Content	
Synthesis Procedures and Spectra Details	3
General Working Procedure 1 (GWP1)	3
General Working Procedure 2 (GWP2)	3
Determination of LogD _{7.4}	59
Cyclic voltammetry	61
Hepatotoxicity profile of 11g	61
Appendix	62
Ethyl-[2-amino-6-(cyclohexylamino)pyridin-3-yl]carbamate hydrochloride (7a)	62
Ethyl-{2-amino-6-[(3-morpholinpropyl)amino]pyridin-3-yl}carbamate hydrochloride (7b)	64
Ethyl-[2-amino-6-(cyclopropylamin)pyridin-3-yl]carbamate hydrochloride (7c)	66
Ethyl-[2-amino-6-(cyclopentylamino)pyridin-3-yl]carbamate hydrochloride (7d)	68
Ethyl-{2-amino-6-[4-(2-hydroxyethyl)piperazin-1-yl]pyridin-3-yl}carbamate (7e)	70
Ethyl-[2-amino-6-(morpholin-1-yl)pyridin-3-yl]carbamate-Hydrochloride (7f)	72
Ethyl-[2-amino-6-(4-methylpiperazin-1-yl)pyridin-3-yl]carbamate (7g)	74
Ethyl {2-amino-6-[(4-fluorophenethyl)amino]pyridin-3-yl}carbamate (7h)	76
Ethyl {2-amino-6-[(4-fluorophenyl)amino]pyridine-3-yl}carbamate (7i)	78
Ethyl-[2-amino-6-(4-fluorbenzamido)pyridin-3-yl]carbamate (7j)	80
Ethyl-{2-amino-6-[(4-fluorbenzyl)oxy]pyridin-3-yl}carbamate hydrochloride (7k)	82
Ethyl {6-[(4-fluorobenzyl)amino]-2-methylpyridin-3-yl}carbamate (11a)	84
Ethyl [6-(benzylamino)-2-methylpyridin-3-yl]carbamate (11b)	86
Ethyl {6-[(3-methoxybenzyl)amino]-2-methylpyridin-3-yl}carbamate (11c)	88
Ethyl {6-[(4-fluorobenzyl)amino]-2-(methylamino)pyridine-3-yl}carbamate (11d)	90
Ethyl-{6-[(4-fluorbenzyl)amino]-2-hydroxypyridin-3-yl}carbamate (11e)	92
Ethyl-{6-[(4-fluorbenzyl)amino]-2-methoxypyridin-3-yl)carbamate (11f)	94
Ethyl-{6-[(4-fluorbenzyl)amino]-2-isopropoxypyridin-3-yl}carbamate (11g)	96
Ethyl {6-[(4-flurobenzyl)amino]-2-morpholinopyridin-3-yl}carbamate (11h)	98
<i>N</i> -{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}butyramide hydrochloride (12a)	100
2-Amino-N-{2-amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}acetamide hydrochloride (12b)	102
(<i>R</i>)-2-Amino- <i>N</i> -{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-phenylpropanamide hydrochloride (12c)	104
(S)-2-Amino-N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-phenylpropanamide hydrochloride (12d)	106
4-Amino-N-{2-amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}benzamide hydrochloride (12e)	108
N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-4-nitrobenzaminde hydrochloride (12f)	110
1-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-[<i>m</i> -tolyl)urea -hydrochloride (12g)	112
N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-4-fluorbenzamide hydrochloride (12h)	114

<i>N</i> -{2-Amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}-2-(3,5-difluorophenyl)acetamide (12i)	116
1-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-[<i>m</i> -tolyl)thiourea hydrochloride (12j)	118
1-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}pyrrolidin-2,5-dione sulfate (12k)	120
2-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}isoindolin-1,3-dione hydrochloride (12l)	122
N-{2-Amino-4-[(4-fluorbenzyl)amino]phenyl}-4-fluorbenzamide (16a)	124
N-{2-Amino-4-[(4-fluorbenzyl)amino]phenyl}-2-(3,5-difluorphenyl)acetamide (16b)	126
Ethyl {2-amino-6-[(4-fluorobenzyl)amino]-5-methylpyridin-3-yl}carbamate (21a)	128
Ethyl {6-[(4-fluorobenzyl)amino]-5-methyl-2-morpholinopyridin-3-yl}carbamate (21b)	130
Benzyl [2-amino-6-(cyclohexylamino)pyridin-3-yl]carbamate (22a)	132
<i>N</i> -[2-Amino-6-(cyclopropylamino)pyridin-3-yl]-3,4-difluorobenzamide (22c)	134
N-{2-(Benzyloxy)-6-[(4-fluorbenzyl)amino]pyridin-3-yl}butyramide (22d)	136
N-{6-[(4-Fluorbenzyl)amino]-2-isopropoxypyridin-3-yl}butyramide (22e)	138
<i>N</i> -[6-(Cyclohexylamino)-2-morpholinopyridin-3-yl]-2-(3,5-difluorophenyl)acetamide (25a)	140
2-(3,5-Difluorophenyl)-N-(2,6-dimorpholinopyridin-3-yl)acetamide (25b)	142
2-(3,5-Dimethoxyphenyl)- <i>N</i> -(2,6-dimorpholinopyridin-3-yl)acetamide (25c)	144

Synthesis Procedures and Spectra Details

General Working Procedure 1 (GWP1)

In a microwave vessel, **5** (1 eq.) was suspended together with triethylamine (1.4 eq.) and the corresponding amine (1.2 eq.) in 2-propanol. The mixture heated in the microwave reactor for 15 min at 110 °C. Subsequently, addition of water precipitated the product, which was stored in the refrigerator to complete the precipitation. Finally, the resulting solid filtered off, washed with water and then dried.

General Working Procedure 2 (GWP2)

In a 3-necked flask, compound **i12** (1 mmol) together with palladium-activated carbon (0.10 g) were suspended in tetrahydrofuran (10 mL) and stirred at 40 °C under a hydrogen atmosphere. After TLC-controlled completion of the reduction (about 18 h), the catalyst was filtered through diatomaceous earth and the residue was washed with a suitable solvent. The filtrate sparged with nitrogen via a capillary, cooled to 0 °C, and triethylamine (1.4 eq., 194 μ L) was added. A solution of the corresponding acylating reagent (1.2 eq.) In 5 mL of a suitable solvent added dropwise over 30 min. After completion of the reaction, purification carried out as described in the corresponding instructions.

2-Amino-6-chloro-3-nitropyridine (5)

2,6-Dichloro-3-nitropyridine (40 mmol, 7.72 g) was dissolved in 2-propanol (300 mL). A relatively excess (20 mL, 25%) aqueous ammonia was added. The reaction mixture was warmed to 35 °C and stirred for 5 days. A light yellow precipitate was collected by filtration, which was washed with water (2 x 50 mL) and dried using desiccator; Yield: 77.0%, light yellow solid; Mp: 194-195 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.40 (d, 1H, ³*J* = 8.6 Hz, C(4)H), 8.26 (bs, 2H, *N*²H₂), 6.78 (d, 1H, ³*J* = 8.6 Hz, C(5)H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 155.0 (C6), 153.5 (C2), 138.4 (C4), 126.1 (C3), 112.0 (C5); IR (cm⁻¹): \tilde{v} = 3442 (N-H), 3277 (N-H), 1556 (NO₂), 1495 (C=C), 762 (Ar-H).

N²-Cyclohexyl-5-nitropyridine-2,6-diamine (6a)

Compound **5** (2 mmol, 348 mg) was suspended in 2-propanol (10 mL). Triethylamine (4 mmol, 555 μ L) and cyclohexylamine (3 mmol, 342 μ L) sequentially added. The reaction mixture refluxed for overnight. Cooling of the mixture resulted in precipitation of the product. A yellow product collected by filtration, which was washed with distilled water; Yield: 72%, yellow solid; Mp: 175-176 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.12 (bs & bs, 2H, N^2 H₂), 7.92 (d, 1H, ³J = 9.2 Hz, C(4)H), 7.83 (m, 1H, N^6 H), 5.95 (d, 1H, ³J = 9.2 Hz, C(5)H), 3.92 (m, 1H, C(1')H), 1.89 (m, 2H, C(2')H_a & C(6')H_a), 1.75 (m, 2H, C(3')H_a & C(5')H_a), 1.61 (m, 1H, C(4')H_a), 1.35 (m, 5H, C(2')H_b, C(6')H_b, C(3')H_b, C(5')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 159.7 (C6), 156.0 (C2), 134.0 (C4), 117.1 (C3), 102.8 (C5), 62.0 (C1'), 32.2 (C2' & C6'), 25.2 (C3' & C5'), 24.6 (C4'); IR (cm⁻¹): $\tilde{\nu}$ = 3297 (N-H), 1572 (NO₂).

