Catalyst-Free Regioselective Hydroxyfluorination and Aminofluorination of α , β -Unsaturated Carbonyl Compounds

Jiadi Zhou^b, Ye Fang^a, Fang Wang^a and Jianjun Li^{a,b*}

^a College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China. ^b Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China.

E-mail: lijianjun@zjut.edu.cn.

Contents

1. General information	S2
2. General procedure for α -fluoro- β -hydroxylation	S2
3. General procedure for α -fluoro- β -amidation.	S2
4. General procedure for α -difluoro- β -amidation.	S2
5. Characterization analysis of control experiments	S3
6. Characterization of the products.	S6
7. NMR spectra for the products	S16

1. General information

All commercials obtained from commercial sources were used as received unless otherwise noted. Substrate **1** were prepared by literature reports (*Tetrahedron* 2012, **68**, 9616; *Tetrahedron* 2012, **68**, 7941; *Org. Lett.* 2012, **14**, 3936; *Tetrahedron* 2013, **69**, 6364.). The progress of the reactions was monitored by TLC with silica gel plates, and the visualization was carried out under UV light (254nm). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Varian spectrometer in CDCl₃ or DMSO-*d*₆ using tetramethylsilane (TMS) as internal standards Mass spectra were measured with a HRMS-APCI instrument or a low-resolution MS instrument using ESI ionization.

2. General procedure for α-fluoro-β-hydroxylation.

 α , β -Unsaturated ketone (1, 1 mmol) and Selectfluor (1.2 equiv) were dissolved in 7 mL of CH₃NO₂/H₂O (40:1, v:v). The mixture was stirred at 60 °C for 12h. After the completion of the reaction (as indicated by TLC), the reaction mixture was quenched with satd. aq. NaHCO₃ (10 mL). The mixture was extracted with EtOAc twice. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude products were purified on a silica gel column using hexane/EtOAc.

3. General procedure for α -fluoro- β -amidation.

 α , β -Unsaturated ketone (1, 1 mmol) and Selectfluor (1.2 equiv) were dissolved in CH₃CN (10 mL). The mixture was stirred at 60 °C for 36h. After the completion of the reaction (as indicated by TLC), the reaction mixture was quenched with satd. aq. NaHCO₃ (10 mL). The mixture was extracted with EtOAc twice. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude products were purified on a silica gel column using hexane/EtOAc.

4. General procedure for α -difluoro- β -amidation.

Chalcone (1a, 1 mmol) and Selectfluor (3 equiv) were dissolved in CH₃CN (10 mL). The mixture was stirred at 80 °C for 18h. After the completion of the reaction (as indicated by TLC), the reaction mixture was quenched with satd. aq. NaHCO₃ (15 mL). The mixture was extracted with EtOAc twice. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude products were purified by silica gel column chromatography (hexane /ethyl acetate =1/10 \rightarrow 1/5) to give 4a (167 mg, 55% yield) as pale yellow semisolid.

High-resolution mass spectrometry (HRMS) analysis of the product 6b

High-resolution mass spectrometry (HRMS) analysis of the product 5a

Meas. m/z	Formula	m/z	err [ppm]	mSigma
227.0880	C ₁₅ H ₁₂ FO	227.0867	-5.8	14.1

Crude ¹⁹F NMR spectra of the control experiment 3, 1-(4-(trifluoromethyl)phenyl)ethan-1-one was used as internal standard substances The crude ¹⁹F NMR spectra of methoxyfluorination: ¹⁹F NMR (376 MHz, CDCl₃) δ -119.25 (d, *J* = 36.8 Hz, 0.05F), -193.37 (dd, *J* = 50.0, 17.3 Hz, 0.11F), -197.61 (dd, *J* = 50.1, 25.0 Hz, 0.06F).

The crude ¹⁹F NMR spectra of ethoxyfluorination: ¹⁹F NMR (376 MHz, CDCl₃) δ - 119.24 (d, J = 36.8 Hz, 0.02F), -193.14 (dd, J = 50.0, 16.7 Hz, 0.02F), -197.89 (dd, J = 49.9, 25.5 Hz, 0.01F).

High-resolution mass spectrometry (HRMS) analysis of the product 7

6. Characterization of the products.2-fluoro-3-hydroxy-1,3-diphenylpropan-1-one (2a)

Product **2a** was 1:2.6 mixture of diastereomers (determined by ¹H NMR spectroscopy), white solid (171 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, J = 8.7 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.48 (dd, J = 12.9, 7.0 Hz, 4H), 7.43 – 7.33 (m, 3H), 5.65 (dd, J = 48.1, 3.8 Hz, 0.68H)/5.62 (dd, J = 47.6, 6.4 Hz, 0.26H), 5.40 – 5.25 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2 (d, J = 20.4 Hz)/196.0 (d, J = 21.2 Hz), 138.2/138.2/138.2/138.1, 135.0/135.0, 134.1/133.9, 129.2/129.2/129.1, 128.6/128.6, 128.5, 127.0/127.0, 126.8, 95.3 (d, J = 192.4 Hz)/93.3 (d, J = 188.4 Hz), 74.0 (d, J = 19.8 Hz)/73.4 (d, J = 23.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -189.80 (dd, J = 47.6, 11.2 Hz, 0.27F), -198.25 (dd, J = 48.1, 22.1 Hz, 0.71F); HRMS(ESI) *m/z* Calcd for C₁₅H₁₃FNaO₂ [M+Na]⁺: 267.0792, Found: 267.0803.

