Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Synthesis and characterization of pentaerythritol derived glycoconjugates as

supramolecular gelators

Anji Chen, Dan Wang, Jonathan Bietsch, and Guijun Wang*

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.

Table of Contents

Gel characterization method
Synthesis, characterization data and gelation test result for compound 1
General procedure for the synthesis of tetrameric compounds 13 , 14 , 15 , 19
Synthesis and characterization data for compounds 20 and 21
Synthesis, characterization data and gelation test result for compounds 29 and 30 S10
¹ H and ¹³ C NMR spectra, 2D NMR spectra and HRMS spectra
¹ H and ¹³ C NMR spectra for compound 1
¹ H and ¹³ C NMR spectra for compounds 8-30 and 2D NMR (HSQC and COSY) spectra
for compounds 14 , 15 , 19 , 20
HRMS spectra of compounds 10-21
Rheological studies
Frequency experiments of compounds 13, 19, 21
Amplitude experiments of compounds 13, 19, 21
Variable temperature ¹ H NMR studies
Variable temperature ¹ H NMR studies of compound 13 and 21
Naproxen co-gels and release profile with gelator 21 at pH 7 and 10
Naproxen release studies with gelator 21 at pH 7 and 10S59
Drug encapsulation and release studies
Naproxen release study
Riboflavin release study
Vitamin B ₁₂ release studyS62
AFM images

Gels of compound 21 in water at 10 mg/mL and compound 21 with vitamin B_2 S63

Gel characterization method

Optical Microscopy: A small amount of gels was placed on a clean glass slide and this was observed under an Olympus BX60M optical microscope and the Olympus DP73-1-51 high performance 17MP digital camera with pixel shifting and Peltier cooled. The imaging software for image capturing is CellSens 1.11.

Gel Testing: About 2 mg of dried compound was transferred to a 1 dram glass vial and the corresponding solvent was added to obtain a concentration of 20 mg/mL. The mixture was then heated until the solid was fully dissolved, sometimes sonication was needed to dissolve the sample, and then the solution was allowed to cool to room temperature and left standing for 30 minutes. If a stable gel formed (observed by inverting the vial), it was then serially diluted till the minimum gelation concentration (MGC), which is the concentration prior to unstable gelation, was obtained.

Rheological Analyses: The rheological behavior of the gel was studied using an HR-2 Discovery hybrid rheometer from TA Instruments with TRIOS software. A sample (approximately 1mL of the gel) was placed on the steel plate of the rheometer. The cone geometry is a 25 mm Peltier plate with a gap of 100 μ m. The experimental temperature was 25 °C, and the sample was subjected to amplitude sweep for oscillation strain from 0.125 to 10%. A frequency sweep was then performed for the sample in the range of 0.1 to 100 rad/s for the angular frequency. The results were expressed as the storage modulus (*G'*) and loss modulus (*G''*) as a function of angular frequency.

Drug trapping and release: A hydrogel was prepared in a 1 dram vial using 10 mg of compound **21** and corresponding drugs with 1 mL of H₂O, after a stable gel was formed and the gel was left

undisturbed for 2 hours, 2 mL of water at pH 7 or 10 was added to the top of the gel carefully. Drug release from the gel was monitored by UV absorption or Fluorescence at certain time by transferring the supernatant with a pipet to a cuvette, after each measurement the aqueous phase was carefully transferred back to the vial and placed on top of the gel again till the next measurement. The gel for naproxen release study was prepared using 10 mg gelator and 0.5 mg naproxen. The gel of vitamin B₂ was using 10 mg gelator and 0.1 mg vitamin B₂ in 1 mL water; and the vitamin B₁₂ gel was prepared using 10 mg gelator and 0.3 mg vitamin B₁₂.

Synthesis, characterization data and gelation test result for compound 1

Compound (100 mg, 0.268 mmol, 1 equiv.) was dissolved in 2 mL solvent mixture of EtOH:water (v/v 1:1). To this solution, 5-Hexynoic acid (0.036 mL, 36 mg, 0.322 mmol, 1.2 equiv.) was added. CuSO₄ pentahydrate (13.4 mg, 0.054 mmol, 0.2 equiv.) and sodium L-ascorbate (21.4 mg, 0.108 mmol, 0.4 equiv.) were added to the reaction mixture and the reaction was stirred for 6 hours at 40 °C. The solvent was removed under reduced pressure. DCM (3 mL) and H₂O (2 mL) were added to the crude product. Precipitate was observed and filtered via vacuum filtration to obtain white solid (124 mg, 0.256 mmol, 89 %) as the desired product. ¹H NMR (400 MHz, CDCl₃ + *d*₄-MeOH) δ 7.64 (s, 1H), 5.87 (d, *J* = 9.9 Hz, 1H), 5.33 (t, *J* = 9.9 Hz, 1H), 5.17 (t, *J* = 9.7 Hz, 1H), 4.51 (t, *J* = 10.1 Hz, 1H), 4.29-4.21 (m, 1H), 4.15-4.06 (m, 1H), 4.00-3.92 (m, 1H), 2.84-2.68 (m, 2H), 2.34-2.24 (m, 2H), 2.09-1.92 (m, 11H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃ + *d*₄-MeOH) δ 171.4, 170.8, 170.7, 169.4, 120.2, 85.9, 74.8, 72.4, 68.0, 61.7, 53.1, 33.0, 24.6, 24.2, 22.3, 20.6, 20.4.

