Supporting Information

Facile Access to 1,3-Diketones by Gold(I)-Catalyzed Regioselective Hydration of Ynones

Contents	Page
1. General information	S 2
2. Optimization of solvent	S2
3. Synthesis and characterization data of 1,3-diketones	S 3
4. Gram-scale reactions	S 11
5. Synthesis of enolether 3a	S12
6. References	S12
7. Copies of ¹ H and ¹³ C NMR spectra for compounds 2 and 3a	S 14

1. General Information

All commercially available reagents were used without further purification. Analytical TLC was performed on glass-backed plates pre-coated with silica gel, which were visualized by UV fluorescence (λ max = 254 nm) and/or by staining with 1% *w/v* KMnO₄ in 0.5 M aqueous K₂CO₃. ¹H NMR and ¹³C NMR spectra were measured on a 500 MHz spectrometer (¹H: 500 MHz, ¹³C: 125 MHz), using CDCl₃ or d⁶-DMSO as the solvent with tetramethylsilane (TMS) as an internal standard at room temperature. All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals at 7.26 ppm (CHCl₃) or the signals at 0.00 ppm (TMS). All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.0 ppm) and were obtained with ¹H-decoupling. Data for ¹H NMR are described as following: chemical shift (δ in ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sep, septet; m, multiplet; br, broad signal), coupling constant (Hz), integration. Data for ¹³C NMR are described in terms of chemical shift (δ in ppm). High resolution mass spectra were recorded on an ESI-Q-TOF mass spectrometer. Melting points were measured on X4 melting point apparatus and uncorrected. Ynones are prepared from known literature procedure¹.

Thoses are prepared from known incrature procedure.

2.	Table S1	Optimization	of solvent	for the synthesis	of 1,3-diketone 2a
----	----------	--------------	------------	-------------------	--------------------

Ph 1a, 0.2 mn	∕ <mark>∕}r=By</mark> §i nol	AgOTf (3 PPh ₃ AuCl (2 9lvent (2 mL), 1 ft, 12 f	mol%) 2.5 mol%) H ₂ O (10 equiv) I; âlf	O ₽h	0 ////////////////////////////////////
	Entry	solvent	Isolated yield	of 2a	-
	1	MeOH	98%		-
	2	DCM	Not detected	ed	
	3	1,4-dioxane	90%		
	4	CH ₃ CN	Not detected	ed	

3. General procedure for the Gold(I)-Catalyzed Synthesis of 1,3-Diketones

To a 10 mL Schlenk tube equipped with a stirring bar was charged with PPh₃AuCl (0.005 mmol), AgOTf (0.006 mmol), ynone **1** (0.2 mmol), methanol (2 mL), and H₂O (2 mmol) sequentially without any protection. The reaction was then stirred at room temperature for 12h (open to the air, monitored by TLC). Upon completion the solvent was removed under reduced pressure and the crude product was purified by column chromatography (eluent: PE / EA) to afford the 1,3-diketone products **2**.

All the 1,3-diketone products are in keto-enol equilibrium, and the enol forms are contained as the majority as indicated in the parentheses. Characterization data of enol form of each product are shown below.

From the copies of the NMR spectra we could observe very small amount of the keto forms in all cases, which are in very low ratio and some of the peaks are overlapped with those of the enol forms. According to suggestions of the reviewer and editor, we have indicated signals of the minor keto form with asterisk. For the same compound prepared from different precursors, the names of the precursors are given in corresponding spectra.

1-phenylheptane-1,3-dione(2a)²: Light brown oil (39.4 mg, 98%). (PE/EA = 80/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 0.95$ (t, J = 7.5 Hz, 3H), 1.36 - 1.46 (m, 2H), 1.63 - 1.73 (m, 2H), 2.43 (t, J = 7.5 Hz, 2H), 6.17 (s, 1H), 7.42 - 7.48 (m, 2H), 7.51 (tt, J = 7.5, 1.5 Hz, 1H), 7.85 - 7.91 (m, 2H), 16.19 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 13.8, 22.4, 27.9, 39.0, 96.1, 127.0, 128.6, 132.2, 135.2, 183.5, 196.9 ppm;

HRMS (ESI): calcd for C₁₃H₁₇O₂ [M+H]⁺ 205.1229, found 205.1219.

