.p. 190-192 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (s, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.79 – 7.76 (m, 1H), 7.35 – 7.25 (m, 5H), 3.91 (s, 3H), 3.30 – 2.89 (m, 1H), 2.03 (s, 6H), 1.28 (d, *J* = 6.9 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.0, 157.2, 152.8, 141.0, 137.3, 132.5, 127.1, 126.7, 122.7, 122.2, 119.7, 109.1, 54.1, 34.1, 31.8, 26.2, 23.8. HRMS (positive ESI): [M+H]⁺ calcd for C₂₁H₂₆N₃O⁺: 336.2070, found 332.2074.

3-Fluoro-*N*-(**2**-(**1**-methyl-1*H*-benzo[*d*]imidazol-2-yl)propan-2-yl)benzamide (1m). $R_f = 0.3$ (Petroleum ether/EtOAc =1/1). White solid (1.183 g, 76% yield), m.p. 222-225 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.49 (s, 1H), 7.81 – 7.75 (m, 1H), 7.71 – 7.66 (m, 1H), 7.65 – 7.60 (m, 1H), 7.49 – 7.43 (m, 1H), 7.36 – 7.27 (m, 3H), 7.25 – 7.19 (m, 1H), 3.93 (s, 3H), 2.05 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.6, 162.9 (d, $J_{C-F} = 246.2$ Hz), 157.1, 140.7, 137.5 (d, $J_{C-F} = 6.6$ Hz), 137.4, 130.2 (d, $J_{C-F} = 7.8$ Hz), 122.9, 122.5 (d, $J_{C-F} = 2.8$ Hz) 122.4, 119.7, 118.4 (d, $J_{C-F} = 21.2$ Hz), 114.4 (d, $J_{C-F} = 22.7$ Hz), 109.2, 54.4, 31.9, 25.6; ¹⁹F NMR (376 MHz, CDCl₃) δ : -111.9. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉FN₃O⁺: 312.1507, found 312.1509.

3-Chloro-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1n). R_f = 0.3 (Petroleum ether/EtOAc =1/1). White solid (1.229 g, 75% yield), m.p. 203-205 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 8.43 (s, 1H), 7.89 – 7.86 (m, 1H), 7.79 – 7.76 (m, 2H), 7.50 – 7.47 (m, 1H), 7.41 (t,** *J* **= 7.8 Hz, 1H), 7.34 – 7.28 (m, 3H), 3.91 (s, 3H), 2.03 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta: 164.7, 157.0, 140.7, 137.4, 136.9, 134.8, 131.5, 129.9, 127.4, 125.1, 122.9, 122.3, 119.7, 109.2, 54.4, 31.9, 25.7. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉ClN₃O⁺: 328.1211, found 328.1210.**

3-Bromo-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (10). R_f = 0.4 (Petroleum ether/EtOAc =1/1). White solid (1.303 g, 70% yield), m.p. 214-216 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 8.41 (s, 1H), 8.03 (t,** *J* **= 1.7 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.65 – 7.62 (m, 1H), 7.35 – 7.26 (m, 4H), 3.90 (s, 3H), 2.02 (s, 6H); ¹³C{¹H} NMR (100 MHz,**

CDCl₃) δ : 164.6, 157.0, 140.7, 137.3, 137.1, 134.4, 130.3, 130.1, 125.6, 122.9, 122.8, 122.3, 119.6, 109.2, 54.4, 31.9, 25.8. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉BrN₃O⁺: 372.0706, found 372.0709.

N-(2-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)propan-2-yl)-3-(trifluoromethyl)benzamid e (1p). R_f = 0.4 (Petroleum ether/EtOAc =1/1). White solid (1.445 g, 80% yield), m.p. 191-193 ℃. ¹H NMR (400 MHz, CDCl₃) δ : 8.68 (s, 1H), 8.20 (s, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.80 – 7.75 (m, 2H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.37 – 7.27 (m, 3H), 3.94 (s, 3H), 2.07 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.6, 157.1, 140.4, 137.3, 135.9, 131.2 (q, *J*_{C-F} = 32.7 Hz), 130.2, 129.2, 128.0 (q, *J*_{C-F} = 3.5 Hz), 124.3 (q, *J*_{C-F} = 3.8 Hz), 123.8 (q, *J*_{C-F} = 270.9 Hz), 123.0, 122.5, 119.5, 109.3, 54.5, 32.0, 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.7. HRMS (positive ESI): [M+H]⁺ calcd for C₁₉H₁₉F₃N₃O⁺: 362.1475, found 362.1473.