2-fluoro-3-hydroxy-1-(4-nitrophenyl)-3-phenylpropan-1-one (2b)

Product **2b** was 1:1.2 mixture of diastereomers (determined by ¹H NMR spectroscopy), pale yellow solid (162 mg, 56%); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.9 Hz, 1H), 8.25 (d, J = 8.8 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.51 – 7.31 (m, 5H), 5.60 (dd, J = 48.0, 5.6 Hz, 0.50H)/5.50 (dd, J = 48.0, 3.6Hz, 0.42H), 5.38 – 5.26 (m, 1H), 2.85 (s, 0.49H)/2.68 (s, 0.42H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2 (d, J = 23.4 Hz)/195.2 (d, J = 21.6 Hz), 150.4/150.4, 139.8/139.6/139.6/139.6, 137.9/137.9/137.7/137.7, 130.5/130.4/130.3/130.2, 129.0/128.9, 128.8/128.7, 126.8/126.8/126.7/126.7, 123.6/123.5, 96.7 (d, J = 195.9 Hz)/94.7 (d, J = 190.6 Hz), 74.3 (d, J = 19.4 Hz)/73.8 (d, J = 22.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -190.75 (dd, J = 48.1, 13.6 Hz, 0.45F), -198.46 (dd, J = 48.1, 23.7 Hz, 0.52F); HRMS (ESI) *m/z* Calcd for C₁₅H₁₂FNNaO₄ [M+Na]⁺: 312.0643, Found: 312.0653.

2-fluoro-3-hydroxy-3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-one (2c)

Product **2c** was pale yellow solid (172 mg, 55%); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 7.1 Hz, 2H), 7.44 – 7.34 (m, 3H), 5.55 (dd, J = 48.1, 3.5 Hz, 1H), 5.35 (d, J = 23.0 Hz, 1H), 2.72 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 195.6 (d, J = 21.0 Hz), 137.9/137.9, 137.8, 134.9 (q, J = 32.8 Hz), 129.5/129.5, 128.8/128.6, 126.9, 125.5/125.5, 124.8/122.0, 94.2 (d, J = 189.7 Hz), 73.7 (d, J = 23.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.27 (s, 3F), -198.39 (dd,

J = 48.1, 23.0 Hz, 1F); HRMS (ESI) m/z Calcd for C₁₆H₁₂F₄NaO₂ [M+Na]⁺: 335.0666, Found: 335.0666.

2-fluoro-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpropan-1-one (2d)

Product **2d** was 1:1.2 mixture of diastereomers (determined by ¹H NMR spectroscopy), pale yellow oil (173 mg, 63%); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, J = 8.6 Hz, 2H), 7.50 – 7.32 (m, 5H), 6.93 (d, J = 8.8 Hz, 2H), 5.59 (dd, J = 48.2, 3.8 Hz, 0.42H)/5.55 (dd, J = 47.6, 6.8 Hz, 0.50H), 5.35 – 5.22 (m, 1H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4 (d, J = 19.8 Hz), 194.2 (d, J = 20.1 Hz), 164.3/164.2, 138.5/138.5/138.4/138.3, 131.8/131.7/131.7, 128.6/128.6, 128.5/ 128.4, 128.0/127.9, 127.0/127.0, 126.8, 113.9/113.9, 95.2 (d, J = 192.0 Hz)/93.1 (d, J = 188.1 Hz), 74.0 (d, J = 19.9 Hz), 73.4 (d, J = 23.6 Hz), 56.3/55.6/55.6; ¹⁹F NMR (376 MHz, CDCl₃) δ - 188.72 (dd, J = 47.6, 10.8 Hz, 0.55F), -197.16 (dd, J = 48.2, 22.1 Hz, 0.45F); HRMS (ESI) m/z Calcd for C₁₆H₁₅FNaO₃ [M+Na]⁺: 297.0897, Found: 297.0895.

2-fluoro-3-hydroxy-3-phenyl-1-(thiophen-2-yl)propan-1-one (2e)

Product **2e** was 1:1 mixture of diastereomers (determined by ¹⁹F NMR spectroscopy), yellow oil (112 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 3.5 Hz, 0.5H)/7.82 (d, *J* = 3.5 Hz, 0.5H), 7.75 (d, *J* = 3.4 Hz, 1H), 7.46 (t, *J* = 7.9 Hz, 2H), 7.42 – 7.32 (m, 3H), 7.14 (dt, *J* = 12.7, 4.4 Hz, 1H), 5.48 – 5.45 (m, 0.49H)/5.35 – 5.33 (m, 0.51H), 5.38 – 5.36 (m, 0.19 H)/5.32 – 5.22 (m, 0.74H), 3.30 (d, *J* = 3.2 Hz, 0.47H)/2.98 (d, *J* = 4.8 Hz, 0.46H); ¹³C NMR (101 MHz, CDCl₃) δ 189.1 (d, *J* = 22.0 Hz)/188.9 (d, *J* = 22.8 Hz), 141.1/141.1/141.0/141.0, 138.3/138.3/138.0/138.0, 135.9/135.9/135.8/135.8, 135.1/135.0, 128.6/128.6, 128.5/128.5/128.5, 127.1/127.1, 126.7, 96.7 (d, *J* = 195.7 Hz)/95.0 (d, *J* = 192.5 Hz), 74.14 (d, *J* = 19.6 Hz), 73.82 (d, *J* = 22.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -190.49 (dd, *J* = 48.1, 12.7 Hz, 0.50F), - 198.11 (dd, *J* = 47.9, 22.9 Hz, 0.50F); HRMS (ESI) *m*/z Calcd for C₁₃H₁₁FNaO₂S [M+Na]⁺: 273.0356, Found: 273.0366.

