Electronic Supplementary Information

Fe-Catalyzed Decarbonylative Alkylative Arylation of N-aryl Cinnamamides with Aliphatic Aldehydes to construct 3,4-dihydroquinolin-2(1H)-ones
Ru-Xin Gao, ${ }^{\dagger}$ Xin-Qi Luan, ${ }^{\dagger}$ Zi-Yi Xie, Luo Yang* and Yong Pei*
Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
L. Yang, E-mail: yangluo@xtu.edu.cn; Fax: +86-731-58292251; Tel: +86-731-59292229
Y. Pei, E-mail: ypnku78@gmail.com; Fax: +86-731-58292251; Tel: +86-731-59298910

Table of Contents

\qquadI. General informationS2
II. General experimental procedures S2
III. Radical inhibition experiment S2
IV. Spectra data of products $\mathbf{3 a}-\mathbf{3 k}, \mathbf{4 b}-\mathbf{4 t}, \mathbf{5 , 6}$ S3
V. References S16
VI. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products $\mathbf{3 a}-\mathbf{3 k}, \mathbf{4 b}-\mathbf{4 t}, \mathbf{5}, 6$ S17

I . General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Dry solvents (toluene, ethylacetate, dichloroethane, acetonitrile, chlorobenzene, fluorobenzene) were used as commercially available. The tertiary amide substrates were synthesized accord to the literature reports. ${ }^{1,2}$ Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F 254 precoated plates $(0.25 \mathrm{~mm})$ or Sorbent Silica Gel 60 F 254 plates. The developed chromatography was analyzed by UV lamp (254 nm). Gas chromatograph (GC) was measured on Shimadzu GC-2014 instrument with a FID detector and n-dodecane as the internal standard; Gas Chromatograph-Mass Spectrometer (GC-MS) was measured on Agilent 7890-5975C instrument under the EI ionization model, instead. High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI). Melting points are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (chloroform: $\delta 7.26 \mathrm{ppm}$). Chemical shifts for ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard ($\left.\mathrm{CDCl}_{3}: \delta 77.16 \mathrm{ppm}\right)$. Data are reported as following: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal), coupling constant (Hz), and integration.

II. General experimental procedures

A general experimental procedure is described as following:
An oven-dried microwave reaction vessel was charged with N-methyl- N-phenylcinnamamide (1a, $0.2 \mathrm{mmol}, 1$ equiv), $\mathrm{Fe}(\mathrm{acac})_{3}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and isobutyraldehyde ($2 \mathrm{a}, 0.8 \mathrm{mmol}, 4$ equiv) in chlorobenzene (1.0 mL) at ambient temperature, then DTBP ($0.6 \mathrm{mmol}, 3.0$ equiv) was added with vigorous stirring under argon atmosphere. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ (oil bath temperature) for 12 h . Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography with a mixture of EtOAc in petroleum ether as eluent to give the pure product $\mathbf{3 a}$.

III. Radical inhibition experiment

The cascade reaction of 1a and 2a was completely inhibited in the presence of 2,6-di-tert-butyl-4-methylphenol (BHT); instead, the decarbonylated alkyl radical was captured as 2,6-di-tert-butyl4 -isopropyl-4-methylcyclohexa-2,5-dienone 5 , which was isolated by column chromatography and characterized by NMR and MS.

(5) 2,6-di-tert-butyl-4-isopropyl-4-methylcyclohexa-2,5-dienone

${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.44(\mathrm{~s}, 2 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 18 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.84$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.91,146.95,145.81,42.43,37.54,34.88$, 29.70, 24.72, 18.09. IR: 2998, 2959, 2872, 1658, 1639, 1458, 1374, 1248, 1061, $880,741 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$285.2189, found: 285.2173.