Gelation test result of compound **1** is shown in the table below.

I, insoluble; P, crystallize or precipitate; S, soluble at ~20 mg/mL.

General procedure for the synthesis of tetrameric compounds 13, 14, 15, 19

To a 50 mL round bottomed flask, azide (4.4 equiv.) and tetra-alkyne (1 equiv.) were dissolved in 9 mL of solvent mixture of *t*-BuOH: H₂O: THF (v/v/v = 1:1:1). CuSO₄ (0.8 equiv.) and L-ascorbic acid sodium salt (1.6 equiv.) were added to the reaction mixture. Reaction was stirred for 24 hours at room temperature. Solvent was removed under reduced pressure to give the crude, which was purified by column chromatography using pure DCM to 5% MeOH/DCM as the eluent to afford the desired tetrameric compounds **13**, **14**, **19**. Synthesis of tetramer **13** and **19** were carried out through above-mentioned procedure using 200 mg of azide as the starting material. Yields for synthesizing tetramer **13** and **19** are 81% and 83% respectively. Compound **15** was synthesized using CuI method and the detailed procedure of synthesis is shown below.

Synthesis of tetrameric galactosyl triazole derivative 15

To a 50 mL round bottomed flask, compounds 7 (160 mg, 0.431 mmol, 4.4 equiv.) and 8 (50 mg, 0.098 mmol, 1 equiv.) were dissolved in 6 mL of solvent mixture of THF:toluene (1:1). CuI (7.6 mg, 0.040 mmol, 0.4 equiv.) and DIEA (0.068 mL, 0.392 mmol, 4 equiv.) were added to the

reaction mixture. Reaction was stirred at 80 °C for 36 hours. Solvent was removed under reduced pressure to give the crude, which was then purified by column chromatography using eluent from 1% MeOH/DCM to 5% MeOH/DCM to afford off-white solid (147 mg, 0.073 mmol, 75%) as the desired product ($R_f = 0.5$ in 5% MeOH/DCM). *Characterizations are included in the main text*.

Synthesis of dimeric compound **20** *and trimeric compound* **21**

Synthesis of dimeric glucosamine triazole conjugate **20** and trimeric glucosamine triazole conjugate **21** are depicted in Schemes 3 and 4. Benzylidene acetal protected diol **22** and trityl protected triol **25** were prepared following literature method with slight modifications using pentaerythritol as the starting material.^{3, 4}

Synthesis of benzylidene acetal protected di-alkyne 23

To a 50 mL round bottomed flask, compound 22^3 (1.50 g, 6.69 mmol, 1 equiv.) was mixed with anhydrous DMF (5 mL) and then the mixture was cooled to 0 °C in an ice bath. To the mixture, NaH (60% dispersion in mineral oil, 803 mg, 20.07 mmol, 3 equiv.) was added portion-wise and the mixture was stirred at 0 °C for 30 minutes. Propargyl chloride (1.85 mL, 16.73 mmol, 2.5 equiv.) was added and then the mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was poured into a mixture of water (5 mL) and EtOAc (30 mL). Then the mixture was transferred to a separatory funnel. The aqueous phase was washed twice with EtOAc (30 mL x 2). The combined organic phase was dried (over anhydrous Na₂SO₄), filtered, and concentrated to give the crude, which was purified by column chromatography using eluent from pure hexanes to 10% EtOAc/hexanes to afford the colorless oil (1.81 g, 5.99 mmol, 90%) as the product (R_f = 0.55 in 20% EtOAc/hexanes). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.46 (m, 2H), 7.41-7.33 (m, 3H), 5.44 (s, 1H), 4.21 (d, J = 2.4 Hz, 2H), 4.15-4.09 (m, 4H), 3.93-3.86 (m, 4H), 3.38 (s, 2H), 2.44, 2.43 (2 overlapping triplets, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 128.9, 128.3, 126.1, 101.8, 79.9, 79.5, 74.5, 74.2, 69.9, 69.8, 68.7, 58.77, 58.75, 38.5; LC-MS (ESI+) [M+H]⁺ calcd for C₁₈H₂₁O₄ 301.1, found 301.1.