2-fluoro-3-hydroxy-1-phenyl-3-(p-tolyl)propan-1-one (2f)

Product **2f** was 1:1.4 mixture of diastereomers (determined by ¹H NMR spectroscopy), white solid (191 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (t, *J* = 6.7 Hz, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.3 Hz, 2H), 7.21 (t, *J* = 6.4 Hz, 2H), 5.62 (dd, *J* = 48.4, 3.9 Hz, 0.58H)/5.60 (d, *J* = 47.6 Hz, 0.40H), 5.36 – 5.22 (m, 1H), 2.39 (s, 1.01H)/2.37 (s, 2.02H); ¹³C NMR (101 MHz, CDCl₃) δ 196.0 (d,

J = 20.7 Hz), 138.4, 135.2/135.2, 135.0, 134.0, 133.8, 129.3/129.2/129.1, 128.6/128.6, 126.9/126.7, 95.4 (d, J = 192.3 Hz), 73.9 (d, J = 19.8 Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -190.01 (dd, J = 47.6, 11.2 Hz, 0.42F), -198.27 (dd, J = 48.2, 22.1 Hz, 0.57F); HRMS (ESI) *m*/*z* Calcd for C₁₆H₁₅FNaO₂ [M+Na]⁺: 281.0948, Found: 281.0954.

2-fluoro-3-hydroxy-3-(4-methoxyphenyl)-1-phenylpropan-1-one (2g)

Product **2g** was 1:1.2 mixture of diastereomers (determined by ¹H NMR spectroscopy), pale yellow oil (222 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.3 Hz, 2H), 7.64 – 7.58 (m 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.41 – 7.33 (m, 2H), 6.90 (t, J = 8.5 Hz, 2H), 5.60 (d, J = 48.0 Hz, 0.40H), 6.65/5.65/5.53(m, 0.46H), 5.31 – 5.19 (m, 1H), 3.83 (s, 1.35H)/3.81 (s, 1.66H), 3.03 (s, 0.40H)/2.84 (s, 0.48H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2 (d, J = 20.3 Hz)/196.0 (d, J = 20.2 Hz), 159.8/159.7, 135.0/134.02, 133.8, 130.4/130.2/130.2, 129.2/129.2/129.1, 128.6/128.6, 128.3, 128.1, 114.0/113.9, 95.4 (d, J = 191.8 Hz)/93.4 (d, J = 187.8 Hz), 73.7 (d, J = 19.8 Hz)/73.1 (d, J = 23.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -195.19 (dd, J = 47.7, 11.8 Hz, 0.42F), -202.02 (dd, J = 48.3, 21.4 Hz, 0.57F); HRMS (ESI) *m/z* Calcd for C₁₆H₁₅FNaO₃ [M+Na]⁺: 297.0897, Found: 297.0906.

3-(4-bromophenyl)-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2h)

Product **2h** was 1:1 mixture of diastereomers (determined by ¹H NMR spectroscopy), white solid (184 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (t, J = 6.8 Hz, 2H), 7.73 – 7.68 (m, 1H), 7.60 – 7.53 (m, 4H), 7.40 (t, J = 7.7 Hz, 2H), 5.64 (dd, J = 47.8, 3.8 Hz, 0.48H)/5.59 (dd, J = 47.4, 6.6 Hz, 0.46H), 5.42 – 5.27 (m, 1H), 3.17 (s, 0.35H)/2.95 (s, 0.35H); ¹³C NMR (101 MHz, CDCl₃) δ 196.0 (d, J = 16.8 Hz)/195.8 (d, J = 17.3 Hz), 137.3/137.3/137.2/137.2, 134.8/134.8/134.8/134.8, 134.3/134.1, 131.7/131.6, 129.2/129.2/129.2, 128.7/128.7/128.7, 128.5, 122.6/122.5, 95.0 (d, J = 193.0 Hz)/92.8 (d, J = 188.8 Hz), 73.3 (d, J = 19.9 Hz)/72.6 (d, J = 23.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -189.38 (dd, J = 47.3, 10.4 Hz, 0.49F), -198.07 (dd, J = 47.9, 21.9 Hz, 0.51F); HRMS (ESI) *m*/z Calcd for C₁₅H₁₂BrFNaO₂ [M+Na]⁺: 344.9897, Found: 344.9905.

2-fluoro-3-(4-fluorophenyl)-3-hydroxy-1-phenylpropan-1-one (2i)

Product **2i** was 1:1.1 mixture of diastereomers (determined by ¹H NMR spectroscopy), white solid (168 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (t, *J* = 7.1 Hz, 2H),

7.67 – 7.58 (m, 1H), 7.52 – 7.37 (m, 4H), 7.09 – 7.03 (m, 2H), 5.59 (dd, J = 48.0, 4.6 Hz, 0.44H)/5.64 (dd, J = 47.6, 6.8 Hz, 0.50H), 5.36 – 5.23 (m, 1H), 3.31 (s, 0.35H)/3.15 (s, 0.38H); ¹³C NMR (101 MHz, CDCl₃) δ 196.1 (d, J = 20.0 Hz)/196.0 (d, J = 20.4 Hz), 162.8 (d, J = 246.9 Hz)/162.7 (d, J = 247.0 Hz), 134.9, 134.2, 134.1, 134.0, 129.2/129.2/129.1, 128.8/128.7/128.7/128.6/128.6, 115.6/115.5/115.4/115.2, 95.2 (d, J = 193.0 Hz)/93.2 (d, J = 189.0 Hz), 73.3 (d, J = 20.0 Hz)/72.7 (d, J = 23.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -111.95 – -115.10 (m, 1F), -190.47 (dd, J = 47.6, 11.8 Hz, 0.49F), -197.79 (dd, J = 48.1, 21.8 Hz, 0.46F); HRMS (ESI) *m/z* Calcd for C₁₅H₁₂F₂NaO₂ [M+Na]⁺: 285.0698, Found: 285.0708.