Ethyl [2-amino-6-(cyclohexylamino)pyridin-3-yl]carbamate hydrochloride (7a)

Compound **6a** (4 mmol, 946 mg) and Pd/C (10%, 400 mg) were suspended in 2-propanol (20 mL). The suspension carefully set under hydrogen atmosphere and stirred for overnight. Ethyl chloroformate (5.2 mmol, 498 µL) added slowly and then stirred for 2 h. The suspension filtered and washed with ethanol (3 x 10 mL). The filtrate was concentrated and the product precipitated with the addition of water to the filtrate. A pure product collected by filtration; Yield: 25%, brown solid; Purity 100%; Mp: 212 - 213 °C (from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 12.85 (bs, 1H, HCl), 8.46 (bs, 1H, N³H), 7.79 (m, 1H, N⁶H), 7.44 (d, 1H, ³J = 8.4 Hz, C(4)H & N²H₂), 5.96 (d, 1H, ³J = 8.8 Hz, C(5)H), 4.08 (q, 2H, ³J = 6.9 Hz, -OCH₂), 3.74 (m, 1H, C(1')H), 1.90 (m, 2H, C(2')H_a & C(6')H_a), 1.71 (m, 2H, C(3')H_a & C(5')H_a), 1.60 (m, 1H, C(4')H_a), 1.45 (m, 5H, C(2')H_b, C(6')H_b, C(3')H_b, C(5')H_b & C(4')H_b) 1.07 (t, 3H, ³J = 7.0 Hz, -OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, DMSO-d₆): δ = 155.1 (C=O), 148.8 (C6), 148.6 (C2), 142.8 (C4), 105.4 (C3), 94.1 (C5), 60.4 (-OCH₂), 50.0 (C1'), 32.0 (C2' & C6'), 24.9 (C4'), 24.0 (C3' & C5'), 14.5 (-OCH₂C<u>H₃</u>); IR (cm⁻¹): \tilde{v} = 3143 (N-H), 1690 (C=O), 780 (Ar-H); HRMS ((ESI) m/z) calculated for [C₁₄H₂₂N₄O₂ + H]⁺: 279.1816.1063, found: 279.1814.

N²-(3-Morpholinprop-1-yl)-2,6-diamino-5-nitropyridine (6b)

The synthesis carried out according to GWP1 with **5** (5 mmol, 0.87 g), 3-(morpholin-4-yl)-propyl-1amine (6 mmol, 875 μ L) and triethylamine (7 mmol, 966 μ L) in 2-propanol (5 mL). Yield: 0.95 g (68 %) of orange-yellow, amorphous solid; Mp: 125–127 °C (solid from 2-propanol); $R_f = 0.41$ (cyclohexane/ethanol/triethylamine); ¹H-NMR: (DMSO- d_6): $\delta = 1.70$ (q, ³J = 7.0 Hz, 2H, C⁸H₂), 2.33–2.34 (m, 6H, C⁹H₂ & 2×C¹⁰H₂), 3.34–3.37 (t, ³J = 6.0 Hz, 2H, C⁷H₂), 3.56–3.58 (m, 4H, 2×C¹¹H₂), 5.95 (d, ³J = 9.3 Hz, 1H, C⁵H), 7.71 & 8.14 (bs & bs, 2H, NH₂), 7.92 (d, ³J = 9.4 Hz, 1H, C⁴H), 7.95 (t, ³J = 5.2 Hz, 1H, NH); ¹³C-NMR: (DMSO- d_6): $\delta = 25.5$ (C⁸), 38.9 (C⁷), 53.3 (C¹⁰), 55.8 (C⁹), 66.1 (C¹¹), 102.6 (C⁵), 117.2 (C³), 134.0 (C⁴), 155.9 (C²), 160.6 (C⁶); IR: $\tilde{\nu} = 1529$ (m, v_{C-NO}), 3284 & 3410 (m, v_{N-H}).

Ethyl-{2-amino-6-[(3-morpholinpropyl)amino]pyridin-3-yl}carbamate-Hydrochloride (7b)

Compound **6b** (1 mmol, 0.28 g) and 0.10 g of palladium-activated carbon (10%) were suspended in 2propanol (20 mL). The suspension set under hydrogen atmosphere and stirred for 28.5 h. The reaction mixture then cooled to 0 °C and triethylamine (1.5 eq., 1.5 mmol, 0.2 mL) was added. After dropwise addition of ethyl chloroformate (1.2 eq., 1.2 mmol, 114 μ L), the mixture was stirred at 0 °C for 2.5 h. The catalyst was then filtered and the pH of the filtrate was adjusted to 2 with 10% hydrochloric acid. A hydrochloride salt precipitated by addition of diethyl ether (20 mL) and the resulting in the solid filtered off and washed with diethyl ether and boiling tetrahydrofuran. Finally, the product recrystallized from methanol; yield: 0.13 g (34%); Purity 100%; Mp: 176–177 °C (solid from methanol); $R_f = 0.43$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR: (DMSO- d_6): $\delta = 1.22$ (bs, 3H, C¹⁴H₃), 2.02 (q, ³*J* = 7.3 Hz, 2H, C⁸H₂), 3.06 (m, 2H, C¹⁰H₂), 3.19 (m, 2H, C⁹H₂), 3.41 (m, 2H, C¹⁰H₂), 3.44 (m, 2H, C⁷H₂), 3.90 (bs, 4H, 2×C¹¹H₂), 4.06 (q, ³*J* = 6.9 Hz, 2H, C¹³H₂), 6.01 (d, ³*J* = 8.8 Hz, 1H, C⁵H), 7.48 (d, ³*J* = 8.0 Hz, 1H, C⁴H), 7.48 (s, 2H, NH₂), 8.20 (s, 1H, N⁶H), 8.55 (s, 1H, N³H), 11.25 (s, 1H, HCl), 13.26 (s, 1H, HCl); ¹³C-NMR:(DMSO- d_6): $\delta = 14.5$ (C¹⁴), 22.6 (C⁸), 51.1 (2×C¹⁰), 53.4 (C⁹), 60.5 (C¹³), 63.1 (2×C¹¹), 94.1 (C⁵), 106.1 (C³), 142.7 (C⁴), 149.0 (C²), 149.2 (C⁶), 155.1 (C¹²); IR: $\tilde{\nu} = 1702$ (m, v_{c=0}), 2979 (w, v_{Ar-H}), 3163, 3262, 3458 (w, v_{N-H}); HRMS: calculated for [C₁₅H₂₅N₅O₃ + H]*: 324.2030, found: 324.2015.

N²-Cyclopropyl-2,6-diamino-5-nitropyridine (6c)

The synthesis was carried out according to GWP1 with **5** (4 mmol, 0.69 g), cyclopropylamine (4.8 mmol, 334 μ L) and 5.6 mmol triethylamine (773 μ L) in 5 mL of 2-propanol. Contrary to the instructions, the mixture was heated first to 130 °C for 30 min and then to 150 °C for 30 min. The product dried using a

drying oven at 60 °C. Yield: 0.58 g (75%) of yellow, amorphous solid; Mp: 163–165 °C (solid form 2-Propanol); $R_f = 0.70$ (cyclohexane/ethanol/triethylamine 6:2:2). ¹H-NMR: (DMSO- d_6): $\delta = 0.50-0.54$ und 0.72-0.77 (m & m, 4H, 2×C⁸H₂), 2.94 (bs, 1H, C⁷H), 5.90 & 6.25 (bs & bs, 1H, C⁵H), 7.80-8.13 (m, 4H, C⁴H, NH & NH₂); ¹³C-NMR: (DMSO- d_6): $\delta = 6.3$ (C⁸), 23.9 (C⁷), 102.4 (C⁵), 117.6 (C³), 134.0 (C⁴), 155.9 (C²), 161.7 (C⁶); MIR: $\tilde{\nu} = 1524$ (m, v_{C-NO}), 3083 (w, v_{Ar-H}), 3328 und 3403 (w, v_{N-H}).

Ethyl-[2-amino-6-(cyclopropylamin)pyridin-3-yl]carbamate-hydrochloride (7c)

1 mmol of **6c** (0.19 g) and 0.15 g of palladium activated carbon (10%) were suspended in 20 mL of 2propanol and stirred under hydrogen atmosphere for 6 h. Subsequently, the reaction mixture was cooled to 0 °C and a solution of ethyl chloroformate (1.2 eq., 1.2 mmol, 114 μL) in 2-propanol (2 mL) was added dropwise over a period of 1 h. Two hours after the addition, the reaction was completed and the catalyst filtered through diatomaceous earth. Thereafter, the pH of the filtrate was adjusted to 2 with 10% hydrochloric acid and the solution was stored in the refrigerator. Since precipitation did not occurred, the solvent removed in a partial vacuum and the residue recrystallized from tetrahydrofuran. The drying takes place at 40 °C and 8 mbar. Yield: 0.12 g (44%); Purity 100%, Mp: 189– 191 °C (solid from tetrahydrofuran); R_f = 0.80 (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR: (DMSO-*d*₆): δ = 0.54–0.58 (m, 2H, C⁸H₂), 0.85–0.90 (m, 2H, C⁸H₂), 1.22 (bs, 3H, C¹¹H₃), 2.63 (bs, 1H, C⁷H), 4.06 (q, ³*J* = 6.8 Hz, 2H, C¹⁰H₂), 6.00 (d, ³*J* = 8.8 Hz, 1H, C⁵H), 7.50 (d, ³*J* = 8.0 Hz, 1H, C⁴H), 7.57 (s, 2H, NH₂), 8.34 (s, 1H, N⁶H), 8.57 (s, 1H, N³H), 12.91 (bs, 1H, HCl); ¹³C-NMR: (DMSO-*d*₆): δ = 7.3 (2×C⁸), 14.5 (C¹¹), 23.6 (C⁷), 60.5 (C¹⁰), 94.0 (C⁵), 106.8 (C³), 142.6 (C⁴), 149.0 (C²), 150.4 (C⁶), 155.0 (C⁹); MIR: \vec{v} = 1701 (m, v_{C=0}), 2961 (w, v_{Ar-H}), 3169, 3258 & 3360 (w, v_{N-H}); HRMS: calculated for [C₁₁H₁₆N₄O₂ + H]⁺: 237.1346, found: 237.1335.