Synthesis of di-alkyne 24

To a 50 mL round bottomed flask, compound **23** (150 mg, 0.500 mmol, 1 equiv.) was added with 2 mL of acetic acid and water mixture (v/v = 4:1). The mixture was heated at 50 °C for 3 hours. Solvent was removed under reduced pressure to give the crude product, which was purified by column chromatography using eluent from pure hexanes to 40% EtOAc/hexanes to yellowish oil (81 mg, 0.382 mmol, 76%) as the desired product. ($R_f = 0.2$ in 40% EtOAc/Hexanes). ¹H NMR (400 MHz, CDCl₃) δ 4.15 (d, J = 2.4 Hz, 4H), 3.69 (s, 4H), 3.60 (s, 4H), 2.45 (t, J = 2.4 Hz, 2H), 2.29 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 79.4, 74.8, 71.0, 64.4, 58.8, 44.9; LC-MS (ESI+) [M+H]⁺ calcd for C₁₁H₁₇O₄ 213.2, found 213.2.

Synthesis of dimeric compound 20

To a 50 mL round bottomed flask, compound **5** (232 mg, 0.623 mmol, 2.2 equiv.), intermediate **24** (60 mg, 0.283 mmol, 1 equiv.) were dissolved in a solvent mixture of *t*-BuOH: H₂O: THF (6 mL, v/v/v=1:1:1). Then CuSO₄ (18 mg, 0.113 mmol, 0.4 equiv.) and L-ascorbate sodium salt (45 mg, 0.226 mmol, 0.4 equiv.) were added to the mixture. The resulting mixture was heated at 50 °C and stirred for 2 hours. Solvent was removed under the reduced pressure to give the crude product, which was purified by column chromatography using eluent from pure DCM to 5%

MeOH/DCM to give white solid (227 mg, 0.237 mmol, 84%) as the desired product ($R_f = 0.5$ in 10% MeOH/DCM). *Characterization included in the main text*.

Synthesis of trityl protected tri-alkyne 26

To a 50 mL round bottomed flask, compound **25**⁴(500 mg, 1.3 mmol, 1 equiv.) was mixed with anhydrous DMF (10 mL) and then the mixture was cooled to 0 °C in an ice bath for about half an hour. Sodium hydride (60% dispersion in mineral oil, 210 mg, 5.3 mmol, 4 equiv.) was added portion-wise and the mixture was stirred at 0 °C. Propargyl chloride (70 wt% in toluene, 1.0 mL, 9.1 mmol, 7.0 equiv.) was added to the reaction mixture and the mixture was stirred for half an hour at 0 °C and continued with stirring at r.t. for 8 h. The reaction mixture was quenched with ice water (~5 mL), then EtOAc (10 mL) was added to the mixture. The aqueous phase was extracted with EtOAc again (10 mL x 2). The combined organic phase was dried over anhydrous Na_2SO_4 , filtered, and concentrated to obtain the crude product. The crude was purified by column chromatography using eluent from hexane to 35% EtOAc/hexanes to afford a light yellow solid (569 mg, 1.15 mmol, 89%) as the desired product. $R_f = 0.5$ in 15% EtOAc/hexanes, m.p. 65.0-67.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.45 (m, 6H), 7.35-7.28 (m, 6H), 7.27-7.22 (m, 3H), 4.08 (d, J = 2.4 Hz, 6H), 3.57 (s, 6H), 3.14 (s, 2H), 2.38 (t, J = 2.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 128.9, 127.6, 126.8, 86.2, 80.1, 74.0, 68.9, 61.2, 58.6, 45.2; LC-MS (ESI+) $[M+Na]^+$ m/z calcd for C₃₃H₃₂O₄ 515.2, found 515.2.

Synthesis of trimeric intermediate 27

To a 50 mL round bottomed flask, compound **5** (264 mg, 0.709 mmol, 3.5 equiv.), alkyne **26** (100 mg, 0.203 mmol, 1 equiv.) were dissolved in a solvent mixture of *t*-BuOH: H_2O : THF (6 mL,

v/v/v=1:1:1). Then CuSO₄ (19.5 mg, 0.122 mmol, 0.6 equiv.) and L-ascorbate sodium salt (48.3 mg, 0.244 mmol, 1.2 eq) were added to the mixture. The resulting mixture was stirred at room temperature and for 20 hours. Solvent was removed under the reduced pressure to give the crude product, which was purified by column chromatography using eluent from 1% to 10% MeOH/DCM to give white solid (281 mg, 0.175 mmol, 86%) as the desired product ($R_f = 0.58$ in 10% MeOH/DCM). m.p. 141.0-143.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (br s, 3H), 7.45-7.14 (m, 18H), 6.40-6.04 (m, 3H), 5.71-5.46 (m, 3H), 5.30 (t, *J* = 9.3 Hz, 3H), 4.73-4.40 (m, 8H), 4.40-4.25 (m, 4H), 4.22-4.06 (m, 6H), 3.64-3.24 (m, 6H), 3.15-2.94 (m, 2H), 2.05 (s, 9H), 2.03 (s, 9H), 2.00 (s, 9H), 1.63 (br s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.6, 170.4, 169.3, 144.0, 143.7, 128.6, 127.6, 126.8, 122.0, 86.1, 85.5, 74.8, 72.4, 68.4, 68.2, 64.3, 61.8, 60.4, 53.5, 45.5, 22.6, 20.6, 20.5; LC-MS (ESI+) [M+Na]⁺ m/z calcd for C₇₅H₉₂N₁₂O₂₈ 1631.6, found 1631.6.