3-(2-chlorophenyl)-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2j)

Product **2j** was 1:1.2mixture of diastereomers (determined by ¹⁹F NMR spectroscopy), yellow oil (167 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.76 – 7.62 (m, 1H), 7.53 (q, J = 7.8 Hz, 1.6H), 7.45 (dd, J = 7.5, 1.7 Hz, 0.61H)/7.31 (dd, J = 7.6, 1.6 Hz, 0.45H), 7.41 – 7.34 (m, 2.6H), 7.24 – 7.13 (m, 1H), 5.94 – 5.90 (m, 0.54H), 5.85 – 5.69 (m, 1.62H), 3.33 (s, 0.54H)/3.03 (s, 0.46H); ¹³C NMR (101 MHz, CDCl₃) δ 195.5 (d, J = 17.8 Hz)/195.3 (d, J = 17.0 Hz), 136.0/136.0, 135.3/135.3, 135.2/135.2/134.6/134.6, 134.1/133.9, 132.5/131.3, 129.5/129.5/129.3/129.3, 129.1/129.1/129.0/129.0/, 128.9/128.9, 128.8, 128.5/128.5, 127.2/127.1, 93.0 (d, J = 192.0 Hz)/92.3 (d, J = 189.0 Hz), 70.7 (d, J = 24.2 Hz)/70.4 (d, J = 19.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -189.18 (dd, J = 46.7, 10.7 Hz, 0.54F), -205.61 (dd, J = 47.0, 26.1 Hz, 0.46F); HRMS (ESI) *m*/*z* Calcd for C₁₅H₁₂ClFNaO₂ [M+Na]⁺: 301.0402, Found: 301.0420.

3-(2-bromophenyl)-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2k)

Product **2k** was 1:1.2mixture of diastereomers (determined by ¹H NMR spectroscopy), yellow oil (145 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.0 Hz, 0.47H), 7.65 (t, J = 7.4 Hz, 0.54H), 7.61 -7.50 (m, 2.7H), 7.46 - 7.41 (m, 1H), 7.37 (t, J = 7.8 Hz, 1H), 7.27 - 7.17 (m, 1H), 7.15 - 7.11 (m 0.5H), 5.89 (dd, J = 46.8, 5.2 Hz, 0.54H)/5.85 (dd, J = 47.0, 2.2 Hz,0.46H), 5.77 – 5.69 (m, 1H), 3.23 (s, 0.63H)/2.90 (s, 0.52H); ¹³C NMR (101 MHz, CDCl₃) δ 195.5 (d, J = 20.5 Hz)/195.2 (d, J = 19.6 Hz), 137.4/137.4/136.8/136.8, 135.2/134.7/134.6, 134.1/133.9, 132.7/132.6, 129.8, 129.5/129.5, 129.2/129.2/128.9/128.9, 128.8/128.8/128.7/128.5, 127.8/127.6, 122.6/121.4, 92.8 (d, $J = 192.5 \text{ Hz})/92.1 \text{ (d, } J = 189.1 \text{ Hz}), 72.8 \text{ (d, } J = 24.2 \text{ Hz})/72.5 \text{ (d, } J = 18.9 \text{ Hz}); {}^{19}\text{F}$ NMR (376 MHz, CDCl₃) δ -189.04 (dd, J = 47.0, 10.9 Hz, 0.55F), -205.74 (dd, J =47.0, 26.4 Hz, 0.44F); HRMS (ESI) *m/z* Calcd for C₁₅H₁₂BrFNaO₂ [M+Na]⁺: 344.9897, Found: 344.9903.

2-fluoro-3-hydroxy-1-phenyl-3-(thiophen-2-yl)propan-1-one (2l)

Product **21** was 1:1.2 mixture of diastereomers (determined by ¹⁹F NMR spectroscopy), brown oil (120 mg, 48%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.94 (m, 2H), 7.66 – 7.59 (m, 1H), 7.53 – 7.46 (m, 2H), 7.34 (dd, J = 5.1, 1.2 Hz, 0.40H)/7.32 (dd, J = 5.1, 1.2 Hz, 0.46H), 7.13 – 7.08 (m, 1H), 7.02 (dd, J = 5.1, 3.6 Hz, 0.42H) /6.99 (dd, J = 5.1, 3.6 Hz, 0.49H), 5.75 – 5.51 (m, 2H), 3.19 (s, 0.49H)/2.95 (s, 0.6H); ¹³C NMR (101 MHz, CDCl₃) δ 195.7 (d, J = 20.0 Hz)/195.6 (d, J = 20.4 Hz), 141.3/141.3/141.1/141.08, 134.9/134.9/134.8/134.8, 134.2/134.0, 129.2/129.2/129.2/129.1, 128.7/128.7, 126.8/126.8, 126.1/126.1/126.1, 126.0/125.9, 94.7 (d, J = 193.1 Hz)/92.8 (d, J = 189.3 Hz), 70.3 (d, J = 20.8 Hz)/69.8 (d, J = 23.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -190.09 (dd, J = 47.4, 12.7 Hz, 0.44F), -196.48 (dd, J = 47.9, 21.0 Hz, 0.56F); HRMS (ESI) *m/z* Calcd for C₁₃H₁₁FNaO₂S [M+Na]⁺: 273.0356, Found: 273.0361.