N²-Cyclopentyl-2,6-diamino-5-nitropyridine (6d)

The synthesis carried out according to GWP1, with 5 (4 mmol, 0.69 g) and cyclopropylamine (4.8 mmol, 475 μ L) in of 2-propanol (5 mL) were used and the reaction stirred at 120 °C. After filtration, the product washed with little 2-propanol. Yield: 0.68 g (76%) of yellow, amorphous solid; Mp: 151–154 °C (solid from 2-propanol); R_f = 0.85 (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR: (DMSO- d_6): δ =

1.43-1.46 & 1.92-1.97 (m & m, 4H, 2×C⁸H₂), 1.53-1.57 & 1.67-1.71 (m, 4H, C⁹H₂), 4.29-4,35 (m, 1H, C⁷H), 5.94 (d, ${}^{3}J$ = 9.2 Hz, 1H, C⁵H), 7.72 & 8.13 (bs & bs, 2H, NH₂), 7.91 (d, ${}^{3}J$ = 9.2 Hz, 1H, C⁴), 7.92 (s, 1H, NH); 13 C-NMR: (DMSO- d_6): δ = 23.4 (C⁹), 25.4 (C⁸), 51.9 (C⁷), 102.7 (C⁵), 117.1 (C³), 133.9 (C⁴), 155.9 (C²), 160.1 (C⁶); MIR: $\tilde{\nu}$ = 1513 (m, v_{C-NO}), 2939 (w, v_{C-H}), 3286 (w, v_{N-H}).

Ethyl-[2-amino-6-(cyclopentylamino)pyridin-3-yl]carbamate hydrochloride (7d)

Intermediate 6d (2 mmol, 0.44 g) together with 0.10 g of palladium activated carbon (10%) were suspended in 2-propanol (10 mL) and stirred under hydrogen atmosphere for 6 h. Since the TLC monitoring still detected the starting material, another 0.18 g of palladium-activated carbon (10%) added under counter current to hydrogen gas. After 18 h, the reduction was complete and the reaction was cooled to 0 °C. A solution of ethyl chloroformate (1.25 eq., 2.5 mmol, 238 µL) in 2-propanol (2 mL) was added dropwise over 25 min. Additional ethyl chloroformate (0.5 eq., 1 mmol, 57 µL) dissolved in 2-propanol (1 mL) was necessary to complete the reaction. Three hours after the last addition, the reaction was complete and the catalyst was filtered. The residue washed with 2-propanol and the pH of the filtrate was adjusted to 2 with 10% hydrochloric acid. Since precipitation did not occurred, the solution was concentrated in a partial vacuum and then recrystallized from ethanol. The product was dried at 45 °C and 8 mbar. Yield: 0.16 g (27%) of light blue coloured, shining plates; Purity 100%; Mp: 216-218 °C (solid from Ethanol); $R_f = 0.80$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR: (DMSO d_6): δ = 1.21 (t, ³J = 6.8 Hz, 3H, C¹²H₃), 1.41-1.43 (m, 2H, C⁸H₂), 1.58-1.61 (m, 2H, C⁹H₂), 1.64-1.70 (m, 2H, C⁹H₂), 1.98-2.05 (m, 2H, C⁸H₂), 4.06 (q, ³J = 6.8 Hz, 2H, C¹¹H₂), 5.94 (d, ³J = 8.8 Hz, 1H, C⁵H), 7.44 (d, ³J = 8.8 Hz, 1H, C⁴H), 7.44 (s, 2H, NH₂), 8.00 (d, ³J = 6.8 Hz, 1H, N⁶H), 8.49 (s, 1H, N³H), 12.87 (bs, 1H, HCl); ¹³C-NMR: (DMSO- d_6): δ = 14.5 (C¹²), 23.3 (2×C⁹), 32.2 (2×C⁸), 53.1 (C⁷), 60.5 (C¹¹), 94.3 (C⁵), 105.5 (C³), 142.6 (C⁴), 148.8 (C²), 149.0 (C⁶), 155.1 (C¹⁰); MIR: \tilde{v} = 1689 (m, v_{C=0}), 2952 (w, v_{Ar-H}), 3140 & 3320 (w, v_{N-H}); HRMS: calculated for $[C_{13}H_{20}N_4O_2 + H]^+$: 265.1659, found: 265,1658.

2-[4-(6-Amino-5-nitropyridin-2-yl)piperazin-1-yl)ethanl-1-ol (6e)

The synthesis carried out according to GWP1 with **5** (2 mmol, 0.35 g), 2-(piperazin-1-yl)ethanol (2.4 mmol, 294 µL) and triethylamine (2.8 mmol, 386 µL) in 2-propanol (2 mL). Yield: 0.5 g (93%) of yellow, amorphous solid; Mp: 212-214 °C (solid from 2-propanol); $R_f = 0.26$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR (DMSO- d_6): $\delta = 2.42$ (t, ³J = 6.2 Hz, 2H, C⁹H₂), 2.47 (t, ³J = 5.1 Hz, 4H, 2×C⁸H₂), 3.53 (q, ³J = 5.9 Hz, 2H, C¹⁰H₂), 3.70 (bs, 4H, 2×C⁷H₂), 4.45 (t, ³J = 5.4 Hz, 1H, OH), 6.33 (d, ³J = 9.6 Hz, 1H, C⁵H), 7.70 & 7.96 (bs & bs, 2H, NH₂), 8.05 (d, ³J = 9.6 Hz, 1H, C⁴H); ¹³C-NMR (DMSO- d_6): $\delta = 44.2$ (C⁷), 52.89 (C⁸), 58.5 (2×C¹⁰), 60.0 (2×C⁹), 98.7 (C⁵), 117.7 (C³), 135.6 (C⁴), 154.6 (C²), 159.1 (C⁶); MIR: $\tilde{v} = 1560$ (m, v_{C-NO}), 3102 (m, v_{O-H}), 3275 & 3425 (m, v_{N-H}).

Ethyl-{2-amino-6-[4-(2-hydroxyethyl)piperazin-1-yl]pyridin-3-yl}carbamate (7e)

Intermediate 6e (2 mmol, 0.53 g) together with 0.2 g of palladium-activated carbon (10%) were suspended in 2-propanol (40 mL) and stirred under hydrogen atmosphere for 2.5 h. The suspension then filtered through diatomaceous earth and cooled to 0 °C under an argon atmosphere. A solution of ethyl chloroformate (1.2 eq., 2.4 mmol, 228 µL) in 2-propanol (5 mL) was added dropwise over a period of 1 h and the reaction mixture was stirred for another 3 h at 0 °C. The pH of the solution was adjusted to 2 with 10% hydrochloric acid. Since precipitation did not occur, the hydrochloride precipitated by the addition of diethyl ether. The resulting solid was filtered off and purified by flash chromatography (column: Biotage[®] Snap silica 50 g, mobile phase: dichloromethane/methanol, gradient: 0-3 min 0% methanol, 3-13 min 0-40% methanol, 13- 25 min 40% methanol, flow rate: 40 mL/min). The fractions containing the product combined and concentrated in a partial vacuum. The pH of the solution adjusted to 11 with sodium hydroxide solution (1 mol/L) and then extracted with nbutanol (4 × 15 mL). The combined organic phases were concentrated under partial vacuum and recrystallized from dichloromethane. Yield: 0.04 g (7%) of orange, amorphous solid; Purity 100%; Mp: 141-143 °C (solid from dichloromethane); $R_f = 0.31$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR (DMSO- d_6): $\delta = 1.20$ (bs, 3H, C¹³H₃), 2.45 (bs, 6H, 2×C⁸H₂ & C⁹H₂), 3.33 (bs, 4H, 2×C⁷H₂), 3.52 (bs, 2H, C¹⁰H₂), 5.35 (s, 2H, NH₂), 5.95 (bs, 1H, C⁵H), 7.20 (bs, 1H, C⁴H), 8.33 (s, 1H, NH); ¹³C-NMR (DMSO-*d*₆): $\delta = 14.6 (C^{13}), 45.0 (2 \times C^7), 53.1 (2 \times C^8), 58.5 (C^{10}), 60.0 (C^{12}), 60.4 (C^9), 94.6 (C^5), 108.4 (C^3), 135.0 (C^4), 60.4 (C^5), 108.4 (C^5), 108$ 152.3 (C²), 154.9 (C¹¹), 155.9 (C⁶); MIR: $\tilde{\nu}$ = 1710 (m, v_{C=0}), 2820 (w, v_{C-H}), 3212, 3312 & 3397 (w, v_{N-H}); HRMS: calculated for [C₁₄H₂₃N₅O₃ + H]⁺: 310,1874, found: 310,1870.