IV. Spectra data of products $3 a-3 k, 4 b-4 s, 6$

(3a) 3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{1}$

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($43.0 \mathrm{mg}, 77 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.04(\mathrm{~m}$, $2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.75$, $142.16,140.19,129.66,128.80,128.14,127.19,126.80,126.77,123.33,114.90,56.52,45.09,29.58$, $28.57,21.13,21.05$. IR: $3061,2961,1673,1602,1468,1360,755,698 \mathrm{~cm}^{-1}$.
(3b) 3-(tert-butyl)-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{1}$

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with pivalaldehyde (2b), and purified by flash column chromatography as colorless oil ($36.3 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz} 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.02(\mathrm{~m}$, $2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.63,143.79,140.78,129.18,128.89,128.08,127.56,127.05,126.68,123.55$, $114.75,59.40,43.93,34.66,29.70,28.99$. IR: $3060,2958,1661,1599,1463,1357,1128,753 \mathrm{~cm}^{-1}$.
(3c) 3-(sec-butyl)-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with 2 -methylbutanal (2c), and purified by flash column chromatography as colorless oil ($39.9 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.15(\mathrm{~m}$, $2 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.84(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.01,170.86,142.42,142.29,140.23,129.68,129.60,128.84,128.14,127.25,127.22,127.00$, $126.92,126.84,126.81,123.39,123.35,114.93,114.87,54.99,54.22,45.18,44.66,35.13,34.43$, 29.66, 29.62, 27.31, 26.95, 16.99, 16.94, 11.36, 10.64. IR: 3060, 2962, 1672, 1601, 1463, 1363 , 1120, 754, $697 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 316.1672$, found: 316.1652 .
(3d) 1-methyl-3-(pentan-2-yl)-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with 2-methylpentanal (2d), and purified by flash column chromatography as colorless oil ($43.6 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}$, $2 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=$ $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.90(\mathrm{~m}, 3 \mathrm{H}), 0.88-0.81(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.03,170.81,142.47,142.24,140.26,140.21,129.68,129.57$, $128.84,128.13,127.29,127.24,127.05,126.99,126.84,126.80,123.39,123.33,114.89,114.87$, $55.19,54.64,45.32,44.57,36.99,36.79,33.62,33.00,29.68,29.61,20.18,19.58,17.56,17.49$, 14.41, 14.34. IR: $3025,2957,1672,1599,1462,1358,1120,753 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 330.1828$, found : 330.1792.
(3e) 1-methyl-3-(pentan-3-yl)-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{1}$

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with 2-ethylbutanal (2e), and purified by flash column chromatography as colorless oil ($42.4 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.16(\mathrm{~m}$, 2H), $7.07-7.03$ (m, 2H), 6.97 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.17 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (s, 3H), 2.85 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.13,142.32,140.28,129.62,128.84,128.13,127.24$, $126.97,126.82,123.35,114.89,51.94,44.72,40.06,29.68,22.72,21.85,11.24,9.56$. IR: 3060 , $2961,1672,1600,1462,1363,753 \mathrm{~cm}^{-1}$.

(3f) 1-methyl-3-(octan-3-yl)-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with 2-ethylhexanal (2f), and purified by flash column chromatography as colorless oil ($46.9 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.46-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.90-087(\mathrm{~m}, 3 \mathrm{H}), 0.83-0.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.17,142.36,140.31,129.65,128.87,128.15,127.32,127.10,126.86,123.36$, $114.89,52.39,44.86,39.12,29.70,29.50,27.77,23.52,23.17,14.19,11.22$. IR: 2925, 1672, 1599 , 1462, 1359, 1120, $669 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 358.2141$, found: 358.2113 .
(3g) 3-cyclohexyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{2}$

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with cyclohexanecarbaldehyde (2g), and purified by flash column chromatography as colorless oil ($46.6 \mathrm{mg}, 73 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.04(\mathrm{~m}$, $2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.74-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.16-$ $1.07(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.62,142.46,140.21,129.73,128.81,128.13$, $127.19,126.82,126.77,123.36,114.95,55.75,44.56,37.86,31.50,31.22,29.58,26.27,26.25$, 26.09. IR: $3024,2925,1673,1601,1463,1362,1128,753,696 \mathrm{~cm}^{-1}$.
(3h) 3-cyclopentyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{2}$