Synthesis of compound 21

To a 50 mL round bottomed flask, compound **27** (150 mg, 0.093 mmol, 1 equiv.) was dissolved in 3 mL of DCM, then 5 drops of TFA was added to the reaction mixture. After stirring at room temperature for 2 hours, 2 mL of NaHCO₃ (5 wt%) was added to neutralize the mixture. The mixture was transferred to a separatory funnel. Organic layer was dried over anhydrous Na₂SO₄ and concentrated to give the crude product, which was purified by column chromatography using eluent from 1% to 10% MeOH/DCM to afford white solid (114 mg, 0.083 mmol, 90 %) as the desired product ($R_f = 0.42$ in 10% MeOH/DCM). *Characterization included in the main text*.

Synthesis, characterization data and gelation test result for compounds 29 and 30

Scheme S1. Synthesis of deacetylated sugar triazole conjugates 29-30.

Synthesis of trimeric free sugar triazole intermediate 28

To a scintillation vial, compound **27** (160 mg, 0.100 mmol, 1 equiv.) and NaOMe (6.3 mg, 0.12 mmol, 1.2 equiv.) were dissolved in MeOH (3 mL). Reaction was stirred at room temperature for 10 hours. Solvent was removed to give the crude, which was purified by column chromatography using eluent from pure DCM to 50% MeOH/DCM to afford white solid (103 mg, 0.084 mmol, 84%) as the desired product ($R_f = 0.5$ in 50% MeOH/DCM). ¹H NMR (400 MHz, D₂O) δ 7.96 (s, 3H), 7.23-7.00 (m, 6H), 6.91-6.57 (m, 9H), 5.81 (d, *J* = 8.9 Hz, 3H), 4.43-4.08 (m, 9H), 3.90-3.63 (m, 15H), 3.24 (s, 6H), 2.84 (s, 2H), 1.61 (s, 9H); ¹³C NMR (100 MHz, D₂O) δ 173.5, 144.6, 143.8, 128.4, 127.7, 127.0, 123.6, 86.2, 86.0, 79.0, 73.8, 69.4, 68.5, 63.7, 61.5, 60.6, 55.3, 45.1, 21.9; LC-MS m/z calcd for C₅₇H₇₅N₁₂O₁₉ [M+H]⁺ 1231.5, found 1231.5.

Synthesis of trimeric free sugar triazole conjugate 29

To a scintillation vial, compound **28** (30 mg, 0.024 mmol, 1 equiv.) was dissolved in 2 mL of H₂O. 2 drops of TFA was added to the reaction mixture. After stirring at room temperature for 2 hours, the reaction showed full conversion by the analysis of ¹H NMR spectrum. 2 mL of hexane was added to the mixture. Aqueous layer was dried to afford white solid (19 mg, 0.019 mmol, 79%) as the desired product. ¹H NMR (400 MHz, D₂O) δ 8.15 (s, 3H), 5.79 (d, *J* = 9.7 Hz, 3H), 4.60-4.42 (m, 6H), 4.21 (t, *J* = 9.9 Hz, 3H), 3.90-3.84 (m, 3H), 3.82-3.60 (m, 12H), 3.48-3.29 (m, 8H), 1.73 (s, 9H); ¹³C NMR (100 MHz, D₂O) δ 174.0, 123.9, 86.4, 78.9, 73.6, 69.3, 68.6, 63.4, 60.5, 55.3, 44.8, 21.6; LC-MS m/z calcd for C₃₈H₆₀N₁₂O₁₉Na [M+Na]⁺ 1011.4, found 1011.4.

Synthesis of tetrameric free sugar triazole conjugate 30

To a scintillation vial, compound **19** (178 mg, 0.100 mmol, 1 equiv.) and NaOMe (7 mg, 0.120 mmol, 1.2 equiv.) were dissolved in MeOH (3 mL). Reaction was stirred at room temperature for 6 hours. Solvent was removed to give the crude which was added 3 mL of DCM and extracted by H₂O (5 mL × 2). Aqueous phase was dried to afford crude which was purified by column chromatography using eluent MeOH/DCM (5% to 30%) to afford white solid (96 mg, 0.076 mmol, 76%) as the desired product ($R_f = 0.14$ in 50% MeOH/DCM). ¹H NMR (400 MHz, D₂O) δ 8.14 (s, 4H), 5.82 (d, *J* = 9.7 Hz, 4H), 4.55-4.44 (m, 8H), 4.24 (t, *J* = 9.9 Hz, 4H), 3.93-3.87 (m, 4H), 3.83-3.67 (m, 16H), 3.34-3.30 (m, 8H), 1.74 (s, 12H); ¹³C NMR (100 MHz, D₂O) δ 174.0, 144.4, 123.7, 86.3, 79.0, 73.6, 69.3, 68.1, 63.4, 60.5, 55.3, 44.6, 21.7; LC-MS m/z calcd for C₄₉H₇₆N₁₆O₂₄ [M+H]⁺ 1273.5, found 1273.5.