3-Methyl-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1r). R_f = 0.4 (Petroleum ether/EtOAc =1/1). White solid (0.922 g, 60% yield), m.p. 210-212 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 8.01 (s, 1H), 7.81 – 7.75 (m, 1H), 7.69 (s, 1H), 7.67 – 7.63 (m, 1H), 7.37 – 7.25 (m, 5H), 3.89 (s, 3H), 2.41 (s, 3H), 2.02 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta: 166.4, 157.2, 141.0, 138.4, 137.3, 134.8, 132.3, 128.5, 127.8, 124.0, 122.6, 122.1, 119.6, 109.2, 54.1, 31.8, 26.3, 21.4. HRMS (positive ESI): [M+H]⁺ calcd for C₁₉H₂₂N₃O⁺: 308.1757, found 308.1758.**

2-Fluoro-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1t). R_f = 0.5 (Petroleum ether/EtOAc =1/1). White solid (0.856 g, 55% yield), m.p. 146-147 °C. ¹H NMR (600 MHz, CDCl₃) \delta: 7.92 (s, 1H), 7.83 (d,** *J* **= 11.8 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.45 – 7.38 (m, 1H), 7.28 – 7.07 (m, 5H), 3.80 (s, 3H), 1.96 (s, 6H). ¹³C{¹H} NMR (150 MHz, CDCl₃) \delta: 162.1, 160.5 (d,** *J***_{C-F} = 245.6 Hz), 156.7, 141.4, 137.2, 133.4 (d,** *J***_{C-F} = 9.4 Hz), 131.7, 124.8, 122.5, 121.9, 121.5 (d,** *J***_{C-F} = 11.9 Hz), 119.7, 116.1 (d,** *J***_{C-F} = 24.5 Hz), 109.1, 54.2, 31.6, 27.0. ¹⁹F NMR (565 MHz, CDCl₃) \delta: -113.2. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉FN₃O⁺: 312.1507, found 312.1506.**

2-Chloro-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1u). R_f = 0.3 (Petroleum ether/EtOAc =1/1). White solid (0.951 g, 58% yield), m.p. 191-192 °C. ¹H NMR (600 MHz, CDCl₃) \delta: 7.80 (s, 1H), 7.73 (d,** *J* **= 7.7 Hz, 1H), 7.62 (d,** *J* **= 7.6 Hz, 1H), 7.41 (d,** *J* **= 7.9 Hz, 1H), 7.36 (t,** *J* **= 7.38, 1H), 7.33-7.22 (m, 4H), 3.91 (s, 3H), 2.03 (s, 6H).**

¹³C{¹H} NMR (150 MHz, CDCl₃) δ : 165.4, 156.6, 141.0, 137.3, 135.6, 131.2, 130.7, 130.3, 130.0, 127.1, 122.7, 122.2, 119.7, 109.1, 54.7, 31.8, 26.3. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉ClN₃O⁺: 328.1211, found 328.1212.

2-Bromo-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1v). R_f = 0.3 (Petroleum ether/EtOAc =1/1). White solid (1.229 g, 66% yield), m.p. 192-193 °C. ¹H NMR (600 MHz, CDCl₃) \delta: 7.77 (s, 1H), 7.72 (d,** *J* **= 7.8 Hz, 1H), 7.60 (d,** *J* **= 8.0 Hz, 1H), 7.55 (d,** *J* **= 7.5 Hz, 1H), 7.38 – 7.34 (m, 1H), 7.33 – 7.23 (m, 4H), 3.93 (s, 3H), 2.05 (s, 6H). ¹³C{¹H} NMR (150 MHz, CDCl₃) \delta: 166.5, 156.7, 140.9, 138.3, 137.4, 133.4, 131.2, 129.5, 127.6, 122.8, 122.2, 119.7, 119.4, 109.2, 54.8, 31.9, 26.0. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₉BrN₃O⁺: 372.0706, found 372.0707.**