1-o-tolylheptane-1,3-dione(2b): Light brown oil (41.3 mg, 98%). (PE/EA = 40/1) (enol form) ¹**H NMR (500 MHz, CDCl**₃) $\delta = 0.94$ (t, J = 7.5 Hz, 3H), 1.35 – 1.45 (m, 2H), 1.63 – 1.69 (m, 2H), 2.39 (t, J = 7.5 Hz, 2H), 2.49 (s, 3H), 5.84 (s, 1H), 7.22 (d, J = 7.0 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H) 7.30 – 7.35 (m, 1H), 7.44 – 7.48 (m, 1H), 16.00 (br, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.8$, 20.6, 22.4, 27.9, 38.7, 100.1, 125.7, 128.2, 130.5, 131.3, 136.2, 137.0, 188.2, 196.2 ppm. **HRMS (ESI)**: calcd for C₁₄H₁₉O₂ [M+H]⁺ 219.1385, found 219.1376.

1-(2-ethoxyphenyl)heptane-1,3-dione (**2c**): White solid (47.0 mg, 93%). Mp: 39-41°C. (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 0.94$ (t, J = 7.5 Hz, 3H), 1.36 – 1.44 (m, 2H), 1.49 (t, J = 7.0 Hz, 3H), 1.62 – 1.71 (m, 2H), 2.40 (t, J = 7.5 Hz, 2H), 4.12 (q, J = 7.0 Hz, 2H), 6.56 (s, 1H), 6.93 (d, J = 8.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 16.21 (br, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.8$, 14.7, 22.3, 27.9, 39.2, 64.3, 101.3, 112.5, 120.6, 124.4, 130.2, 132.7, 157.8, 181.2, 197.5 ppm;

HRMS (ESI): calcd for C₁₅H₂₁O₃ [M+H]⁺ 249.1491, found 249.1485.

1-(4-methoxyphenyl)heptane-1,3-dione(2d): colorless oil (47.5 mg, 99%). (PE/EA = 40/1) (enol form) ¹**H NMR (500 MHz, CDCl**₃): δ = 0.94 (t, *J* = 7.5 Hz, 3H), 1.35 – 1.44 (m, 2H), 1.61 – 1.71 (m, 2H), 2.39 (t, *J* = 7.5 Hz, 2H), 3.85 (s, 3H), 6.10 (s, 1H), 6.93 (d, *J* = 9.0 Hz, 2H), 7.86 (d, *J*

= 9.0 Hz, 2H), 16.35 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃) δ = 13.8, 22.4, 28.1, 38.4, 55.4, 95.1, 113.9, 129.1, 131.1, 163.0, 184.3, 194.8 ppm;

HRMS (ESI): calcd for C₁₄H₁₉O₃ [M+H]⁺ 235.1334, found 235.1326.

1-(4-fluorophenyl)heptane-1,3-dione(2e): Pale yellow oil (40.8 mg, 90%). (PE/EA = 100/1) (enol form) ¹H NMR (500 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.5 Hz, 3H), 1.35 – 1.46 (m, 2H), 1.62 – 1.72 (m, 2H), 2.42 (t, J = 7.5 Hz, 2H), 6.12 (s, 1H), 7.07 – 7.16 (m, 2H), 7.86 – 7.93 (m, 2H), 16.19 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 13.8$, 22.4, 28.0, 38.7, 95.7, 115.7 (d, J = 21.8 Hz), 129.4 (d, J = 9.0 Hz), 131.5 (d, J = 3.0 Hz), 165.3 (d, J = 252.0 Hz), 183.1, 196.1 ppm;

¹⁹**F NMR (471 MHz, CDCl₃)**: δ = -106.7 ppm;

HRMS (ESI): calcd for $C_{13}H_{16}FO_2$ [M+H]⁺ 223.1134, found 223.1123.