2-Amino-6-(morpholin-4-yl)-3-nitropyridine (6f)

The synthesis carried out according to GWP1 with **5** (5 mmol, 0.87 g), morpholine (6 mmol, 522 μ L) and triethylamine (7 mmol, 966 μ L) in 2-propanol (5 mL). Yield: 0.96 g (86 %) of yellow crystalline solid; Mp: 182-184 °C (solid from 2-propanol); $R_f = 0.61$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR (DMSO- d_6): $\delta = 3.66$ -3.69 (m, 8H, 2×C⁷H₂ & 2×C⁸H₂), 6.32 (d, ³J = 9.5 Hz, 1H, C⁵H), 7.72 & 7.97 (bs & bs, 2H, NH₂), 8.08 (d, ³J = 9.5 Hz, 1H, C⁴H); ¹³C-NMR (DMSO- d_6): $\delta = 44.5$ (2×C⁷), 65.9 (2×C⁸), 98.6 (C⁵), 118.0 (C³), 135.7 (C⁴), 154.5 (C²), 159.3 (C⁶); MIR: $\tilde{\nu} = 1556$ (m, v_{C-NO}), 3361 & 3451 (m, v_{N-H}).

Ethyl-[2-amino-6-(morpholin-1-yl)pyridin-3-yl]carbamate-Hydrochloride (7f)

In a 3-necked flask, **6f** (1 mmol, 0.22 g) was suspended in 20 mL of 2-propanol and 0.10 g of palladiumcharcoal (10%) was added. Under hydrogen atmosphere, the reaction mixture stirred for 4 h and triethylamine (1.5 eq., 1.5 mmol, 0.2 mL) was added. The mixture cooled to 0 °C and ethyl chloroformate (1.2 eq., 1.2 mmol, 114 μ L) added dropwise. After 2.5 h of stirring at 0 °C, the reaction was complete and then filtered. With the aid of 10% hydrochloric acid, the pH of the solution was adjusted to 2, whereby the colour turned from green to red. By adding diethyl ether (20 mL), triethylammonium chloride precipitated first, which was filtered off. An additional diethyl ether (20 mL) added to the filtrate, whereby the product precipitated. After filtering off, the solid dried in a partially evacuated sulfuric acid desiccator. Yield: 0.08 g (28%) of green coloured needles; Purity 100%; Mp: 198-200 °C (solid form 2-propanol); R_f = 0,51 (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO-*d*₆): δ = 1.22 (t, ³*J* = 6.7 Hz, 3H, C¹¹H₃), 3.54 (s, 4H, 2×C⁷H₂), 3.71 (s, 4H, 2×C⁸H₂), 4.08 (q, ³*J* = 6.9 Hz, C¹⁰H₂), 6.17 (d, ³*J* = 8.8 Hz, 1H, C⁵H), 7.63 (d, ³*J* = 5.7 Hz, 1H, C⁴H), 7.71 (bs, 2H, NH₂), 8.70 (s, 1H, NH), 13.48 (bs, 1H, HCl); ¹³C-NMR (DMSO-*d*₆): δ = 14.4 (C¹¹), 46.7 (2×C⁷), 60.6 (C¹⁰), 65.3 (2×C⁸), 94.6 (C⁵), 109.3 (C³), 141.3 (C⁴), 149.5 (C²), 150.0 (C⁶), 154.8 (C⁹); MIR: $\tilde{\nu}$ = 1707 (s, v_{C=0}), 3278 & 3329 (w, v_{N-H}); HRMS: calculated for [C₁₂H₁₈N₄O₃ + H]*: 267.1452, found: 267,1450.

2-Amino-6-(4-methylpiperazin-1-yl)-3-nitropyridine (6g)

The synthesis carried out according to GWP1 with **5** (5 mmol, 0.87 g), N-methylpiperazine (6 mmol, 665 µL) and triethylamine (7 mmol, 966 µL) in 2-propanol (5 mL). Yield: 1.00 g (84%) of orange, amorphous solid; Mp: 173–174 °C (solid from 2-propanol); $R_f = 0.30$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR (DMSO- d_6): $\delta = 2.21$ (s, 3H, C⁹H₃), 2.36 (t, ³J = 5.2 Hz, 4H, 2×C⁸H₂), 3.71 (t, ³J = 4.6 Hz, 4H, 2×C⁷H₂), 6.34 (d, ³J = 9.6 Hz, 1H, C⁵H), 7.70 & 7.97 (bs & bs, 2H, NH₂), 8.05 (d, ³J = 9.6 Hz, 1H, C⁴H); ¹³C-NMR (DMSO- d_6): $\delta = 44.0$ (2×C⁷), 45.5 (C⁹), 54.3 (2×C⁸), 98.7 (C⁵), 117.7 (C³), 135.7 (C⁴), 154.6 (C²), 159.2 (C⁶); MIR: $\tilde{\nu} = 1561$ (m, v_{C-NO}), 3247 & 3427 (m, v_{N-H}).

Ethyl-[2-amino-6-(4-methylpiperazin-1-yl)pyridin-3-yl]carbamate (7g)

Intermediate 6g (2 mmol, 0.47 g) and 0.30 g of palladium activated carbon (10%) were suspended in 2-propanol (40 mL), which was stirred under hydrogen atmosphere for 4 h. Under argon atmosphere, the catalyst filtered off through diatomaceous earth and the filtrate cooled to 0 °C. Ethyl chloroformate (1.2 eq., 2.4 mmol, 228 µL) was dissolved in 2-propanol (2 mL) and added dropwise to the filtrate. After 3 h, another 0.5 mmol of ethyl chloroformate (0.25 eq., 50 µL) dissolved in 1 mL of 2-propanol was added dropwise and the reaction mixture was stirred further for an hour at 0 °C. Subsequently, the pH of the solution was adjusted to 2 with 10% hydrochloric acid and the resulting suspension stored for 16 h in the refrigerator. The solid was then filtered off, dissolved in 30 ml of water and the pH was adjusted to 11 with 1 mol/L sodium hydroxide solution. The solution extracted with *n*-butanol (3×20 mL) and the combined organic phases were concentrated under partial vacuum. The residue was purified by flash chromatography (column: Biotage[®] Snap silica 50 g, mobile phase: dichloromethane/methanol, gradient: 0-3 min 10% methanol, 3-13 min 10-40% methanol, 13-15 min 40 % Methanol, flow rate: 50 mL/min). The product fractions were evaporated and the resulting green, oily residue was recrystallized from a mixture of diethyl ether (50 mL) and dichloromethane (8 mL). Eventually, the product was dried at 40 ° C and 8 mbar. Yield: 0.12 g (22%) of light pink, amorphous solid; Purity 100%; Mp: 152-153 °C (solid form diethyl ether/dichloromethane); $R_f = 0.40$ (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR (DMSO- d_6): $\delta = 1.21$ (t, ³J = 6.1 Hz, 3H, C¹²H₃), 2.20 (s, 3H, C⁹H₃), 2.35 (t, ³J = 5.0 Hz, 4H, 2×C⁸H₂), 3.33 (t, ³J = 4.9 Hz, 4H, C⁷H₂), 4.05 (q, ³J = 7.1 Hz, 2H, C¹¹H₂), 5.34 (s, 2H, NH₂), 5.95 (d, ³J = 8.5 Hz, 1H, C⁵H), 7.20 (d, ³J = 5.8 Hz, 1H; C⁴H), 8.30 (s, 1H, NH); ¹³C-NMR (DMSO- d_6): δ = 14.6 (C¹²), 44.8 (2×C⁸), 45.8 (C⁹), 54.4 (2×C⁷), 60.0 (C¹¹), 94.6 (C⁵), 108.4 (C³), 135.0 (C⁴), 152.2 (C²), 154.9 (C¹⁰), 155.9 (C⁶); MIR: $\tilde{\nu}$ = 1703 (m, v_{C=0}), 2942 (w, v_{Ar-H}), 3372 (w, v_{N-H}); HRMS: calculated for [C₁₃H₂₁N₅O₂ + H]⁺: 280.1768, found: 280.1765.

*N*²-(4-Fluorophenethyl)-5-nitropyridine-2,6-diamine (**6h**)

Intermediate **5** (5 mmol, 868 mg), 4-fluorophenethyl amine (7.5 mmol, 984 µL) and triethylamine (10 mmol, 1.4 mL) suspended in 2-propanol (10 mL). The suspension heated in microwave (120 °C, 20 min). Water then added to precipitate the product. A pure product collected using filtration; Yield: 90%, yellow solid; ¹H NMR (400 MHz, DMSO-d₆): δ = 8.14 (bs & bs, 2H, N^2 H₂), 8.02 (bs, 1H, N^6 H), 7.94 (d, 1H, ³*J* = 9.2 Hz, C(4)H), 7.33 (m, 2H, C(2')H & C(6')H), 7.14 (m, 2H, C(3')H & C(5')H), 5.95 (d, 1H, ³*J* = 9.2 Hz, C(5)H), 3.57 (m, 2H, C(\alpha')H₂), 2.86 (m, 2H, C(β')H₂); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.0 (d, ¹*J*_{C,F} = 240 Hz, C4'), 160.5 (C6), 155.8 (C2), 135.5 (d, ⁴*J*_{C,F} = 3 Hz, C1'), 134.2 (C4), 130.5 (d, ³*J*_{C,F} = 7 Hz, C2' & C6'), 117.3 (C3), 115.0 (d, ²*J*_{C,F} = 21 Hz, C3' & C5'), 102.4 (C5), 42.2 (C β'), 33.8 (C α').