3,4-Dimethoxy-*N***-(2-(1-methyl-1***H***-benzo**[*d*]**imidazol-2-yl**)**propan-2-yl**)**benzamide** (1w). $R_f = 0.2$ (Petroleum ether/EtOAc =1/1). White solid (0.813 g, 46% yield), m.p. 189-191 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.05 (s, 1H), 7.80 – 7.74 (m, 1H), 7.51 (d, J = 2.0 Hz, 1H), 7.45 (dd, J = 2.0, 8.3 Hz, 1H), 7.34 – 7.27 (m, 3H), 6.92 (d, J = 8.4 Hz, 1H), 3.97 – 3.92 (m, 6H), 3.91 (s, 3H), 2.03 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 165.6, 157.3, 151.8, 149.1, 140.9, 137.3, 127.6, 122.7, 122.2, 119.6, 119.3, 110.7, 110.3, 109.2, 56.1, 56.0, 54.2, 31.9, 26.2. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₄N₃O₃⁺: 354.1812, found 354.1816.

3,5-Dimethoxy-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1x). R_f = 0.2 (Petroleum ether/EtOAc =1/1). White solid (0.990 g, 56% yield), m.p. 190-191 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 7.95 (s, 1H), 7.80 – 7.74 (m, 1H), 7.33 – 7.25 (m, 3H), 7.01 (d,** *J* **= 2.3 Hz, 2H), 6.59 (t,** *J* **= 2.2 Hz, 1H), 3.90 (s, 3H), 3.84 (s, 6H), 2.02 (s, 6H), ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta: 165.9, 160.9, 157.0, 140.8, 137.2, 137.0, 122.8, 122.3, 119.6, 109.2, 105.0, 103.7, 55.6, 54.2, 31.8, 26.3. HRMS (positive ESI): [M+H]⁺ calcd for C₂₀H₂₄N₃O₃⁺: 354.1812, found 354.1815.**

3,5-Dimethyl-*N***-(2-(1-methyl-1***H***-benzo**[*d*]**imidazol-2-yl**)**propan-2-yl**)**benzamide (1y).** $R_f = 0.3$ (Petroleum ether/EtOAc =1/1). White solid (0.964 g, 60% yield), m.p. 215-217 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (s, 1H), 7.81 – 7.76 (m, 1H), 7.46 (s, 2H), 7.32 – 7.25 (m, 3H), 7.14 (s, 1H), 3.89 (s, 3H), 2.37 (s, 6H), 2.01 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.5, 157.2, 141.0, 138.3, 137.3, 134.8, 133.1, 124.7, 122.6, 122.1, 119.7, 109.1, 54.1, 31.8, 26.4, 21.3. HRMS (positive ESI): $[M+H]^+$ calcd for $C_{20}H_{24}N_3O^+$: 322.1914, found 322.1917.

3,4-Dichloro-*N***-(2-(1-methyl-1***H***-benzo[***d***]imidazol-2-yl)propan-2-yl)benzamide (1z). R_f = 0.4 (Petroleum ether/EtOAc =1/1). White solid (0.978 g, 54% yield), m.p. 217-218 °C. ¹H NMR (400 MHz, CDCl₃) \delta: 8.66 (s, 1H), 7.99 (d,** *J* **= 2.1 Hz, 1H), 7.79 –7.75 (m, 1H), 7.72 (dd,** *J* **= 2.1, 8.3 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.38 – 7.28 (m, 3H), 3.95 (s, 3H), 2.05 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) \delta: 163.7, 157.0, 140.5, 137.4, 135.8, 135.1, 133.1, 130.6, 129.4, 126.1, 123.0, 122.5, 119.6, 109.3, 54.5, 32.0, 25.4. HRMS (positive ESI): [M+H]⁺ calcd for C₁₈H₁₈Cl₂N₃O⁺: 362.0821, found 362.0825.**

N-(2-(1-methyl-1*H*-benzo[*d*]imidazol-2-yl)propan-2-yl)-2-naphthamide (1ab). $R_f = 0.3$ (Petroleum ether/EtOAc =1/1). White solid (0.944 g, 55% yield), m.p. 218-220 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.41 (s, 1H), 8.31 (s, 1H), 8.00 – 7.85 (m, 4H), 7.84 – 7.78 (m, 1H), 7.60 – 7.52 (m, 2H), 7.37 – 7.27 (m, 3H), 3.93 (s, 3H), 2.08 (s, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.1, 157.3, 140.9, 137.3, 134.8, 132.7, 132.2, 129.0, 128.5, 127.8, 127.6, 127.5, 126.7, 123.6, 122.8, 122.3, 119.7, 109.2, 54.4, 31.9, 26.1. HRMS (positive ESI): [M+H]⁺ calcd for C₂₂H₂₂N₃O⁺: 344.1757, found 344.1759.