1-(naphthalen-1-yl)heptane-1,3-dione (2f): Light brown oil (52.0 mg, > 99%). (PE/EA = 40/1) (enol form) ¹H NMR (500 MHz, CDCl₃): $\delta = 0.95$ (t, J = 7.5 Hz, 3H), 1.38 – 1.46 (m, 2H), 1.65 – 1.71 (m, 2H), 2.43 (t, J = 7.5 Hz, 2H), 6.02 (s, 1H), 7.46 – 7.70 (m, 3H), 7.71 (dd, J = 7.0, 1.0 Hz, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.46 (d, J = 8.0 Hz, 1H), 16.15 (s, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.8$, 22.4 27.9, 38.5, 101.0, 124.7, 125.6, 126.3, 126.9, 127.1, 128.5, 130.2, 131.5, 133.8, 134.5, 188.4, 195.7 ppm;

HRMS (ESI): calcd for $C_{17}H_{19}O_2$ [M+H]⁺ 255.1385, found 255.1380.

1-(furan-2-yl)heptane-1,3-dione (2g): Pale yellow oil (29.6 mg, 76%). (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl**₃): $\delta = 0.94$ (t, J = 7.5 Hz, 3H), 1.34 - 1.43 (m, 2H), 1.62 - 1.68 (m, 2H), 2.42 (t, J = 7.5 Hz, 2H), 6.07 (s, 1H), 6.54 (dd, J = 3.5, 1.5 Hz, 1H), 7.15 (d, J = 3.5 Hz, 1H), 7.56 (d, J = 1.0 Hz, 1H), 15.56 (s, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 13.8$, 22.3, 28.1, 37.7, 95.4, 112.4, 115.4, 145.8, 150.7, 176.2, 193.0 ppm;

HRMS (ESI): calcd for C₁₁H₁₅O₃ [M+H]⁺ 195.1021, found 195.1018.

1-(thiophen-2-yl)heptane-1,3-dione (2h): Light brown oil (40.8 mg, 93%). (PE/EA = 80/1) (enol form) ¹H NMR (500 MHz, CDCl₃): δ = 0.94 (t, *J* = 7.5 Hz, 3H), 1.36 – 1.45 (m, 2H), 1.61 –

(enor form) **H** (Wirk (500 Wirz, CDCf3): 6 = 0.94 (t, J = 7.5 Hz, 5H), 1.50 = 1.43 (m, 2H), 1.01 = 1.70 (m, 2H), 2.36 (t, J = 7.5 Hz, 2H), 6.01 (s, 1H), 7.12 (dd, J = 5.0, 4.0 Hz, 1H), 7.59 (dd, J = 5.0, 1.0 Hz, 1H), 7.69 (dd, J = 4.0, 1.0 Hz, 1H), 15.69 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃) δ = 13.7, 22.3, 28.2, 37.2, 95.7, 128.1, 130.0, 132.1, 141.8, 181.8, 190.8 ppm;

HRMS (ESI): calcd for C₁₁H₁₅O₂S [M+H]⁺ 211.0793, found 211.0789.

(*E*)-1-phenylnon-1-ene-3,5-dione (2i): Pale yellow solid (40.7 mg, 86%). Mp: 39-41°C. (PE/EA = 80/1)

(enol form) ¹H NMR (500 MHz, CDCl₃): $\delta = 0.94$ (t, J = 7.5 Hz, 3H), 1.34 - 1.43 (m, 2H), 1.60 - 1.43

1.68 (m, 2H), 2.40 (t, J = 7.5, 2H), 5.65 (s, 1H), 6.48 (d, J = 16.0, Hz, 1H), 7.33 – 7.42 (m, 3H), 7.49 – 7.54 (m, 2H), 7.59 (d, J = 16.0 Hz, 1H), 15.41 (br, 1 H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 13.8, 22.4, 27.6, 40.03, 100.6, 123.0, 127.9, 128.9, 129.8, 135.1, 139.5, 177.0, 201.1 ppm;

HRMS (ESI): calcd for C₁₅H₁₉O₂ [M+H]⁺ 231.1385, found 231.1387.