Ethyl {2-amino-6-[(4-fluorophenethyl)amino]pyridin-3-yl}carbamate (7h)

Intermediate **6h** (4 mmol, 1.105 g) and Pd/C (400 mg, 10% Pd) suspended in 2-propanol (15 mL). The suspension carefully set under hydrogen atmosphere and stirred for overnight. Triethylamine (6 mmol, 837 µL) and ethyl chloroformate (5 mmol, 476 µL) added respectively and the mixture stirred for 4 h. The mixture filtered and washed with ethanol (3 x 25 mL). The filtrate evaporated to dryness and then partitioned between dichloromethane and water. The dichloromethane phase evaporated to dryness and packed for flash chromatography (solvent: dichloromethane and ethanol); Yield: 24%, off-white solid; Purity 100%; Mp: 133-134 °C (solid from dichloromethane and ethanol); Yield: 24%, off-white solid; Purity 100%; Mp: 133-134 °C (solid from dichloromethane and ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.17 (bs, 1H, *N*³H), 7.30 (m, 2H, C(2')H & C(6')H), 7.12 (m, 2H, C(3')H & C(5')H), 7.03 (d, 1H, ³J = 8 Hz, C(4)H), 5.99 (m, 1H, *N*⁶H), 5.69 (d, 1H, ³J = 8.4 Hz, C(5)H), 5.18 (s, 2H, *N*²H₂), 4.06 (q, 2H, ³J = 7.03 Hz, -OCH₂), 3.32 (m, 2H, C(a')H₂), 2.80 (m, 2H, C(β')H₂), 1.21 (bs, 3H, -OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, DMSO-d₆): δ = 161.9 (d, ¹J_{C,F} = 240 Hz, C4'), 155.8 (C6), 155.1 (C=O), 153.1 (C2), 136.3 (d, ⁴J_{C,F} = 3 Hz, C1'), 135.6 (C4), 130.4 (d, ³J_{C,F} = 8 Hz, C2' & C6'), 115.0 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 106.3 (C3), 95.1 (C5), 59.9 (OCH₂), 43.0 (Ca'), 34.4 (Cβ'), 14.6 (OCH₂CH₃); IR (cm⁻¹): \tilde{v} = 3154 (N-H), 1698 (C=O), 1217 (C-F); HRMS ((ESI) m/z) calculated for [C₁₆H₁₉FN₄O₂ + H]⁺: 319.1565, found: 319.1553.

N²-(4-Fluorophenyl)-5-nitropyridine-2,6-diamine (6i)

Intermediate **5** (5 mmol, 868 mg), triethylamine (10 mmol, 1.4 mL), 4-fluoroaniline (7.5 mmol, 720 μ L) and 2-propanol (10 mL) were mixed. The mixture held at reflux for 3 days. Water added to precipitate the product that was collected by filtration; Yield: 84 %, yellow solid; Mp: 200-201 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 9.90 (s, 1H, *N*⁶H), 8.12 (d, 3H, ³*J* = 9.2 Hz, C(4)H & *N*²H₂), 7.91 (m, 2H, C(2')H & C(6')H), 7.16 (m, 2H, C(3')H & C(5')H), 6.20 (d, 1H, ³*J* = 9.2 Hz, C(5)H); ¹³C NMR (100 MHz, DMSO-d₆): δ = 159.0 (d, ¹*J*_{C,F} = 239 Hz, C4'), 158.0 (C6), 155.1 (C2), 136.2 (d, ⁴*J*_{C,F} = 2 Hz, C1'), 135.0 (C4), 121.6 (d, ³*J*_{C,F} = 7 Hz, C2' & C6'), 118.5 (C3), 115.3 (d, ²*J*_{C,F} = 22 Hz, C3' & C5'), 102.9 (C5); IR (cm⁻¹): $\tilde{\nu}$ = 3482 (N-H), 1226 (C-F).

Ethyl {2-amino-6-[(4-fluorophenyl)amino]pyridine-3-yl}carbamate (7i)

Compound **6i** (4 mmol, 993 g) and Pd/C (400 mg, 10% Pd) suspended in 2-propanol (20 mL) and then carefully set under hydrogen atmosphere and stirred for overnight. Triethylamine (6 mmol, 837 µL) and ethyl chloroformate (5 mmol, 476 µL) added respectively and the mixture stirred for additional 4 h. The mixture filtered and washed with ethanol (3 x 25 mL). The filtrate evaporated to dryness and a pure product collected by recrystallization from dichloromethane; Yield: 30%, ghost-white solid; Purity 100%; Mp: 184-185 °C (solid from dichloromethane); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.61 (s, 1H, *N*⁶H), 8.34 (bs, 1H, *N*³H), 7.68 (m, 2H, C(2')H & C(6')H), 7.22 (d, 1H, ³J = 5.24 Hz, C(4)H), 7.04 (m, 2H, C(3')H & C(5')H), 6.02 (d, 1H, ³J = 8.28 Hz, C(5)H), 4.08 (q, 2H, ³J = 7.03 Hz, -OCH₂), 1.23 (t, 3H, ³J = 6.60 Hz, -OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, DMSO-d₆): δ = 157.2 (d, ¹J_{C,F} = 234 Hz, C4'), 155.0 (C=O), 152.4 (C6), 152.2 (C2), 138.9 (d, ⁴J_{C,F} = 2 Hz, C1'), 135.2 (C4), 118.5 (d, ³J_{C,F} = 7 Hz, C2' & C6'), 114.9 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 108.6 (C3), 97.7 (C5), 60.1 (OCH₂), 14.6 (OCH₂CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 3309 (N-H), 1683 (C=O); HRMS ((ESI) m/z) calculated for [C₁₆H₁₅FN₄O₂ + H]⁺: 292.1252, found: 292.1240.

2,6-Diamino-3-nitropyridine (6ji)

In a PTFE reaction vessel, **5** (30 mmol, 5.79 g) and 25% strength aqueous ammonia solution (48 mL) were suspended in ethanol (200 mL) and the resulting mixture stirred for 2 h at 140 °C. During cooling, a yellow precipitate formed and to complete the precipitation, the suspension was stored overnight in the refrigerator. The product then filtered off, washed with water and dried in a drying oven at 70 °C. To increase the yield, the filtrate can be concentrated under partial vacuum and then recrystallize from ethanol. Yield: 4.61 g (91%) of yellow needle-shaped crystals; Mp: 225-227 °C (solid from ethanol); $R_f = 0.18$ (*n*-hexane/ethyl acetate 6:4); ¹H-NMR (DMSO- d_6): $\delta = 5.92$ (d, ³J = 9.3 Hz, 1H, C⁵H), 7.26 (bs, 2H, N⁷H₂), 7.58 & 8.01 (bs, 2H, N⁸H₂), 7.98 (d, ³J = 9.2 Hz, 1H, C⁴H); ¹³C-NMR (DMSO- d_6): $\delta = 101.6$ (C⁵), 117.7 (C³), 135.3 (C⁴), 155.8 (C²), 162.5 (C⁶); MIR: $\tilde{v} = 1593$ (s, v_{C-NO}), 3140 (m, v_{Ar-H}), 3338, 3393 & 3435 (m, v_{N-H}).

N-(6-Amino-5-nitropyridin-2-yl)-4-fluorobenzamide (6j)

In a glass vial, **6ji** (5 mmol, 0.77 g) was dissolved in pyridine (15 mL) and then 4-fluorobenzoyl chloride (5.5 mol) was added. The reaction mixture heated in the microwave reactor (60 °C, 5 min) and precipitated by the addition of water. The precipitate filtered off, taken up in dichloromethane (200 mL) and washed with water (100 mL), and saturated brine (100 mL). The organic phase dried over Na₂SO₄ and adsorbed on diatomaceous earth using a partial vacuum. The product purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 7: 3, as soon as the by-product was eluted, switch to n-hexane/ethyl acetate 1:1). The product dried at 40 °C and 6 mbar. Yield: 0.74 g (54%) of pale yellow, amorphous solid. Mp: 195-198 °C (solid form *n*-hexane/ethyl acetate); $R_f = 0.34$ (dichloromethane); ¹H-NMR (DMSO- d_6): $\delta = 7.33-7.37$ (m, 2H, 2×C¹⁰H), 7.56 (d, ³J = 9.2 Hz, 1H, C⁵H), 7.74 (s, 2H, NH₂), 8.05-8.09 (m, 2H, 2×C⁹H), 8.45 (d, ³J = 9.2 Hz, 1H, C⁴H), 10.98 (s, 1H, NH); ¹³C-NMR (DMSO- d_6): $\delta = 104.1$ (C⁵), 115.3 (d, ²J = 22 Hz, 2×C¹⁰), 123.2 (C³), 130.1 (d, ⁴J = 3 Hz, C⁸), 131.2 (d, ³J = 9 Hz, 2×C⁹), 137.5 (C⁴), 153.4 (C²), 156.4 (C⁶), 163.3 & 165.7 (d, ¹J = 251 Hz, C¹¹), 165.9 (C⁷); MIR: $\tilde{v} = 1569$ (m, v_{C-NO}), 1692 (m, v_{C-NO}), 3332 & 3453 (m, v_{N-H}); HRMS: calculated for [C₁₂H₉N₄O₃F + H]*: 277.0731, found: 277.0737.