2-fluoro-3-hydroxy-3-phenyl-1-(m-tolyl)propan-1-one (2m)

Product **2m** was a 1:2.4 mixture of diastereomers (determined by ¹F NMR spectroscopy), white solid (129 mg, 50%); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, J = 8.7 Hz, 2H), 7.62 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.30 – 7.20 (m, 3H), 7.20 – 7.12 (m, 1H), 5.73 – 5.66 (m, 0.48H), 5.60 – 5.55 (m, 0.48H), 5.35 – 5.20 (m, 1H), 3.15 (s, 0.56H)/2.95 (s, 0.23H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 196.2 (d, J = 20.1 Hz)/196.1 (d, J = 20.6 Hz), 138.3/138.2/138.2/138.2, 135.1/135.1, 134.0, 133.8, 129.3/129.2, 129.2/129.1, 128.6/128.6, 128.5/128.4, 127.6/127.4, 124.1/123.8, 95.5 (d, J = 192.3 Hz)/93.4 (d, J = 188.1 Hz), 74.0 (d, J = 19.9 Hz)/73.5 (d, J = 23.6 Hz), 21.40; ¹⁹F NMR (376 MHz, CDCl₃) δ -189.81 (dd, J = 47.6, 11.4 Hz, 0.70H), -198.43 (dd, J = 48.2, 22.3 Hz, 0.29H); HRMS (ESI) *m/z* Calcd for C₁₆H₁₅FNaO₂ [M+Na]⁺: 281.0948, Found: 281.0958.

2-fluoro-1-(furan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)propan-1-one (2n)

Product **2n** was 1:1.4 mixture of diastereomers (determined by ¹H NMR spectroscopy), yellow oil (140 mg, 53%). ¹H NMR (400 MHz, DMSO-*d6*) δ 8.09 – 8.08 (m, 1H), 7.60 (d, *J* = 3.4 Hz, 0.43H)/7.60 (d, *J* = 3.4 Hz, 0.60H), 7.38 (d, *J* = 8.5 Hz, 1H)/7.34 (d, *J* = 8.5 Hz, 1H), 6.92 (dd, *J* = 8.4, 4.4 Hz, 2H), 6.77 (d, *J* = 3.4 Hz, 0.43H)/ 6.75 (d, *J* = 2.1 Hz, 0.60H), 6.00 (d, *J* = 4.6 Hz, 0.41H)/5.95 (d, *J* = 5.5 Hz, 0.59H), 5.62 (dd, *J* = 47.4, 3.7 Hz, 0.54H)/5.58 (dd, *J* = 48.4, 6.3 Hz, 0.40H), 5.13 (dt, *J* = 4.6 Hz, 0.41H)/5.95 (dt, *J* = 4.14 Hz, 0.40H), 5.13 (dt, *J* = 4.6 Hz, 0.41H)/5.95 (dt, *J* = 4.14 Hz, 0.40H), 5.13 (dt, *J* = 4.14 Hz, 0.40H), 5.13 (dt, *J* = 4.14 Hz, 0.40H), 5.13 (dt, *J* = 4.14 Hz, 0.40H), 5.14 Hz, 0.40H), 5.40H), 5.40H), 5.40H), 5.40H), 5.40H), 5.40

J = 25.3, 4.5 Hz, 0.54H)/4.96 (dt, J = 14.3, 5.6 Hz, 0.39H), 3.76 (s, 1.33H)/3.75 (s, 1.76H); ¹³C NMR (101 MHz, DMSO-*d6*) δ 188.2 (d, J = 19.8 Hz)/188.0 (d, J = 21.6 Hz), 164.2/163.9, 155.7/155.2, 154.2/153.8, 137.4/137.1/137.1, 133.6/133.2, 126.9/126.9/126.6/126.5, 118.6/118.6, 118.0/117.9, 100.9 (d, J = 189.2 Hz)/98.6 (d, J = 182.8 Hz), 77.6 (d, J = 19.8 Hz)/77.3 (d, J = 24.1 Hz), 60.2; ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -194.07 (dd, J = 48.1, 14.0 Hz, 0.41F), -202.01 (dd, J = 47.3, 25.3 Hz, 0.57F); HRMS (ESI) *m*/*z* Calcd for C₁₄H₁₃FNaO₄ [M+Na]⁺: 287.0690, Found: 287.0699.

2-fluoro-3-acetamido-1,3-diphenylpropan-1-one (3a)

Product **3a** was pale yellow semisolid (162 mg, 57%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.45 – 7.31 (m, 5H), 6.65 (d, J = 8.8 Hz, 1H), 5.99 (dd, J = 47.2, 2.2 Hz, 1H), 5.73 (ddd, J = 27.6, 8.9, 1.9 Hz, 1H), 1.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.4 (d, J = 18.9 Hz), 169.6, 137.78, 134.19, 129.0, 128.9, 128.6, 128.5, 128.3, 127.1/127.1, 94.0 (d, J = 190.6 Hz), 53.9 (d, J = 19.1 Hz), 22.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -202.33 (dd, J = 47.2, 27.4 Hz, 1F); HRMS (ESI) *m/z* Calcd for C₁₇H₁₆FNNaO₂ [M+Na]⁺: 308.1057, Found: 308.1086.

2-fluoro-3-acetamido-1-(4-nitrophenyl) -3-phenylpropan-1-one (3b)

Product **3b** was yellow oil (168 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.9 Hz, 2H), 8.02 (d, J = 8.7 Hz, 2H), 7.45 – 7.33 (m, 5H), 6.40 (d, J = 8.8 Hz, 1H), 5.92 (dd, J = 47.1, 2.3 Hz, 1H), 5.72 (ddd, J = 26.1, 9.0, 2.3 Hz, 1H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.0 (d, J = 20.7 Hz), 169.6, 150.5, 139.1, 137.0, 129.8/129.8, 129.1, 128.7, 127.2, 127.1, 123.9, 94.5 (d, J = 193.0 Hz), 53.7 (d, J = 19.6 Hz), 23.0/23.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -199.58 (dd, J = 47.1, 26.0 Hz, 1F); HRMS (ESI) *m*/*z* Calcd for C₁₇H₁₅FN₂NaO₄ [M+Na]⁺: 353.0908, Found: 353.0898.