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with cyclopentanecarbaldehyde (2h), and purified by flash column chromatography as colorless oil ($40.3 \mathrm{mg}, 66 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}$, $1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=10.4,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.37$ $-1.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.95,142.15,140.14,129.84,128.81,128.16$, $127.12,126.81,126.55,123.33,114.90,55.15,46.63,40.39,31.48,30.93,29.56,25.22,24.67$. IR: 3061, 2950, 1674, 1601, 1467, 1362, 1130, 753, $697 \mathrm{~cm}^{-1}$.
(3i)(4S)-3-(1-(4-isopropylphenyl)propan-2-yl)-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with 3-(4-isopropylphenyl)-2-methylpropanal (2i), and purified by flash column chromatography as colorless oil ($66.7 \mathrm{mg}, 84 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.02(\mathrm{~m}, 8 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 4 \mathrm{H}), 4.22$ $(\mathrm{s}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.99-2.79(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H})$, $1.22(\mathrm{dd}, \mathrm{J}=6.8,4.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{dd}, \mathrm{J}=11.6,6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.81$, $170.60,146.73,146.45,142.04,141.86,140.23,140.16,137.79,137.71,129.55,129.51,129.30$, $129.24,128.86,128.23,128.18,127.50,127.37,127.32,126.99,126.93,126.91,126.42,126.26$, $123.45,123.38,114.96,114.89,54.86,53.58,45.63,44.87,41.32,40.30,35.80,35.50,33.82,33.78$, $29.67,29.63,24.20,17.76,17.39$. IR: 3024, 2960, 1673, 1601, 1462, 1363, 754, $698 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 420.2298$, found: 420.2252 .
(3j) 3-ethyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with propionaldehyde (2j), and purified by flash column chromatography as colorless oil ($22.8 \mathrm{mg}, 43 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 5 \mathrm{H}), 4.05$ $(\mathrm{d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.55,141.80,139.89,129.57,128.88,128.04,127.66,127.36$, $126.98,123.24,114.75,49.96,46.20,29.71,23.57,11.60$. IR: 3027, 2964, 1673, 1599, 1461, 1365, $753,699 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 288.1359$, found : 288.1333.
(3k) 1-methyl-4-phenyl-3-propyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-phenylcinnamamide (1a) with butyraldehyde (2k), and purified by flash column chromatography as colorless oil ($23.4 \mathrm{mg}, 42 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}$, $1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 5 \mathrm{H}), 4.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{dd}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ $-1.42(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.71,141.98,139.90$, $129.72,128.89,128.09,127.53,127.12,126.97,123.30,114.81,48.55,46.65,32.82,29.71,20.38$, 14.06. IR: $3027,2957,1672,1600,1463,1368,754,699 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 302.1515$, found : 302.1489.
(4b) 3-isopropyl-1-methyl-4-phenyl-6-(trifluoromethyl)-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-(4-(trifluoromethyl)phenyl) cinnamamide (1b) with isobutylraldehyde (2a), and purified by flash column chromatography as colorless oil ($37.8 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{dd}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.06$
$(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.66,143.11,141.29$, $129.07,127.34,127.23,127.07,126.56(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.59(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.32(\mathrm{q}, J=32.7 \mathrm{~Hz})$, $\left.124.18(\mathrm{~d}, \mathrm{~J}=269.8 \mathrm{~Hz}), 114.90,56.27,45.10,29.74,28.77,21.10,21.05 .{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-62.41$ (s, 3F). IR: 2964, 1683, 1619, 1152, 1324, 1118, $746 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 370.1389$, found: 370.1362 .

(4c) 6-fluoro-3-isopropyl-1,4-dimethyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-(4-fluorophenyl)- N-methylcinnamamide (1c) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($41.6 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 4 \mathrm{H})$, $6.93-6.91(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.98$, $140.76(\mathrm{~d}, ~ J=229.7 \mathrm{~Hz}), 137.33,129.91,128.73(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 128.14,127.27(\mathrm{~d}, J=44.1 \mathrm{~Hz})$, 127.04(d, $J=33.9 \mathrm{~Hz}), 126.82,123.45,115.77,56.55,46.09,45.01,28.48,21.36,21.03 .{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-120.27$ (s, 1F). IR: 2961, 1673, 1502, 1356, 1115, $697 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNONa}[\mathrm{M}+\mathrm{Na}]^{+} 320.1421$, found: 320.1389.
(4d) 6-chloro-3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin- 2(1H)-one ${ }^{1}$