2,2-dimethylnonane-3,5-dione (2j): colorless oil (26.5 mg, 72%). (PE/EA = 100/1) (enol form) ¹**H NMR (500 MHz, CDCl**₃): δ = 0.93 (t, *J* = 7.5 Hz, 3H), 1.17 (s, 9H), 1.31 – 1.40 (m, 2H), 1.56 – 1.63 (m, 2H), 2.31 (t, *J* = 7.5, 2H), 5.59 (s, 1H), 15.84 (br, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 13.8, 22.4, 27.3, 27.9, 38.6, 39.1, 95.0, 195.6, 200.4 ppm; **HRMS (ESI)**: calcd for C₁₁H₂₁O₂ [M+H]⁺ 185.1542, found 185.1536.

1-cyclohexylheptane-1,3-dione (**2k**): Light brown oil (34.9 mg, 86%). (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 0.92$ (t, J = 7.5 Hz, 3H), 1.27–1.39 (m, 6H), 1.55–1.62 (m, 2H), 1.66–1.87 (m, 6H), 2.16 (tt, J = 11.5, 3.5 Hz, 1H), 2.29 (t, J = 7.0 Hz, 2H), 5.48 (s, 1H), 15.65 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 13.8, 22.4, 25.8, 25.9, 27.9, 29.6, 38.4, 46.5, 97.3, 195.4, 197.3 ppm.$

HRMS (ESI): calcd for C₁₃H₂₃O₂ [M+H]⁺ 211.1698, found 211.1699.

1-{(3r,5r,7r)-Adamantan-1-yl}heptane-1,3-dione (2l): Light brown oil(51.0 mg, 97%). (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 0.92$ (t, J = 7.5 Hz, 3H), 1.32 - 1.40 (m, 2H), 1.56 - 1.63 (m, 2H), 1.65 - 1.76 (m, 6H), 1.82 (d, J = 2.5 Hz, 6H), 2.04 (s, 3H), 2.31 (t, J = 7.5 Hz, 2H), 5.54 (s, 1H), 15.92 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 13.8, 22.4, 27.9, 28.1, 36.6, 38.8, 39.0, 40.8, 94.8, 196.8, 198.8 ppm;

HRMS (ESI): calcd for C₁₇H₂₇O₂ [M+H]⁺ 263.2011, found 263.2002.

1-phenylbutane-1,3-dione (2m): White solid. From **4-phenylbut-3-yn-2-one** (29.5 mg, 0.20 mmol), (14.2 mg, 43%), or from **1-phenylbut-2-yn-1-one** (26.1 mg, 0.18 mmol), (23.5 mg, 80%). Mp: 57-59°C. (PE/EA = 80/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 2.20$ (s, 3H), 6.18 (s, 1H), 7.42 - 7.48 (m, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.86 - 7.90 (m, 2H), 16.15 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 25.8, 96.7, 127.0, 128.6, 132.2, 134.9, 183.4, 193.7 ppm; HRMS (ESI): calcd for C₁₀H₁₃O₂ [M+H]⁺ 163.0759, found 163.0756.

1-phenylpentane-1,3-dione(2n): colorless oil (26.4 mg, 74%). (PE/EA = 100/1) (enol form) ¹H NMR (500 MHz, CDCl₃): δ = 1.22 (t, *J* = 7.5 Hz, 3H), 2.47 (q, *J* = 7.5 Hz, 2H), 6.18 (s, 1H), 7.41 – 7.48 (m, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.85 – 7.91 (m, 2H), 16.12 (br, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 9.7, 32.4, 95.4, 126.9, 128.7, 132.1, 135.1, 183.1, 198.0 ppm; HRMS (ESI): calcd for C₁₁H₁₃O₂ [M+H]⁺ 177.0916, found 177.0908.

4,4-Dimethyl-1-phenylpentane-1,3-dione (2o)³: Light brown oil. From **4,4-dimethyl-1-phenylpent-2-yn-1-one** (36.6 mg, 0.20 mmol), (38.6 mg, 96%), or from **4,4-dimethyl-1-phenylpent-1-yn-3-one** (36.7 mg, 0.20 mmol), (26.7 mg, 66%). (PE/EA = 40/1) (enol form) ¹H NMR (500 MHz, CDCl₃): δ = 1.26 (s, 9H), 6.30 (s, 1H), 7.42 – 7.48 (m, 2H), 7.52

(tt, *J* = 7.5, 1.5 Hz, 1H), 7.87 – 7.91 (m, 2H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 27.4$, 39.9, 92.1, 127.0, 128.6, 132.1, 135.6, 184.6, 202.9 ppm; HRMS (ESI): calcd for C₁₃H₁₇O₂ [M+H]⁺ 205.1229, found 205.1229.