Optimization of reaction conditions

	Ni(OTf) ₂ (20 mol%) S (1.5 equiv), KMnO ₄ (1.0 equiv) <u>TBAI (1.0 equiv), base (2.0 equiv)</u> cyclohexane, 9 h, air, 130 °C	
	D	X ² 1 1 ^b (0/)
Entry	Base	Yield [*] (%)
1	none	11
2	КОН	0
3	Na ₂ CO ₃	0
4	NaHCO ₃	trace
5	PivOK	4
6	t-BuOK	0
7	PivONa [·] H ₂ O	96
8^c	PivONa [·] H ₂ O	88

Table S1. Optimization of base^a

^{*a*}Reaction conditions: **1a** (0.10 mmol), S (0.15 mmol), Ni(OTf)₂ (20 mol%), cyclohexane (1.0 mL), KMnO₄ (1.0 equiv), base (2.0 equiv), TBAI (1.0 equiv), 130 °C, under air, 9 h. ^{*b*}Isolated yields. ^{*c*}Base (1.0 equiv). TBAI = tetrabutylammonium iodide.

Table S2. Optimization of additive^a

O N ^{MBIP} H <u>a</u> 1a	Ni(OTf) ₂ (20 mol%) S (1.5 equiv), KMnO ₄ (1.0 equiv) <u>dditive (1.0 equiv), PivONa H₂O (2.0</u> cyclohexane, 9 h, air, 130 ^o C	equiv) S 2a
Entry	Additive	$\operatorname{Yield}^{b}(\%)$
1	TBAB	75
2	TBAHSO ₄	31
3	THAB	0
4	TBAI	96

^{*a*}Reaction conditions: **1a** (0.10 mmol), S (0.15 mmol), Ni(OTf)₂ (20 mol%), cyclohexane (1.0 mL), KMnO₄ (1.0 equiv), PivONaH₂O (2.0 equiv), additive (1.0 equiv), 130 °C, under air, 9 h. ^{*b*}Isolated yields. ^{*c*}Base (1.0 equiv). TBAB = tetrabutylammonium bromide, TBAHSO₄ = tetrabutylammonium hydrogen sulfate, THAB = tetrahexylammonium benzoate.

Table S3.	Optimization	of catalyst	loading,	tempe rature	and rea	ction time
	1	•	0/	1		

	O Ni(OTf) ₂ KMnO ₄ (1.0 ec PivONa Cyclol	₂ , S (1.5 equiv), quiv), TBAI (1.0 equiv) H ₂ O (2.0 equiv) hexane, air	$\stackrel{()}{\rightarrow} \underbrace{\bigvee}_{S}^{O} \underbrace{\bigvee}_{N-1}^{N-1}$	MBIP
Entry	Ni(OTf) ₂ (mol%)	Temp (°C)	Time (h)	$\operatorname{Yield}^{b}(\%)$
1	20	130	9	96
2	10	110	9	20
3	10	120	9	45
4	10	130	9	65
5	10	140	9	98
6	10	140	6	78

^{*a*}Reaction conditions: **1a** (0.10 mmol), S (0.15 mmol), Ni(OTf)₂, KMnO₄ (1.0 equiv), PivONaH₂O (2.0 equiv), TBAI (1.0 equiv), cyclohexane (1.0 mL), under air. ^{*b*}Isolated yields.

Crystal reports for 2a

Crystals of **2a** (CCDC 1869264) were obtained by recrystallization from EtOAc/ Petroleum ether at ambient temperature. The data were collected on an Oxford Diffraction Gemini E

diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å) for compound **2a**. The structure was solved by direct methods using the SHELXS-97 program, and all non-hydrogen atoms were refined anisotropically on F^2 by the full-matrix least-squares technique, which used the SHELXL-97 crystallographic software package. The hydrogen atoms were included but not refined.