Ethyl-[2-amino-6-(4-fluorbenzamido)pyridin-3-yl]carbamate (7j)

In a 3-necked flask, **6j** (1 mmol, 0.28 g) and 0.05 g of palladium-charcoal (10%) were suspended in 10 mL of pyridine, which was stirred under hydrogen atmosphere for 5.5 h. The suspension subsequently cooled to 0 °C and ethyl chloroformate (1.25 mmol, 120 μ L) added dropwise. The mixture stirred for 2.5 h at 0 °C and then filtered through diatomaceous earth. The residue washed with a little pyridine and the product precipitated by addition of water to the filtrate. The suspension was stored overnight in the refrigerator, the product was then filtered off and finally recrystallized from methanol. The product was dried at 40 °C and 4 mbar. Yield: 0.08 g (27%) of pale yellow, amorphous solid; Purity 100%; Mp: degradation ca 160 °C; R_f = 0.29 (dichloromethane/methanol/acetic acid 96:3:1); ¹H-NMR (DMSO- d_6): δ = 1.24 (t, ³*J* = 7.0 Hz, 3H, C¹⁴H₃), 4.11 (q, ³*J* = 7.1 Hz, 2H, C¹³H₂), 7.29-7.33 (m, 2H, 2×C¹⁰H), 7.35 (d, ³*J* = 8.4 Hz, 1H, C⁵H), 7.57 (d, ³*J* = 8.0 Hz, 1H, C⁴H), 8.04-8.07 (m, 2H, 2×C⁹), 8.62 (s, 1H, N³H), 10.24 (s, 1H, N⁶H); ¹³C-NMR (DMSO- d_6): δ = 14.5 (C¹⁴), 60.3 (C¹³), 102.9 (C⁵), 114.8 (C³), 115.2 (d, ²*J* = 22 Hz, 2×C¹⁰), 130.5 (d, ³*J* = 9 Hz, 2×C⁹), 130.9 (d, ⁴*J* = 3 Hz, C⁸), 133.0 (C⁴), 146.6 (C²), 151.9 (C⁶), 154.5 (C¹²), 162.8 & 165.3 (d, ¹*J* = 249 Hz, C¹¹), 164.2 (C⁷); MIR: \tilde{v} = 1661 & 1713 (s, v_{c=0}), 2984 (w, v_{c-H}), 3176, 3291 & 3331 (m, v_{N+H}); HRMS: calculated for [C₁₅H₁₅N₄O₃F + H]⁺: 319.1201, found: 319.1200.

6-[(4-Fluorbenzyl)oxy]-3-nitropyridin-2-amine (6k)

Method A: In a 3-necked flask, potassium tert-butoxide (1.5 eq., 7.5 mmol, 0.84 g) and under argon atmosphere, a solution of 4-fluorobenzyl alcohol (1.02 eq., 5.1 mmol, 593 µL) in anhydrous 1,4-dioxane (20 mL) was introduced. The mixture heated for 1 h at 50 °C and then in an argon counter current, **5** (5 mmol, 0.87 g) added, wherein the suspension turns abruptly to red. Subsequently, the reaction mixture heated to 95 °C for 16 h. The reaction quenched by adding a spatula tip of NH₄Cl and the solvent removed in a partial vacuum. The residue mixed with water (30 mL) and sonicated for 5 minutes. The product finally filtered off and washed with water (20 mL). For structural analysis, 100 mg of the product recrystallized from a mixture of *n*-hexane (25 mL) and ethyl acetate (10 mL). The remaining amount used without further purification. Yield: 0.70 g (53%) of yellow, crystalline solid; Mp: 160-162 °C (solid from *n*-hexane/ethyl acetate); $R_f = 0.66$ (*n*-hexane/ethyl acetate 8:2); ¹H-NMR (DMSO-*d*₆): $\delta = 5.37$ (s, 2H, C⁷H₂), 6.18 (d, ³J = 9.1 Hz, 1H, C⁵H), 7.19-7.24 (m, 2H, 2×C¹⁰H), 7.55-7.59 (m, 2H, 2×C⁹H), 8.19 (bs, 2H, NH₂), 8.27 (d, ³J = 9.1 Hz, 1H, C⁴H); ¹³C-NMR (DMSO-*d*₆): $\delta = 67.2$ (C⁷), 101.1 (C⁵), 115.2 (d, ²J = 21 Hz, 2×C¹⁰), 121.1 (C³), 131.0 (d, ³J = 8 Hz, 2×C⁹), 132.4 (d, ⁴J = 3 Hz, C⁸), 138.0 (C⁴), 155.0 (C²), 160.7 & 163.2 (d, ¹J = 244 Hz, C¹¹), 165.6 (C⁶); MIR: $\tilde{v} = 1590$ (m, v_{C-NO}), 3364 & 3483 (w, v_{N-H}).

Method B: Intermediate **5** (4.17 mmol, 0.72 g) and 4-fluorobenzyl alcohol (1.2 eq., 5 mmol, 537 μ L) were dissolved in 50 mL anhydrous toluene and then cooled to 0 °C. Under an argon atmosphere, NaH (1.4 eq., 7 mmol, 0.25 g of a 65% mixture with petroleum ether) added in 4 portions, each with a 15minute interval, and the mixture was stirred at rt after the last addition. After 16 and 20.5 h, further additions of NaH (7 mmol) were necessary, as the TLC monitoring detected the starting material. After a total of 41 h, the reaction terminated by addition of saturated sodium chloride solution (100 mL). The mixture diluted with another 50 mL of toluene and the resulting phases separated using a separating funnel. The organic phase washed with water (4 × 100 mL) and saturated brine (100 mL) and then dried over MgSO₄. Finally, the solvent removed in a partial vacuum. Yield: 0.49 g (45%) of yellow, amorphous solid; Mp: 157-160 °C (solid from toluene). A similar analytical data to method A found.

Ethyl-{2-amino-6-[(4-fluorbenzyl)oxy]pyridin-3-yl}carbamate hydrochloride (7k)

Intermediate **6k** (1 mmol, 0.26 g) was suspended in a mixture of water (6 mL) and 2-propanol (10 mL). Subsequently, iron powder (3.0 eq., 0.17 g) and NH₄Cl (4.5 eq., 0.24 g) were added and the reaction mixture was heated under reflux for 4 h. The resulting suspension filtered through diatomaceous earth and the filtrate was concentrated in a partial vacuum. The residue taken by 100 mL of water and extracted with ethyl acetate (3×40 mL). The organic phase washed with saturated brine and dried over MgSO₄. Triethylamine (1.5 eq., 1.5 mmol, 207 µL) added to the solution and cooled to 0 °C. A mixture of ethyl chloroformate (1.25 eq., 1.25 mmol, 119 µL) in 5 mL of ethyl acetate added dropwise over 15 min and the reaction stirred for 2 h at 0 °C. Since the TLC monitor detected a starting material, a further ethyl chloroformate (0.5 eq., 0.5 mmol, 57 µL) dissolved in 5 mL of ethyl acetate added dropwise. After a further 45 min, the reaction was completed and the solvent removed in a partial vacuum. The residue taken up in 30 ml of ethyl acetate and washed with water (2 × 30 mL) and 30 mL of saturated common salt solution. The organic phase was evaporated and then purified by flash chromatography (Büchi MPLC system, self-packed column, mobile phase: n-hexane/ethyl acetate, gradient: 0-3 min 30% ethyl acetate, 3-13 min 30-80% ethyl acetate , 13-15 min 80% ethyl acetate). The product was then dissolved in 2-propanol (3 mL), the pH of the solution was adjusted to 2 with 10% strength hydrochloric acid and the resulting hydrochloride salt was filtered off. Finally, the product was recrystallized from 2-propanol. Yield: 0.13 g (38%) of light brown, shiny platelets; Purity 100%; Mp: 153-156 °C (solid form 2-propanol); $R_f = 0.83$ (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): δ = 1.22 (t, ³*J* = 6.9 Hz, 3H, C¹⁴H₃), 4.09 (q, ³*J* = 7.1 Hz, 2H, C¹³H₂), 5.27 (s, 2H, C⁷H₂), 6.27 (d, ³*J* = 8.4 Hz, 1H, C⁵H), 7.20-7.26 (m, 2H, 2×C¹⁰H), 7.51-7.67 (m, 2H, 2×C⁹H), 7.68 (d, ³*J* = 7.5 Hz, 1H, C⁴H), 8.78 (bs, 2H, NH & HCI); ¹³C-NMR (DMSO-*d*₆): δ = 14.5 (C¹⁴), 60.5 (C¹³), 68.6 (C⁷), 94.4 (C⁵), 113.3 (C³), 115.3 (d, ²*J* = 21 Hz, 2×C¹⁰), 130.5 (d, ³*J* = 9 Hz, 2×C⁹), 132.1 (C⁸), 139.1 (C⁴), 150.7 (C²), 154.6 (C¹²), 155.9 (C⁶), 160.8 & 163.2 (d, ¹*J* = 244 Hz, C¹¹); MIR: \tilde{v} = 1692 (s, v_{C=O}), 2608 (w, v_{N-H}, protonated amine</sub>), 3113 & 3240 (w, v_{N-H}); HRMS: calculated for [C₁₅H₁₆N₃O₃F + H]⁺: 306.1248, found: 306.1263.