1-cyclohexyl-3-phenylpropane-1,3-dione (2p): White solid (41.2 mg, 89%). Mp: 48-49°C. (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 1.19 - 1.37$ (m, 4H), 1.42 - 1.50 (m, 2H), 1.80 - 1.96 (m, 4H), 2.32 (tt, J = 11.5, 3.5 Hz, 1H), 6.18 (s, 1H), 7.40 - 7.46 (m, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.84 - 7.90 (m, 2H), 16.30 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 25.8, 25.8, 29.6, 47.3, 94.4, 127.0, 128.5, 132.1, 135.4, 184.3, 199.8 ppm;

HRMS (ESI): calcd for C₁₅H₁₉O₂ [M+H]⁺ 231.1380, found 231.1355.

1-{(3r,5r,7r)-Adamantan-1-yl}-3-phenylpropane-1,3-dione (2q): White solid (46.9 mg, 90%). M.p.: 48-50°C. (PE/EA = 40/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 1.76$ (q, J = 12.5 Hz, 6H), 1.91 (d, J = 2.5 Hz, 6H), 2.08 (s, 3H), 6.26 (s, 1H), 7.41 – 7.48 (m, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.86 – 7.94 (m, 2H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 28.1$, 36.6, 39.1, 41.6, 91.9, 127.0, 128.5, 132.0, 135.9, 185.5, 201.4 ppm;

HRMS (ESI): calcd for C₁₉H₂₃O₂ [M+H]⁺ 283.1698, found 283.1690.

1-(furan-2-yl)-3-phenylpropane-1,3-dione (2r): yellow solid (35.8 mg, 84%). Mp: 67-69 °C. (PE/EA = 40/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 6.58$ (dd, J = 3.5, 1.5 Hz, 1H), 6.76 (s, 1H), 7.24 (dd, J = 3.5, 0.5 Hz, 1H), 7.42 – 7.50 (m, 2H), 7.53 (tt, J = 7.5, 1.5 Hz, 1H), 7.61 (dd, J = 1.5, 0.5 Hz, 1H), 7.91 – 7.99 (m, 2H), 16.19 (br, 1H) ppm;

¹³**C NMR** (**125 MHz, CDCl**₃): $\delta = 92.7$, 112.6, 115.7, 127.0, 128.6, 132.3, 134.7, 146.0, 151.1, 177.5, 182.6 ppm;

HRMS (ESI): calcd for C₁₆H₁₅O₂ [M+H]⁺ 215.0708, found 215.0708.

1-(2-ethoxyphenyl)-3-phenylpropane-1,3-dione (2s): Pale yellow solid (51.1 mg, 95%). Mp: 85-86 °C. (PE/EA = 80/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 1.55$ (t, J = 7.0 Hz, 3H), 4.16 (q, J = 7.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 1H), 7.01 – 7.08 (m, 1H), 7.33 (s, 1H), 7.40 – 7.48 (m, 3H), 7.52 (tt, J = 7.5, 1.5 Hz, 1H), 7.93 – 7.99 (m, 2H), 8.00 (dd, J = 8.0, 1.5 Hz, 1H) ppm;

¹³**C NMR (125 MHz, CDCl₃)**: δ = 14.9, 64.3, 98.6, 112.6, 120.7, 124.6, 127.1, 128.6, 130.3, 132.1, 133.1, 136.2, 158.1, 183.5, 186.0 ppm;

HRMS (ESI) calcd for C₁₇H₁₇O₃ [M+H]⁺ 269.1178, found 268.1170.

1-(2-ethoxyphenyl)-3-phenylpropane-1,3-dione (2t)⁴: yellow solid (47.6 mg, 99%). Mp: 85-86°C.