Figure S1. Molecular structure of 2a (showing one of four independent molecules in the unit cell). Hydrogen atoms are omitted for clarity.

	2a
Empirical formula	$C_{18}H_{17}N_3OS$
Formula weight	323.40
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	12.3938(4)
b/Å	14.5761(8)
c/Å	18.8153(11)
$\alpha/^{\circ}$	79.216(5)
β/°	89.365(4)
$\gamma^{/\circ}$	75.485(4)
Volume/Å ³	3230.2(3)
Z	8
$ ho_{calc}g/cm^3$	1.330
μ/mm^{-1}	1.838
F(000)	1360.0
Crystal size/mm ³	$0.19 \times 0.16 \times 0.13$
Radiation	$CuK\alpha (\lambda = 1.54184)$

Table S4. Summary of crystal structure determination for 2a

2Θ range for data collection/ ^o	7.21 to 134.14
Index ranges	$-14 \le h \le 8, -17 \le k \le 16, -22 \le l \le 22$
Reflections collected	24480
Independent reflections	11514 [$R_{int} = 0.0406$, $R_{sigma} = 0.0550$]
Data/restraints/parameters	11514/0/841
Goodness-of-fit on F^2	1.096
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0787, wR_2 = 0.2182$
Final R indexes [all data]	$R_1 = 0.0959, wR_2 = 0.2302$
Largest diff. peak/hole / e Å ⁻³	0.48/-0.30

Table S5. Selected bond lengths (Å) for compound 2a

Iubic bei beiceteu bo		pound =u	
	Length/Å		Length/Å
C5-S1	1.752(5)	C11-N2	1.314(5)
C6-C7	1.471(6)	C11-N3	1.379(5)
C7-N1	1.368(6)	C12-N3	1.376(6)
C7-O1	1.219(5)	C13-N2	1.380(5)
C8-C11	1.514(6)	C18-N3	1.459(6)
C8-N1	1.494(6)	N1-S1	1.730(4)

Table S6. Selected angles (°) for compound 2a

	Angle/ ^o		Angle/ ^o
C4-C5-S1	126.5(4)	N2-C11-N3	112.8(4)
C6-C5-S1	111.8(3)	N3-C11-C8	123.3(4)
C1-C6-C7	126.2(4)	N3-C12-C13	105.8(4)
C5-C6-C7	113.4(4)	N3-C12-C17	132.2(4)
N1-C7-C6	108.7(4)	N2-C13-C12	109.7(4)
01-C7-C6	127.4(4)	N2-C13-C14	129.7(4)
O1-C7-N1	123.9(4)	C7-N1-C8	123.4(4)
C9-C8-C10	110.6(4)	C7-N1-S1	115.6(3)
C11-C8-C9	109.0(4)	C8-N1-S1	117.0(3)
C11-C8-C10	109.7(4)	C11-N2-C13	105.4(4)
N1-C8-C9	110.8(4)	C11-N3-C18	130.1(4)
N1-C8-C10	107.9(4)	C12-N3-C11	106.2(3)
N1-C8-C11	108.8(3)	C12-N3-C18	123.7(4)
N2-C11-C8	123.7(4)	N1-S1-C5	89.9(2)

Kinetic isotope experiments

Parallel experiments

Table S7. Parallel experiments

Entry	Time(min)	Yield of 2a	Yield of [D ₄]- 2a
1	30	10.98%	7.33%
2	40	13.91%	10.38%
3	50	16.08%	12.21%
4	60	21.95%	15.57%

Figure S2. Parallel Experiments

The calculated $k_{\rm H}/k_{\rm D} = 0.3508/0.2655 = 1.3$

Intermolecular competition experiment

$$1a + [D_5]-1a \xrightarrow{standard conditions} 2a + [D_4]-2a$$

$$40 \text{ min, } 14\%$$

$$k_H/k_D = 2.3$$

Figure S3 ¹H NMR spectrum of product from the intermolecular KIE experiment

References

1 S.-L. Liu, X.-H. Li, T.-H. Shi, G.-C. Yang, H.-L. Wang, J.-F Gong and M.-P. Song, *Eur. J. Org. Chem.*, 2017, **2017**, 2280. Spectra