The title compound was prepared according to the general procedure described above by the reaction between N-(4-chlorophenyl)- N-methylcinnamamide (1d) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil($43.8 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H})$, $4.15(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.40,141.43,138.91,129.49$, $128.98,128.66,128.43,128.05,127.10,116.14,56.24,44.98,29.71,28.69,21.06$. IR: 3027, 2960 , 1676, 1493, 1348, 1109, $697 \mathrm{~cm}^{-1}$.
(4e) 6-bromo-3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-(4-bromophenyl)- N-methylcinnamamide (1e) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($47.8 \mathrm{mg}, 67 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.26-7.18$ $(\mathrm{m}, 3 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.62$ $(\mathrm{m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.39$, $141.43,139.42,132.32,131.02,129.03,128.99,127.12,127.10,116.55,115.97,56.27,44.94,29.67$, 28.69, 21.08. IR: $3060,2959,1672,1490,1413,1346,1150,696 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNONa}[\mathrm{M}+\mathrm{Na}]^{+} 380.0620$, found: 380.0606 .
(4f) 3-isopropyl-1,6-dimethyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{1}$

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-(p-tolyl)cinnamamide (1f) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($41.6 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 4 \mathrm{H})$, $4.13(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.64,142.41,137.86$, $132.88,130.36,128.82,128.57,127.21,126.78,126.61,114.82,56.77,45.20,29.60,28.60,21.19$, 21.09, 20.74. IR: $3024,2960,1672,1505,1355,809,697 \mathrm{~cm}^{-1}$.
(4g) 3-isopropyl-5,7-dimethoxy-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-(3,5-dimethoxyphenyl)- N-methylcinnamamide (1g) with isobutyraldehyde (2a), and purified by flash column chromatography as white solid ($47.5 \mathrm{mg}, 70 \%$). M.p187-188 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.26(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=9.2$
$\mathrm{Hz}, 1.21 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.46,160.30,158.18,142.59,141.93,128.66,127.14,126.55,107.52,94.06$, $92.97,56.73,55.93,55.54,37.31,29.90,28.92,21.39,21.29$. IR: 2958, 1673, 1597, 1336, 742, 697 cm^{-1}. HRMS (+ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 362.1727$, found: 362.1700.
(4h) 3-isopropyl-1-methyl-4-(4-(trifluoromethyl)phenyl)-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between (E)- N-methyl- N-phenyl-3-(4-(trifluoromethyl) phenyl) acrylamide (1h) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil (46.5 mg , 67\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 4 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.32,146.26$, $140.18,129.64,129.32(\mathrm{q}, J=32.3 \mathrm{~Hz}), 128.64,127.65,125.81(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.76,125.53(\mathrm{q}, J=$ $270.1 \mathrm{~Hz}), 123.59,115.15,56.46,45.00,29.63,28.58,21.13,21.01 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -62.87 (s, 3F). IR: 2964, 2934, 1675, 1602, 1469, 1326, 1121, $755 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 370.1389$, found: 370.1360 .
(4i) 4-(4-fluorophenyl)-3-isopropyl-1-methyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between (E)-3-(4-fluorophenyl)- N-methyl- N-phenylacrylamide (1i) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($41.6 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 4 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.63,161.71(\mathrm{~d}$, $J=243.7 \mathrm{~Hz}), 140.13,137.86(\mathrm{~d}, ~ J=3.1 \mathrm{~Hz}), 129.64,128.75(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}), 128.35,126.60,123.47$, $115.64(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 115.05,56.72,44.41,29.62,28.51,21.17,21.04 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.70(\mathrm{~s}, 1 \mathrm{~F})$. IR: 3068, 2962, 1673, 1601, 1508, 1361, $755 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNONa}[\mathrm{M}+\mathrm{Na}]^{+}$320.1421, found: 320.1389 .

The title compound was prepared according to the general procedure described above by the reaction between N-(4-chlorophenyl)- N-methylcinnamamide (1j) with isobutyraldehyde (2a), and purified by flash column chromatography as white solid ($42.6 \mathrm{mg}, 68 \%$). M.p101-102 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 170.51,140.66,140.16,132.66,129.63,128.97,128.64,128.44,126.27,123.50,115.08,56.53$, 44.54, 29.63, 28.52, 21.16, 21.04. IR: 2961, 1673, 1601, 1490, 1360, $754 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNONa}[\mathrm{M}+\mathrm{Na}]^{+} 336.1126$, found: 336.1079.