(lit. Mp 80–82 °C). (PE/EA = 80/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 2.42$ (s, 3H), 6.82 (s, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.44 – 7.50 (m, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.94 – 8.00 (m, 2H) ppm; ¹³**C NMR (125 MHz, CDCl₃)**: $\delta = 21.6$, 92.8, 127.1, 127.2, 128.6, 129.4, 132.3, 132.9, 135.6, 143.2, 185.1, 186.0 ppm;

HRMS (ESI): calcd for C₁₆H₁₅O₂ [M+H]⁺ 239.1072, found 239.1070.

1-(4-fluorophenyl)-3-phenylpropane-1,3-dione (2u): Pale yellow solid. Mp: 81-83°C. From 1-(4-fluorophenyl)-3-phenylprop-2-yn-1-one (44.8 mg, 0.20 mmol), (45.7 mg, 94%), or from 3-(4-fluorophenyl)-1-phenylprop-2-yn-1-one (44.3 mg, 0.20 mmol), (42.3 mg, 88%). (PE/EA = 80/1)

(enol form) ¹**H** NMR (500 MHz, CDCl₃): $\delta = 6.79$ (s, 1H), 7.18 – 7.15 (m, 2H), 7.43 – 7.51 (m, 2H), 7.55 (tt, J = 7.5, 1.5 Hz, 1H), 7.95 – 8.03 (m, 4H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 92.82$, 115.8(d, J = 21.8 Hz), 127.1, 128.7, 129.6 (d, J = 9.1 Hz), 132.0 (d, J = 3.0 Hz), 132.5, 135.3, 165.4 (d, J = 252.4 Hz), 185.0, 185.1 ppm;

¹⁹**F** NMR (471 MHz, CDCl₃): δ = -106.2 ppm;

HRMS (ESI): calcd for C₁₅H₁₂FO₂ [M+H]⁺ 243.0821, found 243.0816.

1-(naphthalen-2-yl)-3-phenylpropane-1,3-dione (2v): white solid (52.0 mg, 95%). Mp: 101-103°C. (PE/EA = 80/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 6.97$ (s, 1H), 7.45 – 7.60 (m, 5H), 7.83 – 7.91 (m, 2H), 7.92 – 8.04 (m, 4H), 8.51 (s, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃) δ = 93.4, 123.2, 126.8, 127.2, 127.7, 128.1, 128.3, 128.4, 128.7, 129.3, 132.4, 132.7, 132.8, 135.3, 135.6, 185.5, 185.7 ppm;

HRMS (ESI): calcd for C₁₉H₁₅O₂ [M+H]⁺ 275.1072, found 275.1071.

1,3-diphenylpropane-1,3-dione (2w)⁴: White solid (92%, 41.5 mg): Mp: 77-78°C. (Lit. 76–77 °C). (PE/EA = 80/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 6.85$ (s, 1H), 7.45 – 7.52 (m, 4H), 7.55 (tt, J = 7.5, 1.5 Hz, 2H), 7.93 – 8.00 (m, 4H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 93.2, 127.2, 128.7, 132.4, 135.6, 185.8 ppm; HRMS (ESI): calcd for C₁₅H₁₃O₂ [M+H]⁺ 225.0916, found 225.0913.

1-(4-Methoxyphenyl)-3-phenylpropane-1,3-dione $(2x)^4$: white solid (45.7 mg, 90%). Mp: 130-132°C. (Lit. 127–128 °C). (PE/EA = 40/1)

(enol form) ¹H NMR (500 MHz, CDCl₃): $\delta = 6.79$ (s, 1H), 6.97 (d, J = 9.0 Hz, 2H), 7.43 – 7.51 (m, 2H), 7.53 (tt, J = 7.5, 1.5 Hz, 1H), 7.90 – 7.98.004 (m, 4H) ppm;

¹³**C NMR (125 MHz, CDCl₃)** δ = 55.4, 92.4, 114.0, 127.0, 128.2, 128.6, 129.3, 132.1, 135.6, 163.3, 184.0, 186.2 ppm;

HRMS (ESI): calcd for C₁₆H₁₅O₃ [M+H]⁺ 255.1021, found 255.1018.

