Acid-Base Controlled Multiple Conformation and Aromaticity Switches in Tren-Capped Hexaphyrins

S. Le Gac, E. Caytan, V. Dorcet, B. Boitrel

Experimental part

- **Figure S1.** VT ¹H NMR spectra of **1** (CD₂Cl₂, 500 MHz).
- Figure S2. VT ¹H NMR spectra of 2 (CD₂Cl₂, 500 MHz).
- Figure S3. ¹H NMR titration experiment of **1** with TFA (CD₂Cl₂, 500 MHz, 223 K).
- **Figure S4.** ¹H NMR titration experiment of **1** with MSA (CD₂Cl₂, 500 MHz, 223 K).
- Figure S5. ¹H NMR titration experiment of **2** with TFA (CD₂Cl₂, 500 MHz, 223 K).
- Figure S6. ¹H NMR titration experiment of **2** with MSA (CD₂Cl₂, 500 MHz, 223 K).
- **Figure S7.** ¹H NMR titration experiment of **1** with TFA (CDCl₃, 500 MHz, 233 K).
- Figure S8. ¹⁹F NMR titration experiment of **1** with TFA (CDCl₃, 470 MHz, 233 K).

Figure S9. Acid-base conformation and aromaticity switches upon successive addition of TFA and TEA to 1 (CDCl₃, 500 MHz, 233 K).

- Figure S10. 2D COSY spectrum of 1.5H⁺ (CDCl₃, 233 K).
- Figure S11. 2D TOCSY spectrum of 1.5H⁺ (CDCl₃, 233 K).
- Figure S12. 2D HSQC spectrum of 1.5H⁺ (CDCl₃, 233 K).
- Figure S13. 2D NOESY spectrum of 1.5H⁺ (CDCl₃, 233 K).
- **Figure S14.** ¹⁹F 2D DOSY spectrum of **1.5H**⁺ (CDCl₃, 470 MHz, 233 K).
- **Figure S15.** 1D ¹H detected ¹H-¹⁹F nOe-difference spectra of **1.5H**⁺ (CDCl₃, 500 MHz, 233 K).

Experimental part

General

All of the NMR experiments were conducted in 5 mm standard NMR tubes. ¹H and ¹⁹F NMR spectra were recorded on a Bruker AV III HD 500 MHz NMR spectrometer fitted with a BBFO probehead. ¹H NMR spectra were recorded at 500 MHz and ¹⁹F spectra at 470 MHz. Chemical shifts are expressed in parts per million, and traces of residual solvents were used as internal standards. When possible, ¹H NMR signals were assigned using 2D NMR experiments. ¹H NMR assignment abbreviations are the following: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). Tren-capped hexaphyrins **1** and **2** were synthesized as previously described.^[1] All of the chemicals were commercial products used as received. For 1.5H⁺, ¹⁹F DOSY was acquired using a stimulated echo sequence (stegp1s) with Δ 50 ms, δ 1.6 ms and a linear ramp of 16 gradients values from 2 to 95 %. ¹⁹F 1D-selective-NOESY experiments (selnogp) were acquired using mixing times from 100 to 2000 ms and showed no chemical exchange between TFA signals. Heteronuclear dipolar interactions between ¹⁹F and ¹H were studied using a modified nOe-difference sequence where ¹⁹F signals were selectively saturated and ¹H signals were observed. Selective ¹⁹F saturation was obtained with a low-power cw irradiation during 10 s before ¹H excitation and observation. Difference spectra were obtained subtracting the same "off-resonance ¹⁹F saturation" spectrum from each "on-resonance ¹⁹F saturation" spectrum.

Standard protocol for the NMR titration of **1** with TFA :

In a 5 mm standard NMR tube, 4.0 mg of **1** were dissolved in 500 μ L of CDCl₃ (previously filtered over basic alumina). The solution was cooled down at 233 K, and ¹H and ¹⁹F NMR spectra were recorded. Aliquots of 5 μ L or 10 μ L (0.5 equiv./1 equiv.) of a solution of TFA (275 mM in CDCl₃) were successively added, and NMR spectra were recorded after each addition.