Table S1. Gelation test result of compounds 29 and 30

Compound	Tol	EtOH	i- PrOH	n- PrOH	n- BuOH	EtOH: H ₂ O (1:2)	EtOH :H ₂ O (1:1)	DMSO :H ₂ O (1:2)	DMSO: H ₂ O (1:1)	H ₂ O	Hexane
29	Ι	S	S	S	S	S	S	S	S	S	Ι
30	Ι	Ι	Ι	Ι	Ι	S	S	S	S	S	Ι

References:

- 1. T. Lee, J. Oh, J. Jeong, H. Jung, J. Huh, T. Chang, H.-j. Paik, *Macromolecules* **2016**, *49*, 3672-3680.
- Y. Chen, N. Xiao, M. Fukuoka, K. Yoshida, Q. Duan, T. Satoh, T. Kakuchi, *Polym. Chem.* 2015, *6*, 3608-3616.
- 3. X. Fan, B. Huang, G. Wang, J. Huang, *Polymer* **2012**, *53*, 2890-2896.
- 4. I. Elkin, J.-M. Rabanel, P. Hildgen, *Macromol. Chem. Phys.* 2015, 216, 2356-2367.

¹H and ¹³C NMR spectra for compound 1

¹H NMR and ¹³C NMR spectra of compound **1** in CDCl₃ + d_4 -MeOH

¹H and ¹³C NMR spectra for compounds 8-30 and 2D NMR (HSQC and COSY) spectra for compounds 14, 15, 19, 20

 $\overbrace{+2.39}^{4.12}$

 ^1H NMR and ^{13}C NMR spectra of compound 11 in CDCl_3

S18

¹H NMR and ¹³C NMR spectra of compound **13** in d_6 -DMSO

¹H NMR and ¹³C NMR spectra of compound **14** in d_6 -DMSO

HSQC and COSY spectra of compound 14 in d_6 -DMSO

¹H NMR and ¹³C NMR spectra of compound **15** in d_6 -DMSO

HSQC and COSY spectra of compound 15 in d_6 -DMSO (sugar ring region)

7.88 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.647 6.655 6.555 6.555 6.555 6.555 6.647 6.609 6.647 6.609 6.647 6.625 6.555 6.555 6.555 6.555 6.555 6.555 6.555 6.647 6.609 6.647 6.625 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.5556 6.55

¹H NMR and ¹³C NMR spectra of compound **16** in CDCl₃

¹H NMR and ¹³C NMR spectra of compound **17** in CDCl₃

¹H NMR and ¹³C NMR spectra of compound **18** in CDCl₃

¹H NMR and ¹³C NMR spectra of compound **19** in d_6 -DMSO

HSQC and COSY spectra of compound 19 in d₆-DMSO

¹H NMR and ¹³C NMR spectra of compound **20** in CDCl₃

HSQC and COSY spectra of compound 20 in CDCl₃

¹H NMR and ¹³C NMR spectra of compound **21** in d_6 -DMSO

 ^1H NMR and ^{13}C NMR spectra of compound **23** in CDCl_3

 ^1H NMR and ^{13}C NMR spectra of compound 24 in CDCl_3

 ^1H NMR and ^{13}C NMR spectra of compound **26** in CDCl_3

 ^1H NMR and ^{13}C NMR spectra of compound **27** in CDCl_3

HRMS spectra of compounds 10-21

Analysis Info				Acquisition Date	3/19/2019 1:37:32 PM
Analysis Name Method	Z:\FTICR-MS\MS-1\Data\2019\apexdata03	1919\C		pos_000001.d Operator	FTMS USER
Sample Name	OBC_CPD10_pos			Instrument	apex-Qe
Comment	OBC_CPD10 in MeOH:water w/NaCl		C43H56N4C	016 H+	
Sample Name	OBC_CPD10 in MeOH:water w	//NaCl			
Exact Mass of	C43H56N4O16 H+	=	885.376408	3 m/z	
Mass Observed		=	885.376925	m/z	
Differer	100 < 1.0 ppm				