1-cyclopropyl-3-phenylpropane-1,3-dione (2y): White solid (35.9 mg, 94%). Mp: 38-40°C. (PE/EA = 40/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 0.94 - 1.00$ (m, 2H), 1.16 - 1.22 (m, 2H), 1.80 (tt, J = 8.0, 3.5 Hz, 1H), 6.28 (s, 1H), 7.40 - 7.46 (m, 2H), 7.50 (tt, J = 7.5, 1.5 Hz, 1H), 7.83-7.88 (m, 2H), 16.25 (br, 1H) ppm;

¹³**C** NMR (125 MHz, CDCl₃): $\delta = 10.6, 19.3, 54.9, 96.1, 126.7, 128.5, 131.9, 134.5, 178.5, 200.23 ppm;$

HRMS (ESI): calcd for C₁₂H₁₃O₂ [M+H]⁺ 189.0916, found 189.0911.

1,3-bis(4-fluorophenyl)propane-1,3-dione (2z): Pale yellow solid (43.2 mg, 83%). Mp: 118-120°C. (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃**): $\delta = 6.74$ (s, 1H), 7.13 – 7.19 (m, 4H), 7.95 – 8.05 (m, 4H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ = 92.5, 115.8 (d, *J* = 21.8 Hz), 129.6 (d, *J* = 9.1 Hz), 131.71 (d, *J* = 2.8 Hz), 165.5 (d, *J* = 252.5 Hz), 184.5 ppm;

¹⁹**F NMR (471 MHz, CDCl₃)**: δ = -106.1 ppm;

HRMS (ESI): calcd for C₁₅H₁₁F₂O₂ [M+H]⁺ 261.0727, found 261.0718.

1,3-bis(4-methoxyphenyl)propane-1,3-dione (**2A**)⁵: White solid (49.3 mg, 87%). Mp: 118-120°C. (PE/EA = 20/1) (enol form) ¹**H** NMR (**500 MHz, CDCl**₃): δ = 3.87 (s, 6H), 6.72 (s, 1H), 6.97 (d, *J* = 9.0 Hz, 4H), 7.95 (d, *J* = 9.0 Hz, 4H) ppm; ¹³C NMR (**125 MHz, CDCl**₃): δ = 55.4, 91.5, 113.9, 128.2, 129.1, 163.0, 184.6 ppm;

HRMS (ESI): calcd for $C_{17}H_{17}O_4 [M+H]^+ 285.1127$, found 285.1128.

1-cyclohexyl-4,4-dimethylpentane-1,3-dione (2B): Light brown oil (36.0 mg, 85%). (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl₃)**: $\delta = 1.17$ (s, 9H), 1.16 - 1.34 (m, 4H), 1.36 - 1.46 (m 2H), 1.62 - 1.92 (m, 4H), 2.19 (tt, J = 11.5, 3.5 Hz, 1H), 5.60 (s, 1H), 15.96 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): δ =25.8, 27.4, 29.6, 39.2, 45.0, 93.3, 198.5, 201.2 ppm;

HRMS (ESI): calcd for C₁₃H₂₃O₂ [M+H]⁺ 211.1698, found 211.1691.

1-{(3r,5r,7r)-Adamantan-1-yl}-4,4-dimethylpentane-1,3-dione (2C): White solid (51.1 mg, 97%). Mp: 86-87°C. (PE/EA = 100/1)

(enol form) ¹**H NMR (500 MHz, CDCl**₃): $\delta = 1.17$ (s, 9H), 1.67 - 1.77 (m, 6H), 1.83 (s, 6H), 2.04 (s, 3H), 5.68 (s, 1H), 16.25 (br, 1H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 27.4, 28.1, 36.6, 39.1, 41.2, 90.5, 199.9, 202.7$ ppm; HRMS (ESI): calcd for C₁₇H₂₇O₂ [M+H]⁺ 263.2011, found 263.2006.