¹H and ¹⁹F NMR description of **1.5H**⁺

¹H NMR (CDCl₃, 500 MHz, 233 K): δ 13.08 (s, 1H, NH π_{in}), 12.39 (s, 1H, NH h_1), 12.31 (s, 1H, NHCO e_1), 10.01 (s, 1H, NH h_2), 9.58 (s, 1H, NH $\pi_{twisted}$), 9.32 (d, 1H, *J* = 7.0 Hz, HAr d_3), 9.25 (d_b, 1H, *J* = 4.5 Hz, π_3), 9.20 (d_b, 1H, *J* = 4.9 Hz, π_3), 9.17 (m_b, 1H, π_2), 9.14 (s_b, 2H, π_1), 8.95 (s_b, 1H, π_2), 8.82 (s_b, 1H, π_4), 8.41

(d, 1H, J = 8.0 Hz, HAr d_2), 8.08 (m_b, 2H, π_4 +HAr a_1), 7.93 (t_b, 1H, J = 7.2 Hz, HAr c_3), 7.88 (t_b, 1H, J = 7.2 Hz, HAr b_3), 7.77 (d_b, 1H, J = 7.9 Hz, HAr a_3), 7.58 (m_b, 1H, HAr b_1), 7.37 (s, 1H, NHCO e_3), 7.30 (t_b, 1H, J = 8.0 Hz, HAr c_2), 6.98 (m_b 2H, HAr c_1b_2), 6.60 (s, 1H, NHtren h_3), 6.06 (d_b, 1H, J = 6.5 Hz, HAr a_2), 5.69 (d_b, 1H, J = 6.5 Hz, HAr d_1), 4.62 (s, 1H, $\pi_{twisted_x'}$), 4.24 (s_b, 1H, CH₂ f_1), 3.83 (s, 1H, $\pi_{twisted_y'}$), 3.61 (s, 1H, NHCO e_2), 3.41 (s_b, 2H, CH₂ f_1 + g_1), 3.23 (s_b, 1H, CH₂ g_1), 2.90 (s_b, 1H, CH₂ t_{ren}), 2.63 (s_b, 1H, CH₂ g_3), 2.54 (s_b, 1H, CH₂ g_3), 2.34-1.52 (complex region, 11H, CH₂ t_{ren}), 2.46 (s, 3H, Me i_1), 2.40 (s_b, 1H, CH₂ g_2), 1.96 (s, 3H, Me i_2), 1.46 (s_b, 1H, CH₂ g_2), 1.39 (s_b, 1H, CH₂ f_3), 0.75 (s, 3H, Me i_3), 0.37 (s_b, 1H, CH₂ f_3), -0.39 (s, 1H, NH π_4), -0.60 (s, 1H, π_{in_y}), -0.90 (s,

^[1] H. Ruffin, G. Nyame Mendendy Boussambe, T. Roisnel, V. Dorcet, B. Boitrel and S. Le Gac, J. Am. Chem. Soc., 2017, **139**, 13847-13857.

1H, π_{in_x}), -1.34 (s_b, 1H, CH₂ f_2), -1.83 (s, 1H, NH π_3), -2.84 (s_b, 1H, CH₂ f_2), -2.94 (s, 1H, NH π_2), -3.18 (s, 1H, NH π_1).

¹⁹F NMR (CDCl₃, 470 MHz, 233 K): δ -75.0 to -76.3 (large signal, TFAtren), -75.66 (s, 3F, TFA1_hexaphyrin), -81.79 (s, 3F, TFA2_hexaphyrin), -135.19 (s_b, 1F, ArF-o), -136.07 (d_b, 1F, *J* = 22.0 Hz, ArF-o), -137.66 (s_b, 1F, ArF-o), -138.78 (d_b, 1F, *J* = 19.3 Hz, ArF-o), -139.67 (d_b, 1F, *J* = 22.0 Hz, ArF-o), -141.58 (s_b, 1F, ArF-o), -148.77 (s_b, 1F, ArF-p), -149.06 (s_b, 1F, ArF-p), -149.21 (s_b, 1F, ArF-p), -159.09 (m_b, 1F, ArF-m), -159.58 (m_b, 2F, ArF-m), -159.90 (t_b, 1F, *J* = 21.3 Hz, ArF-m), -160.06 (t_b, 1F, *J* = 20.4 Hz, ArF-m), -161.54 (m_b, 1F, ArF-m).