 ${\rm Difference} < 1.0 \ {\rm ppm}$

HRMS spectrum of compound 10

Analysis Info				Acquisition Date	3/19/2019 1:52:38 PM
Analysis Name	Z:\FTICR-MS\MS-1\Data\2019\apexdata031	919\O	BC_Cpd11_p	oos_000001.d	
Method				Operator	FTMS_USER
Sample Name	OBC_Cpd11_pos			Instrument	apex-Qe
Comment	OBC_Cpd11 in MeOH:water w/NaCl	[C5	7H76N8O24	+ Na]+2	-
Sample Name	OBC_Cpd11 in MeOH:water w/N				
Exact Mass of	[C57H76N8O24 + Na]+2	=	651.237844	m/z	
Mass Observed		=	651.237307	m/z	

HRMS spectrum of compound 11

Analysis Info			Ad	cquisition Date	3/19/2019 2:03:31 PM
Analysis Name	Z:\FTICR-MS\MS-1\Data\2019\apexdata03	1919\	OBC_Cpd12_po	s_000001.d	
Method			O	perator	FTMS_USER
Sample Name	OBC_Cpd12_pos		In	strument	apex-Qe
Comment	OBC_Cpd12 in MeOH:water w/NaCl		C71H96N12O32	2 Na+	
Sample Name	OBC_Cpd12 in MeOH:water	w/Na	CI		
Exact Mass of	C71H96N12O32 Na+	=	1651.614580	m/z	
Mass Observed		=	1651.614323	m/z	

HRMS spectrum of compound 12

Analysis Info			Acquisition Date	8/17/2017 3:14:18 AM
Analysis Name	G:\Data\apexdata081617\100	7_049_pos_000002.d		
Method			Operator	FTMS_USER
Sample Name	1007_049		Instrument	apex-Qe
Comment	1007_049 in MeOH:H2O	C85H116N16O40 Na2+		
Sample Name	1007 049 in MeOH:H2O			
Exact Mass of	C85H116N16O40 Na2+=	1023.365957 m/z		
Mass Observed	=	1023.364505 m/z		
D:00	- • •			

Difference < -1.5 ppm

HRMS spectrum of compound 13

Analysis Info				Acquisition Date	3/19/2019 2:15:54 PM
Analysis Name	Z:\FTICR-MS\MS-1\Data\2019\apexdata03	31919\0	BC_Cpd14_	pos_000002.d	
Method				Operator	FTMS_USER
Sample Name	OBC_Cpd14_pos			Instrument	apex-Qe
Comment	OBC_Cpd14 in MeOH:water w/NaCl	[C85H	112N12O44+	+ Na]+2	
Sample Name	OBC_Cpd14 in MeOH:water w				
Exact Mass of	[C85H112N12O44+ Na]+2	=	1025.33398	9 m/z	
Mass Observed		=	1025.33259	5 m/z	
Differer	ace = 1.4 ppm				

HRMS spectrum of compound 14

Analysis Info			Acquisition Date	8/17/2017 2:50:59 AM
Analysis Name	G:\Data\apexdata081617\10	07_055_pos_000001.d		
Method Sample Name Comment	1007_055 1007_055 in MeOH:H2O	C85H112N12O44 H2+	Operator Instrument	FTMS_USER apex-Qe
Sample Name	1007 055 in MeOH:H2O			
Exact Mass of	C85H112N12O44 H2+ =	= 1003.352044 m/z		
Mass Observed	=	= 1003.349721 m/z		

Difference = -2.3 ppm

HRMS spectrum of compound 15

Analysis Info				Acquisition Date	3/19/2019 2:27:09 PM
Analysis Name	Z:\FTICR-MS\MS-1\Data\2019\apexdata0	31919\C	BC_Cpd16_p	oos_000002.d	
Method			(Operator	FTMS_USER
Sample Name	OBC_Cpd16_pos			Instrument	apex-Qe
Comment	OBC_Cpd16 in MeOH:water w/NaCl	С	31H40N4O12	2 H+	
Sample Name	OBC_Cpd16 in MeOH:water	w/NaCl			
Exact Mass of	C31H40N4O12 H+	=	661.271549	m/z	
Mass Observed		=	661.271026	m/z	

Difference < 1.0 ppm

HRMS spectrum of compound 16

Analysis Info				Acquisition Date	3/19/2019 2:57:39 PM
Analysis Name	Z:\FTICR-MS\MS-1\Data\2019\apexdata0	31919\(DBC_Cpd18_	pos_000001.d	
Method				Operator	FTMS_USER
Sample Name	OBC_Cpd18_pos			Instrument	apex-Qe
Comment	OBC_Cpd18 in MeOH:water w/NaCl	C59	H80N12O28	Na+	
Sample Name	OBC_Cpd18 in MeOH:water	w/NaC			
Exact Mass of	C59H80N12O28 Na+	=	1427.50972	1 m/z	
Mass Observed		=	1427.51040	3 m/z	