2-fluoro-3-acetamido-1-(4-trifluoromethylphenyl) -3-phenylpropan-1-one (3c)

Product **3c** was yellow oil (187 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.1 Hz, 2H), 7.77 (d, J = 8.1 Hz, 2H), 7.47 – 7.34 (m, 5H), 6.67 – 6.60 (m, 1H), 5.95 (dd, J = 47.2, 1.6 Hz, 1H), 5.83 – 5.68 (m, 1H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2 (d, J = 20.0 Hz), 169.7, 137.3/137.3, 135.1 (q, J = 32.9 Hz), 129.1, 128.6, 127.2, 126.0, 125.9, 124.8/122.09, 94.4 (d, J = 192.1 Hz), 53.8 (d, J = 19.4 Hz),

23.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.25(s, 1F), -200.55 (dd, J = 47.1, 26.7 Hz, 1F); HRMS (ESI) *m/z* Calcd for C₁₈H₁₅F₄NNaO₂ [M+Na]⁺: 376.0931, Found: 376.0936. **2-fluoro-3-acetamido-1-(4-methoxyphenyl) -3-phenylpropan-1-one (3d)**

Product **3d** was pale yellow oil (183 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.7 Hz, 2H), 7.48 – 7.33 (m, 5H), 6.99 (d, J = 8.7 Hz, 2H), 6.63 (d, J = 8.6 Hz, 1H), 5.96 (d, J = 47.2 Hz, 1H), 5.72 (dd, J = 27.2, 8.8 Hz, 1H), 3.91 (s, 3H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6 (d, J = 18.5 Hz), 169.5, 164.3, 137.9, 131.0/131.0, 128.9/128.9, 128.2, 127.1, 127.0, 114.2, 93.8 (d, J = 189.9 Hz), 55.6, 54.1 (d, J = 19.4 Hz), 23.01; ¹⁹F NMR (376 MHz, CDCl₃) δ -201.37 (dd, J = 47.1, 27.3 Hz, 1F); HRMS (ESI) *m*/*z* Calcd for C₁₈H₁₈FNNaO₃ [M+Na]⁺: 338.1163, Found: 338.1169.

2-fluoro-3-acetamido-3-phenyl-1-(thiophen-2-yl)propan-1-one (3e)

Product **3e** was 1:5.3 mixture of diastereomers (determined by ¹H NMR spectroscopy), claybank oil (157 mg, 54%). ¹H NMR (400 MHz, DMSO-*d6*) δ 8.78 (d, J = 9.5 Hz, 1H), 8.18 – 8.04 (m, 2H), 7.51 (d, J = 7.5 Hz, 1.61H), 7.40 (t, J = 7.5 Hz, 1.62H), 7.36 – 7.25 (m, 3H), 6.05 (dd, J = 47.0, 3.1 Hz, 0.75H)/5.97 (dd, J = 48.2, 4.7 Hz, 0.14H), 5.67 (ddd, J = 30.0, 9.5, 2.9 Hz, 0.75H)/5.54 (ddd, J = 24.8, 8.6, 4.8 Hz, 0.14H), 1.89 (s, 0.49H)/1.84 (s, 0.54H); ¹³C NMR (101 MHz, DMSO-*d6*) δ 187.5 (d, J = 20.0 Hz)/187.5 (d, J = 20.8 Hz), 169.5/169.4, 140.9/140.8/, 138.6/138.6, 137.0/136.7/136.7, 135.3/135.2/135.2/135.1, 129.5, 128.8, 128.7, 128.4, 128.1, 127.7, 95.3 (d, J = 189.3 Hz)/94.6 (d, J = 189.3 Hz), 55.0 (d, J = 21.3 Hz)/54.2 (d, J = 19.1 Hz), 22.8/22.7; ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -196.16 (dd, J = 48.2, 24.8 Hz, 0.15F), -198.63 (dd, J = 46.8, 30.1 Hz, 0.82F); HRMS (ESI) *m/z* Calcd for C₁₅H₁₄FNNaO₂S [M+Na]⁺: 314.0621, Found: 314.0625.

2-fluoro-3-acetamido-1-phenyl-3-p-tolylpropan-1-one (3f)

Product **3f** was yellow oil (162 mg, 54%). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.88 (m, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 6.47 (d, *J* = 8.0 Hz, 1H), 5.98 (dd, *J* = 47.2, 2.1 Hz, 1H), 5.69 (ddd, *J* = 27.3, 8.8, 1.4 Hz, 1H), 2.37 (s, 3H), 1.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.3 (d, *J* = 18.8 Hz), 169.4/169.4, 138.1, 134.8, 134.2, 134.2, 129.6/129.5, 129.0/128.9, 128.6/128.5, 126.9, 94.0 (d, *J* = 190.6 Hz), 53.6 (d, *J* = 19.1 Hz), 23.0,

21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -202.23 (dd, *J* = 47.2, 27.3 Hz, 1F); HRMS (ESI) *m/z* Calcd for C₁₈H₁₈FNNaO₂ [M+Na]⁺: 322.1214, Found: 322.1214.

2-fluoro-3-acetamido-1-phenyl-3-p- methoxyphenyl propan-1-one (3g)

Product **3g** was 1:7.5 mixture of diastereomers (determined by ¹H NMR spectroscopy), pale yellow semisolid (233 mg, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 7.3 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 6.65 – 6.50 (m, 1H), 5.97 (dd, J = 47.2, 2.0 Hz, 0.76H)/5.94 (dd, J = 47.2, 2.0 Hz, 0.10H), 5.68 (dd, J = 26.6, 9.6 Hz, 1H), 3.91 (s, 0.35H)/3.83 (s, 2.60H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.5 (d, J = 19.1 Hz), 169.5, 159.5, 134.4, 134.3/134.2, 129.9, 129.1/129.0, 128.6/128.6, 128.4, 114.3, 94.1 (d, J = 190.0 Hz), 55.4, 53.4 (d, J = 19.3 Hz), 23.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -201.37 (dd, J = 47.1, 27.0 Hz, 0.12F), -201.93 (dd, J = 47.2, 27.2 Hz, 0.90F); HRMS (ESI) *m/z* Calcd for C₁₈H₁₈FNNaO₃ [M+Na]⁺: 338.1163, Found: 338.1170.