(4k) 4-(3-chlorophenyl)-3-isopropyl-1-methyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-(3-chlorophenyl)- N-methylcinnamamide (1k) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($43.2 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.06(\mathrm{~m}$, $2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.40,144.29,140.19,134.62,130.11,129.68,128.54,127.60,127.11,125.88,125.36,123.54$, $115.12,56.54,44.85,29.63,28.58,21.15,21.02$. IR: 3066, 2962, 1673, 1602, 1471, 1361, $754 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNONa}[\mathrm{M}+\mathrm{Na}]^{+} 336.1126$, found: 336.1088.
(4l) 4-(2-chlorophenyl)-3-isopropyl-1-methyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction
between N-(2-chlorophenyl)- N-methylcinnamamide (11) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($47.0 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.51(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.12$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.51,140.98,139.00$, $133.28,130.15,129.86,128.58,128.54,128.23,127.28,126.03,123.64,114.95,54.60,42.53,29.63$, 29.24, 21.27, 20.77. IR: 32962, 1677, 1602, 1469, 1274, 1039, 751, $689 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNONa}[\mathrm{M}+\mathrm{Na}]^{+} 336.1126$, found: 336.1087.
(4m) 4-(4-bromophenyl)-3-isopropyl-1-methyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-(4-bromophenyl)- N-methylcinnamamide (1m) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($50.7 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.85$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{dd}, J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.45, 141.16, $140.11,131.87,129.58,128.99,128.43,126.14,123.48,120.72,115.05,56.43,44.55,29.60,28.48$, 21.13, 21.01. IR: 3041, 2961, 1672, 1467, 1360, $754 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNONa}[\mathrm{M}+\mathrm{Na}]^{+} 380.0620$, found: 380.0599 .
(4n) 3-isopropyl-1-methyl-4-(p-tolyl)-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-(p-tolyl)cinnamamide (1n) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($41.6 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}$, $4 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.89,140.18,139.13,136.36,129.62,129.50,128.05,127.05,123.31,114.89,56.56,44.72$, 29.58, 28.51, 21.15, 21.06, 21.03. IR: 3020, 2961, 1675, 1601, 1360, 754, cm^{-1}. HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 316.1672$, found: 316.1646.
(40) 3-isopropyl-4-(4-methoxyphenyl)-1-methyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-(4-methoxyphenyl)- N-methylcinnamamide (10) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($46.4 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{td}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}$, $2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.57$ $(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 170.12,142.19,139.13,130.07,128.71,128.16,127.31,126.97$, $126.76,123.14,114.72,56.58,45.23,37.12,28.39,21.09,21.00,12.77$. IR: 2960, 1673, 1601, 1361, 1250, 1035, $755 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 332.1621$, found: 332.1586.
(4p) 3-isopropyl-1-methyl-4-phenyl-3,4-dihydro-1,6-naphthyridin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-methyl- N-(pyridin-4-yl)cinnamamide (1p) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($29.1 \mathrm{mg}, 52 \%$).
${ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.93$ (m, 3H), $4.27(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.74$, 150.07, 149.99, 146.74, 141.27, $129.05,127.23,126.97,121.76,109.18,56.05,42.21,29.01,28.91,21.02,20.97$. IR: 2962, 1685, 1590 , 1499, 1358, 742, 698.
(4q) 1-ethyl-3-isopropyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction
between N-ethyl- N-phenylcinnamamide (1p) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($37.5 \mathrm{mg}, 64 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{td}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.09-7.02(\mathrm{~m}$, $2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=$ $9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.91,158.40,140.14,134.23,129.61,128.19$, $128.06,127.22,123.32,114.91,114.22,56.63,55.33,44.33,29.58,28.48,21.15,21.07$. IR: 3061, $2964,1673,1601,1461,1378,753,697 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$ 316.1672, found: 316.1663 .
(4r) 3-isopropyl-1,4-diphenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N, N-diphenylcinnamamide (1q) with isobutyraldehyde (2a), and purified by flash column chromatography as white solid ($52.5 \mathrm{mg}, 77 \%$).
M.p161-162 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $-7.09(\mathrm{~m}, 9 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.69,142.19,141.24,138.70,130.00,129.78,128.92,128.24,127.85,127.41,126.99$, $126.15,123.52,117.17,56.89,45.43,28.54,21.26,21.10$. IR: 3061, 2960, 1682, 1493, 753, 694 cm^{-1}. HRMS (+ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 364.1672$, found: 364.1644.