HRMS spectrum of compound 18

Analysis Info			Acquisition Date	8/17/2017 2:33:54 AM
Analysis Name	G:\Data\apexdata081617\10	18_139_pos_000003.d		
Method Sample Name Comment	1018_139 1018_139 in MeOH:H2O	C73H100N16O36 H2+	Operator Instrument	FTMS_USER apex-Qe
Sample Name	1018 139 in MeOH:H2O			
Exact Mass of	C73H100N16O36 H2+ =	889.331583 m/z		
Mass Observed	=	889.329786 m/z		
D:00	2.0			

Difference = -2.0 ppm

HRMS spectrum of compound 19

Analysis Info				Acquisition Date	3/19/2019 3:03:46 PM
	Z:\FTICR-MS\MS-1\Data\2019\apexdata03	1919\C	BC_Cpd20_		
Method				Operator	FTMS_USER
Sample Name	OBC_Cpd20_pos			Instrument	apex-Qe
Comment	OBC_Cpd20 in MeOH:water w/NaCl	[C39	H56N8O20+	Na]+2	
Sample Name	OBC_Cpd20 in MeOH:water w	/NaCl			
Exact Mass of	[C39H56N8O20+ Na]+2	=	501.169764	4 m/z	
Mass Observed		=	501.170042	2 m/z	

Analysis Info				Acquisition Date	3/19/2019 3:13:11 PM
Analysis Name Method Sample Name	Z:\FTICR-MS\MS-1\Data\2019\apexdata03 OBC_Cpd21_pos	1919\C	- · -	pos_000001.d Operator Instrument	FTMS_USER apex-Qe
Comment	OBC_Cpd21 in MeOH:water w/NaCl	[C56	H78N12O28	+Na]+2	-
Sample Name	OBC_Cpd21 in MeOH:water w				
Exact Mass of	[C56H78N12O28 +Na]+2	=	706.241640	5 m/z	
Mass Observed		=	706.242010) m/z	

HRMS spectrum of compound 21

Rheological Studies

Table S2. Storage modulus (G'), loss modulus (G'') and G'/G'' value for compound **13** (i-PrOH, 4.0 mg/mL) under different angular frequency.

Compound 13 i-PrOH, 4.0 mg/mL						
Angular frequency	Storage modulus (G')	Loss modulus (G")	<i>G''G''</i>			
rad/s	Pa	Pa				
0.1	2241.69	404.457	5.54			
0.15849	2434.06	371.291	6.56			
0.251189	2546.71	336.85	7.56			
0.398107	2654.48	303.032	8.76			
0.630957	2738.17	282.673	9.69			
1.0	2816.35	276.519	10.19			
1.5849	2883.92	263.159	10.96			
2.51189	2944.78	248.119	11.87			
3.98105	3011.54	247.01	12.19			
6.30957	3065.31	237.697	12.90			
10.0001	3126.1	238.702	13.10			
15.849	3185.1	246.567	12.92			
25.1188	3246.87	254.004	12.78			
39.8105	3316.23	279.154	11.88			
63.0957	3401.63	307.833	11.05			
100.0	3513.55	353.137	9.95			

Table S3. Storage modulus (G'), loss modulus (G'') and G'/G'' value for compound **19** (EtOH/H₂O, v/v 1:2, 4.0 mg/mL) under different angular frequency.

Compound 19				
EtOH/H ₂ O, v/v 1/2, 4.0 mg/mL				
Angular frequency	Storage modulus (G')	Loss modulus (G")	<i>G'/G''</i>	
rad/s	Pa	Pa		
0.1	1110.95	199.3	5.57	
0.15849	1203.97	156.911	7.67	
0.251189	1249.59	159.657	7.83	
0.398107	1298.26	148.881	8.72	
0.630957	1341.19	138.872	9.66	
1.0	1374.62	133.004	10.34	
1.5849	1416.46	129.812	10.91	
2.51189	1445.99	124.755	11.59	
3.98105	1479.49	119.77	12.35	
6.30957	1509.16	115.377	13.08	
10.0001	1535.64	115.004	13.35	
15.849	1563.66	112.578	13.89	
25.1188	1594.74	116.217	13.72	
39.8105	1625.92	122.248	13.30	
63.0957	1664.49	135.245	12.31	
100.0	1725.81	155.111	11.13	

Table S4. Storage modulus (*G'*), loss modulus (*G''*) and *G'/G''* value for compound **21** (H₂O, 10.0 mg/mL) under different angular frequency.