2- fluoro -3-(4-bromophenyl)-3-acetamido-1-phenylpropan-1-one (3h)

Product **3h** was pale yellow semisolid (134 mg, 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.1 Hz, 2H), 7.67 (t, *J* = 6.6 Hz, 1H), 7.58 – 7.44 (m, 4H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.65 (d, *J* = 7.3 Hz, 1H), 5.95 (d, *J* = 47.1 Hz, 1H), 5.69 (dd, *J* = 27.0, 7.9 Hz, 1H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.2 (d, *J* = 19.5 Hz), 169.6, 136.8, 134.3, 134.1, 132.0, 129.0, 128.9, 128.6/128.6, 122.3, 93.6 (d, *J* = 191.0 Hz), 53.4 (d, *J* = 19.3 Hz), 23.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -201.47 (dd, *J* = 46.8, 27.2 Hz, 1F); HRMS (ESI) *m*/*z* Calcd for C₁₇H₁₅BrFNNaO₂ [M+Na]⁺: 386.0162, Found: 386.0191. **2- fluoro-3-(4- fluorophenyl)-3-acetamido-1-phenylpropan-1-one (3i)**

Product **3i** was white solid (115 mg, 38%). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.7 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.43 (dd, *J* = 8.0, 5.4 Hz, 2H), 7.09 (t, *J* = 8.5 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 1H), 5.96 (dd, *J* = 47.1, 2.0 Hz, 1H), 5.72 (dd, *J* = 26.7, 8.2 Hz, 1H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.3 (d, *J* = 19.0 Hz), 169.6, 162.5 (d, *J* = 247.2 Hz), 134.3, 134.1, 133.6, 133.6, 129.0/129.0/128.9, 128.6/128.5, 115.9/115.7, 93.8 (d, *J* = 190.8 Hz), 53.3 (d, *J* = 19.3 Hz), 22.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.59 – -113.67 (m, 1F), -201.44 (dd, *J* = 47.1, 27.2 Hz, 1F); HRMS (ESI) *m/z* Calcd for C₁₇H₁₅F₂NNaO₂ [M+Na]⁺: 326.0963, Found: 326.0967.

2- fluoro-3-(2-chlorophenyl)-3- acetamido-1-phenylpropan-1-one (3j)

Product **3j** was yellow oil (134 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.5 Hz, 0.18H)/8.09 (d, J = 7.6 Hz, 1.99H), 7.70 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.7 Hz, 2H), 7.48 (dt, J = 8.3, 5.3 Hz, 2H), 7.38 – 7.32 (m, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.16 (dd, J = 46.8, 1.6 Hz, 1H), 6.09 (dd, J =30.0, 9.2 Hz, 1H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.9 (d, J = 17.9 Hz), 169.6, 135.0, 134.6, 133.7, 133.2, 132.2, 130.1, 129.8/129.4, 129.1/128.7, 128.5/128.4, 127.3, 91.8 (d, J = 188.2 Hz), 51.8 (d, J = 18.4 Hz), 22.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -205.53 (dd, J = 46.9, 30.8 Hz, 1F); HRMS (ESI) *m*/*z* Calcd for C₁₇H₁₅CIFNNaO₂ [M+Na]⁺: 342.0668, Found: 342.0673. **2- fluoro-3-(2-bromophenyl)-3-acetamido-1-phenylpropan-1-one (3k)**

Product **3k** was pale yellow oil (160 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.6 Hz, 2H), 7.74 – 7.63 (m, 2H), 7.57 (t, J = 7.7 Hz, 2H), 7.45 (d, J = 7.7 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.25 (t, J = 7.1 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 6.23 – 5.97 (m, 2H), 1.99 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.8 (d, J = 18.1 Hz), 169.3, 136.6, 134.5, 133.8, 133.2, 129.7, 129.0, 128.6, 127.8, 122.6, 91.7 (d, J = 188.1 Hz), 53.9 (d, J = 18.2 Hz), 22.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -205.73 (dd, J = 46.9, 30.7 Hz, 1F); HRMS (ESI) *m*/*z* Calcd for C₁₇H₁₅BrFNNaO₂ [M+Na]⁺: 386.0162, Found: 386.0157.

2- fluoro-3-acetamido-1-phenyl-3-m-tolylpropan-1-one (3m)

Product **3m** was 1:10 mixture of diastereomers (determined by ¹⁹F NMR spectroscopy), white solid (150 mg, 50%). ¹H NMR (400 MHz, DMSO-*d6*) δ 8.71 (d, J = 9.4 Hz, 1H), 7.98 (d, J = 7.6 Hz, 2H), 7.71 (t, J = 7.3 Hz, 1H), 7.59 (t, J = 7.6 Hz, 2H), 7.33 (s, 1H), 7.31 – 7.24 (m, 2H), 7.14 (d, J = 3.8 Hz, 1H), 6.35 (dd, J = 46.6, 2.2 Hz, 1H), 5.66 – 5.51 (m, 1H), 2.35 (s, 3H), 1.84 (s, 3H); ¹³C NMR (101 MHz, DMSO-*d6*) δ 199.6 (d, J = 18.4 Hz), 174.0, 143.6, 142.7, 139.7, 138.9, 134.0, 133.6, 133.5, 133.3, 133.0, 129.5, 99.6 (d, J = 187.9 Hz), 58.3 (d, J = 18.9 Hz), 27.4/26.3; ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -198.93 (dd, J = 47.8, 24.9 Hz, 0.09F), -202.42 (dd, J = 46.4, 31.2 Hz, 0.90F); HRMS (ESI) *m/z* Calcd for C₁₈H₁₈FNaNO₂ [M+Na]⁺: 322.1214, Found: 322.1223.