(4s) 1-benzyl-3-isopropyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-benzyl- N-phenylcinnamamide (1r) with isobutyraldehyde (2a), and purified by flash column chromatography as white solid ($51.1 \mathrm{mg}, 72 \%$).
M.p119-120 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.14(\mathrm{~m}, 10 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 4 \mathrm{H}), 5.26(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=9.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.75$ $(\mathrm{m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.36$,
$160.05,157.63,141.45,136.53,136.51,128.97,128.90,127.14,127.10,116.67,116.45,116.14$, $116.06,114.61,114.38,56.20,45.12,29.86,28.66,21.07,21.04$. IR: 3027, 2960, 1672, 1494, 1462, $753,696 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+} 378.1828$, found: 378.1808 .

(4t) 3-isopropyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one

The title compound was prepared according to the general procedure described above by the reaction between N-phenylcinnamamide (1s) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($4.8 \mathrm{mg}, 9 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.02$ $(\mathrm{m}, 3 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.06$ (dd, $\mathrm{J}=14.8,6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.10,142.61,136.76,129.78,128.92$, $128.21,127.29,126.93,125.19,123.71,115.44,56.17,45.54,29.12,21.03,20.89$. IR: 2960, 2925, $1676,1597,1494,1373,753,698 \mathrm{~cm}^{-1}$. HRMS (+ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}$ 288.1359 , found: 288.1330 .
(4t') For the N-acetyl analog $\left(\mathbf{1} \mathbf{t}^{`}\right)$, no cyclized product could be detected at all, and the N-acetyl group of substrate $\left(\mathbf{1} \mathbf{t}^{\bullet}\right)$ was de-protected to produce amide $\mathbf{1 t}$ as the main product.

The GC spectrum of crude reaction mixture
(N-acetyl substrate 1t' under standard conditions)

The MS spectrum of $\mathbf{1 t}$ ' (left) and 1t (right)
(6) 3-isobutyl-1, 3-dimethylindolin-2-one ${ }^{3}$

The title compound was prepared according to the general procedure described above by the reaction between N-phenyl methacrylamide (1u) with isobutyraldehyde (2a), and purified by flash column chromatography as colorless oil ($37.3 \mathrm{mg}, 86 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=14.0$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.61(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 181.19,143.29,134.31,127.66,122.91,122.43,108.05,48.18$, 46.84, 26.28, 26.24, 25.63, 24.22, 22.93.

V. References

[1] W. P. Mai, J. T. Wang, L. R. Yang, J. W. Yuan, Y. M. Xiao, P. Mao, L. B. Qu, Org. Lett. 2014, 16, 204-207.
[2] S. L. Zhou, L. N. Guo, S. Wang, X. H. Duan, Chem. Commun. 2014, 50, 3589-3591.
[3] L. Yang, W. Lu, W. Zhou, F. Zhang, Green Chem. 2016, 18, 2941-2945.

VI. Copies of ${ }^{1} \mathbf{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products $3 \mathrm{a}-3 \mathrm{k}, \mathbf{4 b}-4 \mathrm{~s}, 5,6$

$\stackrel{\infty}{\stackrel{\circ}{7}}$
$\underset{\sim}{\sim}$
$\stackrel{\infty}{\stackrel{\circ}{\circ}}$
ô

3b

为

		,			1	1	1	1	1	1	1	1	1	1			
30	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

| | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

S25

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

3 g

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									f1 (ppm)								

S35

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									f 1 (ppm)	80	7	60	5	40	0	0	10

S44

S45

30	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

ल

$\begin{array}{lllllllll}130 & 129 & 128 & 127 & 126 & 125 & 124 & 123 & 12\end{array}$

$$
\begin{aligned}
& -62.872 \\
& \text { 4h }
\end{aligned}
$$

永

$--116.701$

> i

$\frac{n}{y} \frac{n}{y}$
爰

$4 k$

S65

$\stackrel{\pi}{\cdots}$
No

S69

$4 p$

$4 q$

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

䙇

4s

n

amふ

(