Crystal data for **1.6H⁺ >TFA**⁻

(C₁₀₁H₇₂Cl₂F₃₉N₁₃O₁₉); M = 2583.61. D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector, Mo-K α radiation (λ = 0.71073 Å, multilayer monochromator), T = 150(2) K; monoclinic *P* 2₁/*n* (I.T.#14), a = 17.877(3), b = 25.108(5), c = 28.082(5) Å, β = 97.496(6) °, V = 12497(4) Å³. Z = 4, d = 1.373 g.cm⁻³, μ = 0.174 mm⁻¹. The structure was solved by dual-space algorithm using the SHELXT program,^[2] and then refined with full-matrix least-squares methods based on *F*² (SHELXL).^[3] The contribution of the disordered solvents to the calculated structure factors was estimated following the BYPASS algorithm,^[4] implemented as the SQUEEZE option in PLATON.^[5] A new data set, free of solvent contribution, was then used in the final refinement. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters. A final refinement on *F*² with 28621 unique intensities and 1531 parameters converged at $\omega R(F^2) = 0.4129$ (*R*(*F*) = 0.1514) for 13767 observed reflections with *I* > 2 σ (*I*). CCDC 1893625.

Comments relative to the alerts level A in the checkcif report: A alerts in the checkcif are the result of highly disordered TFA molecules and to the overall quality of the crystal. However, atomic displacement parameters of the atoms constituting the hexaphyrin were refined freely (except for C91-C96 cycle, F94 and F95), and there's no constrain on the position and the distance between the atoms of the hexaphyrin. As a result, the atomic constitution of the hexaphyrin is considered correct with a high level of confidence.

Figure S1. VT ¹H NMR spectra of 1 (CD₂Cl₂, 500 MHz).

Figure S2. VT ¹H NMR spectra of 2 (CD₂Cl₂, 500 MHz).

Figure S3. 1 H NMR titration experiment of 1 with TFA (CD₂Cl₂, 500 MHz, 223 K).

Figure S4. 1 H NMR titration experiment of 1 with MSA (CD₂Cl₂, 500 MHz, 223 K).

Figure S5. ¹H NMR titration experiment of **2** with TFA (CD_2CI_2 , 500 MHz, 223 K).

Figure S6. 1 H NMR titration experiment of **2** with MSA (CD₂Cl₂, 500 MHz, 223 K).

Figure S7. ¹H NMR titration experiment of **1** with TFA (CDCl₃, 500 MHz, 233 K). S = solvent, G = grease.

Figure S8. ¹⁹F NMR titration experiment of $\mathbf{1}$ with TFA (CDCl₃, 470 MHz, 233 K).

Figure S9. Acid-base conformation and aromaticity switches upon successive addition of TFA and TEA to 1 (CDCl₃, 500 MHz, 233 K).

Figure S10. 2D COSY spectrum of $1.5H^+$ (CDCl₃, 500 MHz, 233 K).

Figure S11. 2D TOCSY spectrum of **1.5H**⁺ (CDCl₃, 500 MHz, 233 K).

Figure S12. 2D HSQC spectrum of **1.5H**⁺ (CDCl₃, 500 MHz, 233 K).

Figure S13. 2D NOESY spectrum of **1.5H**⁺ (CDCl₃, 500 MHz, 233 K).

Figure S14. ¹⁹F 2D DOSY spectrum of **1.5H**⁺ (CDCl₃, 470 MHz, 233 K).

Figure S15. 1D ¹H detected ¹H-¹⁹F nOe-difference spectra of **1.5H**⁺ (CDCl₃, 500 MHz, 233 K): (a) reference spectrum without ¹⁹F saturation; (b) difference spectrum with selective ¹⁹F saturation at -75.6 ppm (TFA1, TFAtren); (c) difference spectrum with selective ¹⁹F saturation at -81.8 ppm (TFA2).