(Z)-3-fluoro-4-phenylbut-3-en-2-one (5p)

Product **5p** was colorless semisolid (74 mg, 45%).¹H NMR (400 MHz, CDCl₃) δ 7.76 – 7.67 (m, 2H), 7.50 – 7.40 (m, 3H), 6.86 (d, *J* = 36.4 Hz, 1H), 2.46 (d, *J* = 3.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.3 (d, *J* = 33.4 Hz), 154.0 (d, *J* = 271.5 Hz), 131.1/131.0, 130.7/130.6, 129.9/129.9, 128.9, 115.6 (d, *J* = 5.5 Hz), 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.49 (dd, *J* = 36.4, 3.2 Hz, 1F); HRMS (ESI) *m/z* Calcd for C₁₀H₉FNaO [M+Na]⁺: 187.0530, Found: 187.0557.

(Z)-2-fluoro-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (5b)

Product **5b** was white semisolid (95 mg, 35%).¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.7 Hz, 2H), 8.10 (d, J = 7.6 Hz, 2H), 7.83 – 7.72 (m, 2H), 7.54 – 7.46 (m, 3H), 6.98 (d, J = 36.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 186.1 (d, J = 30.6 Hz), 153.8 (d, J = 271.8 Hz), 150.1, 141.2/141.2, 131.0/130.9, 130.8/130.8, 130.7/130.7, 130.3/130.3, 129.1, 123.7, 121.1 (d, J = 5.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ - 120.73 (d, J = 36.3 Hz, 1F); HRMS (ESI) *m/z* Calcd for C₁₅H₁₀FNNaO₃ [M+Na]⁺: 294.0537, Found: 294.0530.

2,2-difluoro-3-acetamido-1,3-diphenylpropan-1-one (4a)

Product **4a** was pale yellow solid (167 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ8.02 (d, J = 7.7 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.40 – 7.33 (m, 5H), 6.65 (d, J = 9.4 Hz, 1H), 5.99 (td, J = 13.4, 9.6 Hz, 1H), 2.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.0 (t, J = 28.8 Hz), 169.5, 134.6, 133.6 (t, J = 1.7 Hz), 132.2 (t, J = 1.7 Hz), 130.0 (t, J = 3.3 Hz), 128.8/128.8, 128.7, 128.5, 116.8 (t, J = 259.8 Hz), 55.5 (t, J = 24.5 Hz), 23.2/23.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -105.62 (d, J = 9.1 Hz, 2F); HRMS (ESI) *m*/*z* Calcd for C₁₇H₁₅F₂NNaO₂, [M+Na]⁺: 326.0963, Found: 326.0965.

7. NMR spectra for the products

2-fluoro-3-hydroxy-1-(4-nitrophenyl)-3-phenylpropan-1-one (2b)

2-fluoro-3-hydroxy-3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-one (2c)

2-fluoro-3-hydroxy-1-(4-methoxyphenyl)-3-phenylpropan-1-one (2d)

2-fluoro-3-hydroxy-1-phenyl-3-(p-tolyl)propan-1-one (2f)

2-fluoro-3-hydroxy-3-(4-methoxyphenyl)-1-phenylpropan-1-one (2g)

3-(4-bromophenyl)-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2h)

2-fluoro-3-(4-fluorophenyl)-3-hydroxy-1-phenylpropan-1-one (2i)

3-(2-chlorophenyl)-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2j)

3-(2-bromophenyl)-2-fluoro-3-hydroxy-1-phenylpropan-1-one (2k)

2-fluoro-3-hydroxy-1-phenyl-3-(thiophen-2-yl)propan-1-one (2l)

2-fluoro-1-(furan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)propan-1-one (2n)

2-fluoro-3-acetamido-1,3-diphenylpropan-1-one (3a)

2-fluoro-3-acetamido-1-(4-nitrophenyl) -3-phenylpropan-1-one (3b)

2-fluoro-3-acetamido-1-(4-trifluoromethylphenyl) -3-phenylpropan-1-one (3c)

2-fluoro-3-acetamido-1-(4-methoxyphenyl) -3-phenylpropan-1-one (3d)

2-fluoro-3-acetamido-3-phenyl-1-(thiophen-2-yl)propan-1-one (3e)

2-fluoro-3-acetamido-1-phenyl-3-*p*-tolylpropan-1-one (3f)

2-fluoro-3-acetamido-1-phenyl-3-*p*- methoxyphenyl propan-1-one (3g)

2- fluoro -3-(4-bromophenyl)-3-acetamido-1-phenylpropan-1-one (3h)

2- fluoro-3-(4- fluorophenyl)-3-acetamido-1-phenylpropan-1-one (3i)

2- fluoro-3-(2-bromophenyl)-3-acetamido-1-phenylpropan-1-one (3k)

2- fluoro-3-acetamido-1-phenyl-3-m-tolylpropan-1-one (3m)

(Z)-3-fluoro-4-phenylbut-3-en-2-one (5p)

(Z)-2-fluoro-1-(4-nitrophenyl)-3-phenylprop-2-en-1-one (5b)

2,2-difluoro-3-acetamido-1,3-diphenylpropan-1-one (4a)