6-Chloro-N-methyl-3-nitropyridin-2-amine (8a)

2,6-Dichloro-3-nitropyridine (5 mmol, 1.0 g) was dissolved in acetonitrile (20 mL). After adding triethylamine (7.5 mmol, 1 mL), the mixture was cooled to about 0 °C. Methylamine (6 mmol, 613 µL) dissolved in acetonitrile (10 mL) and added slowly over a period of 30 min. After complete addition of methylamine, the mixture stirred for 10 min at about 0 °C and then allowed to rise to rt. The mixture was stirred at rt for 30 min. The product was purified using silica gel chromatography (solvent: toluene). Yield: 68%, yellow solid; Mp: 119 - 120 °C; ¹H NMR (400 MHz, DMSO-d₆): δ = 8.72 (d, 1H, ³J = 3.1 Hz, N²H), 8.43 (d, 1H, ³J = 8.6 Hz, C(4)H), 6.78 (d, 1H, ³J = 8.6 Hz, C(5)H), 3.01 (d, 3H, ³J = 4.8 Hz, N²CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 155.2 (C6), 152.1 (C2), 138.4 (C4), 126.9 (C3), 111.0 (C5), 28.5 (N²CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 3397 (N-H), 1567 (NO₂), 758 (Ar-H).

6-Chloro-2-isopropoxy-3-nitropyridine (8b)

In a 3-necked flask, 2,6-dichloro-3-nitropyridine (5 mmol, 0.97 g) was dissolved in 50 mL of anhydrous toluene and then placed under argon atmosphere. The mixture cooled to 0 °C and 2-propanol (1.2 eq., 462 μ L) and NaH (1.4 eq., 0.17 g) added over the side neck under counter current argon. The mixture was stirred overnight at rt. A further 2-propanol (6 mmol) and of NaH (7 mmol) added under counter current to argon. The reaction completed after 3 h and quenched by adding 50 mL of saturated saline. The phases separated in a separating funnel; the toluene phase was washed with water (3 × 50 mL) and saturated saline solution (50 mL) and then dried over Na₂SO₄. Removal of the solvent under partial vacuum gave a brown solid that was purified by flash chromatography (mobile phase: n-hexane/diethyl ether 9:1). Yield: 0.73 g (67%) of yellow, amorphous solid; Mp: 66-68 °C (solid form *n*-hexane/ethyl

acetate); $R_f = 0.56$ (*n*-hexane/diethyl ether 9:1); ¹H-NMR (DMSO- d_6): $\delta = 1.36$ (d, ³J = 6.2 Hz, 6 H, 2×C⁸H₃), 5.37 (sep, ³J = 6.2 Hz, 1H, C⁷H), 7.30 (d, ³J = 8.3 Hz, 1H, C⁵H), 8.47 (d, ³J = 8.3 Hz, 1H, C⁴H); ¹³C-NMR (DMSO- d_6): $\delta = 21.4$ (2×C⁸), 72.0 (C⁷), 116,7 (C⁵), 132.9 (C³), 138.5 (C⁴), 151.1 (C⁶), 154.7 (C²); MIR: $\tilde{v} = 1554$ (m, v_{c-NO}), 2988 (w, v_{C-H}), 3177 (w, v_{Ar-H}).

6-Chloro-2-hydroxy-3-nitropyridine (9a)

To a solution of **5** (5 mmol, 0.87 g) in concentrated sulfuric acid (15 mL), was added a dropwise solution of NaNO₂ (2 eq., 10 mmol, 0.69 g) in 6 mL water. The product precipitated by the addition of another water (30 mL), then filtered off and washed with cold water. Finally, the product was recrystallized from 2-propanol. The product dried in a partially evacuated desiccator. Yield; 0.52 g (60%) of yellow, powdery solid. Mp: 177-183 °C (solid from 2-propanol); $R_f = 0.16$ (*n*-hexane/ethyl acetate 7:3); ¹H-NMR (DMSO- d_6): $\delta = 7.08$ (d, ³J = 8.3 Hz, 1H, C⁵H), 8.43 (d, ³J = 8.4 Hz, 1H, C⁴H), 13.74 (bs, 1H, OH); ¹³C-NMR (DMSO- d_6): $\delta = 114.1$ (C⁵), 132.2 (C³), 139.0 (C⁴), 150.4 (C²), 156.6 (C⁶); MIR: $\tilde{v} = 1582$ (m, v_{C-NO}), 1650 (m, $v_{C=O}$), 2767 (w, v_{C-H}), 3104 (w, v_{Ar-H}).

N-(4-Fluorobenzyl)-6-methyl-5-nitropyridin-2-amine (10a)

6-Bromo-2-methyl-3-nitropyridine (4 mmol, 868 mg), triethylamine (8 mmol, 1.2 mL), 4fluorobenzylamine (6 mmol, 686 μL) and 2-propanol (10 mL) were mixed. The mixture stirred for 20 min at 120 °C using microwave. Water added to precipitate the product, which was washed with water (2 x 10 mL) and 2-propanol (5 mL); Yield: 77%, yellow solid; Mp: 155-156 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.39 (m, 1H, N⁶H), 8.12 (d, 1H, ³J = 9.2 Hz, C(4)H), 7.40 (m, 2H, C(2')H & C(6')H), 7.18 (m, 2H. C(3')H & C(5')H), 6.50 (d, 1H, ³J = 8.4 Hz, C(5)H), 4.58 (bs, 2H. C(α')H₂), 2.65 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.4 (d, ¹J_{C,F} = 241 Hz, C4'), 159.2 (C6), 155.9 (C2), 135.3 (t, ⁴J_{C,F} = 6 Hz, C1'), 134.6 (C4), 129.5 (d, ³J_{C,F} = 6 Hz, C2' & C6'), 115.2 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 43.4 (Cα'), 25.5 (CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 3327 (N-H), 1221 (C-F).

N-Benzyl-6-methyl-5-nitropyridin-2-amine (10b)

6-Bromo-2-methyl-3-nitropyridine (4 mmol, 868 mg), triethylamine (8 mmol, 1.2 mL), benzyl amine (6 mmol, 656 μL) and 2-propanol (10 mL) were mixed. The mixture stirred for 15 min at 120 °C using microwave. Water added to precipitate the product, and the precipitate washed with water (2 x 10 mL) and 2-propanol (5 mL). Yield: 68%, yellow solid; Mp: 156-157 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.40 (bs, 1H, *N*⁶H), 8.12 (d, 1H, ³*J* = 9.2 Hz, C(4)H), 7.34 (m, 4H, C(2')H, C(6')H, C(3')H & C(5')H), 7.28 (m, 1H, C(4')H), 6.50 (d, 1H, ³*J* = 5.6 Hz, C(5)H), 4.61 (bs, 2H, C(α')H₂), 2.65 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 155.9 (C6), 134.6 (C4), 128.4 (C2' & C6'), 127.5 (C4'), 127.0 (C3' & C5'), 44.1 (Cα'), 25.5 (CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 3332 &1590 (N-H).

N⁶-(4-Fluorobenzyl)-N²-methyl-3-nitropyridine-2,6-diamine (10c)

Compound **9a** (3.2 mmol, 601 mg), triethylamine (6.4 mmol, 893 mL), 4-fluorobenzyl amine (4.8 mmol, 550 μ L) and 2-propanol (10 mL) were mixed and heated using microwave (120 °C, 30 min). Water added to precipitate the product, which was filtered and washed with water (2 x 10 mL) and 2-propanol (5 mL). Yield: 93%, yellow solid; Mp: 147-148 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.89 (m, 1H, *N*²H), 8.58 (t, 1H, ³*J* = 5.4 Hz, *N*⁶H), 8.0 (d, 1H, ³*J* = 9.2 Hz, C(4)H), 7.40 (m, 2H, C(2')H & C(6')H), 7.18 (m, 2H, C(3')H & C(5')H), 6.00 (d, 1H, ³*J* = 9.3 Hz, C(5)H), 5.0 (d, 2H, ³*J* = 5.7 Hz, C(\alpha')H₂), 2.97 (d, 3H, ³*J* = 4.8 Hz, *N*²(CH₃)); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.4 (d, ¹*J*_{C,F} = 241 Hz, C4'), 154.5 (C6), 135.4 (C1'), 134.8 (C4), 129.6 (d, ³*J*_{C,F} = 8 Hz, C2' & C6'), 117.8 (C3), 115.2 (d, ²*J*_{C,F} = 21 Hz, C3' & C5'), 43.4 (C\alpha'), 27.8 (*N*²(CH₃)); IR (cm⁻¹): $\tilde{\nu}$ = 1599 (N-H), 1229 (C-F).