2,2,6,6-tetramethylheptane-3,5-dione (2D): colorless oil (19.4 mg, 53%). (PE/EA = 200/1). (enol form) ¹H NMR (500 MHz, CDCl₃): δ = 1.18 (s, 18H), 5.73 (s, 1H), 16.16 (br, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 27.4, 39.4, 90.7, 201.45 ppm; HRMS (ESI): calcd for C₁₁H₂₁O₂ [M+H]⁺ 185.1542, found 185.1547.

Gram-scale reactions

To a 100 mL round bottom flask equipped with a stirring bar was charged with PPh₃AuCl (39.5 mg, 0.08 mmol), AgOTf (26.4 mg, 0.10 mmol), ynone **1a** (1.493 g, 8.0 mmol), methanol (50 mL), and H₂O (1.73 mL, 1.73 g, 96.1 mmol) sequentially without any protection. The reaction was then stirred at room temperature for 18 h (open to the air, monitored by TLC). Upon completion the solvent was removed under reduced pressure and the crude product was purified by column chromatography (eluent: PE /EA=120/1) to afford the 1,3-diketone product **2a** (1.5956 g, 96%).

To a 100 mL round bottom flask equipped with a stirring bar was charged with PPh₃AuCl (40.0 mg, 0.08 mmol), AgOTf (27.0 mg, 0.10 mmol), ynone **1w** (1.6482 g, 8.0 mmol), methanol (50 mL), and H₂O (1.73 mL, 1.73 g, 96.1 mmol) sequentially without any protection. The reaction was then stirred at room temperature for 18 h (open to the air, monitored by TLC). Upon completion the solvent was removed under reduced pressure and the crude product was purified by column chromatography (eluent: PE /EA=100/1) to afford the 1,3-diketone product **2w** (1.5844 g, 88%).

Synthesis of (E)-3-methoxy-1-phenylhept-2-en-1-one (3a)

To an oven-dried 10 mL Schlenk tube equipped with a stirring bar was charged with PPh₃AuCl (2.5 mg, 0.005 mmol), AgOTf (1.8 mg, 0.007 mmol), ynone **1a** (38.3 mg, 0.21 mmol), and dry methanol (2 mL) sequentially under N₂. The tube was then sealed and the reaction was stirred at room temperature for 18 h. Upon completion the solvent was removed under reduced pressure and the crude product was purified by Pre-TLC (eluent: PE/EA = 80/1) to afford the enolether **3a** (36.7 mg, 82%).

¹**H** NMR (500 MHz, CDCl₃): $\delta = 0.93$ (t, J = 7.5 Hz, 3H), 1.36 - 1.45 (m, 2H), 1.56 - 1.64 (m, 2H), 2.85 (t, J = 7.8 Hz, 2H), 3.76 (s, 3H), 6.11 (s, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.49 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 7.5 Hz, 2H) ppm;

¹³C NMR (125 MHz, CDCl₃): $\delta = 13.9, 22.6, 29.6, 32.7, 55.5, 95.7, 127.6, 128.3, 131.6, 140.6, 178.6, 189.9 ppm;$

HRMS (ESI): calcd for C₁₄H₁₉O₂ [M+H]⁺ 219.1385, found 219.1383.

References:

- 1. K. Okamoto, T. Shimbayashi, E. Tamura, K.Ohe, Org. Lett. 2015, 17, 5843-5845.
- a) H. Koshimura, J. Saio, T. Okuba, *Bull Chem. Soc. Jpn.* **1973**, *46*, 632; b) Padwa, A. H.; Hornbuckle, S. F. J. Org. Chem. **1990**, *55*, 5297-5299.
- 3. M. Sada, S. Matsubara, J. Am. Chem. Soc. 2010, 132, 432-433.
- 4. E. Hasegawa, K. Ishiyama, T. Horaguchi, T. Shimizu, J. Org. Chem. 1991, 56, 1631.
- 5. K. Nomura, K. Asano, T. Kurahashi, S. Matsubara, *Heterocycles* 2008, 76, 1381-1399.

S19

S24

S31

¹H NMR for **2o** prepared from 4,4-dimethyl-1-phenylpent-2-yn-1-one (Table 3)

¹H NMR for **2u** prepared from 3-(4-fluorophenyl)-1-phenylprop-2-yn-1-one (Table 3)