Compound 21 H ₂ O, 10.0 mg/mL				
Angular frequency	Storage modulus (G')	Loss modulus (G")	<i>G'/G''</i>	
rad/s	Pa	Pa		
0.1	11398.4	4717.28	2.42	
0.15849	12738.3	4231.1	3.01	
0.251189	13468.5	3989.79	3.38	
0.398107	14074.7	3737.58	3.77	
0.630957	14486.3	3522.18	4.11	
1.0	14979.5	3302.28	4.54	
1.5849	15384.8	3198.71	4.81	
2.51189	15910.8	3079.59	5.17	
3.98105	16296.9	2972.95	5.48	
6.30957	16776.6	2932.69	5.72	
10.0001	17262.8	2852.35	6.05	
15.849	17648.2	2748.47	6.42	
25.1188	18193.2	2764.35	6.58	
39.8105	18637.9	2750.31	6.78	
63.0957	18960.8	2821.77	6.72	
100.0	19543.0	2762.92	7.07	

Amplitude sweep experiments

Amplitude sweep experiment was performed by HR-2 Discovery Hybrid Rheometer from TA instrument. All gels at their minimum gelation concentration were prepared in 4-dram vial in different solvent (or solvent mixtures) and they were left undisturbed on bench for 2 hrs. Sample (approximately 1 mL) was placed on the steel plate of the rheometer. The experimental temperature was 25 °C. The sample were subjected to amplitude sweep between 25-mm peltier plate and steel plate with a gap of 100 μ m. Angular frequency was set as 10.0 rad/s. Operating and processing software is TRIOS. Results were expressed as the storage modules (*G'*), loss modules (*G''*) as function of oscillation strain in a range from 0.1% to 125%.

Figure S1. Rheological properties of amplitude sweep experiment for the gel of compound **13** (i-PrOH, 4.0 mg/mL).

Figure S2. Rheological properties of amplitude sweep experiment for the gel of compound **19** (EtOH/H₂O, v/v 1:2, 4.0 mg/mL).

Figure S3. Rheological properties of amplitude sweep experiment for the gel of compound 21 $(H_2O, 10.0 \text{ mg/mL})$.

Variable temperature ¹H NMR studies

Figure S4. The ¹H NMR spectra (3.5 to 9.0 ppm) of compound **13** from 30 °C to 60 °C in d_{6} -DMSO (10.0 mg/mL).

Figure S5. The ¹H NMR spectra (3.5 to 9.0 ppm) of compound **21** from 30 °C to 60 °C in d_6 -DMSO (10.0 mg/mL).

Naproxen co-gels and release profile with gelator 21 at pH 7 and 10

Figure S6. Release profile of naproxen with gelator **21** at pH 7 and 10 from gel to aqueous phase. a) UV spectra of naproxen from aqueous phase at pH 10. The gel was formed by 10 mg of compound **21** in 1.0 mL H₂O (pH 7) with 0.5 mg of naproxen, then 2.0 mL of water (pH 10) was added on top of the gel; naproxen control was prepared by dissolving 0.5 mg naproxen in 3.0 mL of water (pH 7). b) The percent release profile of naproxen at different time under pH 7 and 10, data was obtained using absorbance at 330 nm at different time versus the standard.

Drug encapsulation and release studies

Naproxen release study

Figure S7. Photos at different time periods of naproxen release study.

A hydrogel was prepared in a 1 dram via using 10 mg of compound **21** and 0.5 mg of naproxen sodium and 1 mL H₂O, 2 mL of water at pH 7 was added to the top of the gel carefully. Naproxen control was prepared by dissolving 0.5 mg naproxen in 3 mL of water (pH 7). Naproxen release from the gel was monitored by UV absorption at certain time by transferring the supernatant with a pipet to a cuvette, after each measurement the aqueous phase was carefully transferred back to the vial and placed on top of the gel again till the next measurement.

Riboflavin release study

Figure S8. Photos at different time periods of riboflavin release study.

A hydrogel was prepared in a 1 dram via using 10 mg of compound **21** and 0.1 mg of riboflavin and 1 mL H₂O, 2 mL of water at pH 7 was added to the top of the gel carefully. Riboflavin control was prepared by dissolving 0.1 mg riboflavin in 3 mL of water (pH 7). Riboflavin release from the gel was monitored by fluorescence microscopy at certain time by transferring the supernatant with a pipet to a cuvette, after each measurement the aqueous phase was carefully transferred back to the vial and placed on top of the gel again till the next measurement.

Vitamin B₁₂ release study

Figure S9. Photos at different time periods of vitamin B₁₂ release study.

A hydrogel was prepared in a 1 dram via using 10 mg of compound **21** and 0.3 mg of Vitamin B_{12} (Cyanocobalamin) and 1 mL H_2O , 2 mL of water at pH 7 was added to the top of the gel carefully. Vitamin B_{12} control was prepared by dissolving 0.3 mg Vitamin B_{12} in 3 mL of water (pH 7). Vitamin B_{12} release from the gel was monitored by UV absorption at certain time by transferring the supernatant with a pipet to a cuvette, after each measurement the aqueous phase was carefully transferred back to the vial and placed on top of the gel again till the next measurement.

Vitamin B₁₂ (Cyanocobalamin)

Atomic force microscopy (AFM) images for several gels

Figure S10. AFM characterization images of the gel formed by compounds **21** in water at 10 mg/mL.

Figure S11. AFM images of the gel formed by compounds **21** in water at 10 mg/mL with 0.1 mg/mL of vitamin B_2 .