2-[(4-Fluorbenzyl)amino]-6-isopropoxy-5-nitropyridine (10d)

In a microwave vessel, compound **9b** (3.6 mmol, 0.79 g) was suspended in 2-propanol (15 mL), triethylamine (1.4 eq., 5.04 mmol, 696 μ L) and 4-fluorobenzylamine (1.2 eq., 4.32 mmol, 493 μ L). The suspension heated under microwave (1.5 h at 120 °C). Since the TLC monitoring detected the starting

material, a further 4-fluorobenzylamine (0.6 eq., 2.16 mmol, 247 μL) added and the suspension was heated in the microwave reactor for a further 3 h at 120 °C. The resulting yellow solution poured onto water (100 mL), resulting in the precipitation of the product. The solid filtered off and dried at 60 °C in a drying oven. Yield: 1.07 g (97 %) of yellow, amorphous solid; Mp: 137-139 °C (solid from 2-propanol); $R_f = 0.49$ (*n*-hexane/ethyl acetate 7:3); ¹H-NMR (DMSO- d_6): $\delta = 1.23$ (d, ³J = 6.0 Hz, 6H, 2×C⁸H₃), 4.55 (d, ³J = 4.9 Hz, 2H, C⁹H₂), 5.31 (sep, ³J = 6.0 Hz, 1H, C⁷H), 6.21 (d, ³J = 8.9 Hz, 1H, C⁵H), 7.14-7.19 (m, 2H, 2×C¹²H), 7.34-7.37 (m, 2H, 2×C¹¹H), 8.10 (d, ³J = 9.0 Hz, 1H, C⁴H), 8.60 (bs, 1H, NH); ¹³C-NMR (DMSO- d_6): $\delta = 21.7$ (2×C⁸), 43.7 (C⁹), 69.5 (C⁷), 101.5 (C⁵), 115.1 (d, ²J = 21 Hz, 2×C¹²), 121.3 (C³), 129.0 (d, ³J = 8 Hz, 2×C¹¹), 135.4 (C¹⁰), 136.5 (C⁴), 157.6 (C²), 159.5 (C⁶), 160.0 & 162.4 (d, ¹J = 242 Hz, C¹³); MIR: $\tilde{\nu} = 1531$ (m, v_{C-NO}), 2977 (w, v_{C-H (alkyl)}), 3174 (w, v_{Ar-H'}), 3307 & 3355 (m, v_{N-H}).

N-(3-Methoxybenzyl)-6-methyl-5-nitropyridin-2-amine (10e)

6-Bromo-2-methyl-3-nitropyridine (4 mmol, 868 mg), triethylamine (8 mmol, 1.2 mL), 3methoxybenzyl amine (6 mmol, 768 μL) and isopropanol (10 mL) mixed and then held at reflux for overnight. Water added to precipitate the product, which was washed with water (2 x 10 mL) and 2propanol (5 mL). Yield: 95%, yellow solid; Mp: 124-125 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.38 (bs, 1H, *N*⁶H), 8.12 (d, 1H, ³*J* = 9.2 Hz, C(4)H), 7.27 (m, 1H, C(3')H), 6.92 (m, 3H, C(2')H, C(6')H & C(4')H), 6.50 (d, 1H, ³*J* = 4.8 Hz, C(5)H), 4.58 (bs, 2H, C(α')H₂), 3.73 (s, 3H, C(5')OCH₃), 2.65 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 159.3 (C5'), 155.9 (C6), 140.6 (C1'), 134.6 (C4), 129.4 (C3'), 119.6 (C6'), 113.2 (C4'), 112.3 (C2'), 55.0 (OCH₃), 44.1 (Cα'), 25.5 (CH₃); IR (cm⁻¹): \tilde{v} = 3340 & 1587 (N-H), 1530 (NO₂).

6-[(4-Fluorbenzyl)amino]-2-hydroxy-3-nitropyridine (10f)

Intermediate **9c** (3 mmol, 0.53 g), 4-fluorobenzylamine (4.5 mmol, 514 μ L) and triethylamine (6 mmol, 840 μ L) were dissolved in 2-propanol (45 mL) and heated under reflux for overnight. After cooling to rt, a yellow, voluminous precipitate was formed, which was filtered off and washed with water (2 × 30 mL) and 2-propanol (30 mL). Finally, the product recrystallized from 2-propanol/water (1:1). Yield: 0.32

g (40%) of pale yellow, amorphous solid; Mp: 263-265 °C (solid from 2-propanol/water); $R_f = 0.41$ (*n*-hexane/ethyl acetate/acetic acid 5:5:0.5); ¹H-NMR (DMSO- d_6): $\delta = 4.55$ (s, 2H, C⁷H₂), 5.74 (bs, 1H, C⁵H), 7.19-7.23 (m, 2H, 2×C¹⁰H), 7.38-7.41 (m, 2H, 2×C⁹H), 8.23 (d, ³J = 8.0 Hz, 1H, C⁴H), 9.00 (bs, 1H, NH), 11.48 (bs, 1H, OH); ¹³C-NMR (DMSO- d_6): $\delta = 44.2$ (C⁷), 89.1 (C⁵), 115.4 (d, ²J = 21 Hz, 2×C¹⁰), 122.4 (C³), 129.6 (d, ³J = 6 Hz, 2×C⁹), 133.3 (C⁸), 140.3 (C⁴), 156.3 (C² & C⁶), 160.4 & 162.8 (d, ¹J = 243 Hz, C¹¹); MIR: $\tilde{v} = 1509$ (m, v_{C-NO}), 1665 (m, v_{C=O}), 3190 & 3255 (w, v_{N-H}).

Ethyl {6-[(4-fluorobenzyl)amino]-2-methylpyridin-3-yl}carbamate (11a)

Compound **10a** (2.5 mmol, 656 mg) and Pd/C (10%, 250 mg) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred overnight. Triethylamine (3.75 mmol, 523 µL) and ethyl chloroformate (3.125 mmol, 300 µL) added respectively and the mixture stirred for 2 h. The mixture was filtered and washed with ethanol. The product precipitated with the addition of water, which was further purified by recrystallization from dichloromethane; Yield: 40 %, white solid; Purity 100%; Mp: 98-99 °C (solid from dichloromethane); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.55 (bs, 1H, *N*³H), 7.38 (m, 2H, C(2')H & C(6')H), 7.18 (d, 1H, ³J = 8 Hz, C(4)H), 7.14 (m, 2H, C(3')H & C(5')H), 6.90 (t, 1H, ³J = 6.1 Hz, *N*⁶H), 6.28 (d, 1H, ³J = 8.4 Hz, C(5)H), 4.41 (d, 2H, ³J = 6.0 Hz, C(α ')H₂), 4.07 (q, 2H, ³J = 7.0 Hz, -OCH₂), 2.16 (s, 3H, CH₃), 1.20 (bs, 3H, OCH₂CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.2 (d, ¹J_{C,F} = 240 Hz, C4'), 155.8 (C6), 156.0 (C2), 136.9 (d, ⁴J_{C,F} = 3 Hz, C1'), 135.7 (C4), 129.2 (d, ³J_{C,F} = 8 Hz, C2' & C6'), 121.3 (C3), 114.9 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 105.0 (C5), 60.0 (-OCH₂), 43.6 (C α '), 20.6 (CH₃), 14.6 (-OCH₂CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 1693 (C=O), 1223 (C-F); HRMS ((ESI) m/z) calculated for [C₁₆H₁₈FN₃O₂ + H]⁺: 304.1456, found: 304.1454.

Ethyl [6-(benzylamino)-2-methylpyridin-3-yl]carbamate (11b)

Compound **10b** (2.5 mmol, 609 mg) and Pd/C (10%, 250 mg) were suspended in isopropanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for 5 h at rt. Triethylamine (25 mmol, 3.5 mL) and ethyl chloroformate (3.125 mmol, 300 μ L) added respectively and the mixture was stirred for 4 h. The mixture was filtered and washed with ethanol. The product was separated using flash chromatography (solvent: dichloromethane and ethanol). The filtrates containing the

product were combined, evaporated to dryness and re-dissolved in ethanol. Eventually the product precipitated with the addition of water; Yield: 25%, white solid; Purity 100%; Mp: 125-126 [°]C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.54$ (bs, 1H, *N*³H), 7.34 (m, 4H, C(2')H, C(6')H, C(3')H & C(5')H), 7.23 (m, 2H, C(4)H & C(4')H), 6.88 (t, 1H, ³J = 6.0 Hz, *N*⁶H), 6.28 (d, 1H, ³J = 8.8 Hz, C(5)H), 4.43 (d, 1H, ³J = 6.0 Hz, C(\alpha')H₂), 4.07 (q, 2H, ³J = 7.0 Hz, -OCH₂), 2.16 (s, 3H, CH₃), 1.22 (t, 3H, ³J = 7.0 Hz, -OCH₂CH₃); ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 156.0$ (C6), 155.0 (C=O), 140.7 (C1'), 135.6 (C4), 128.1 (C2' & C6'), 127.4 (C3' & C5'), 126.4 (C4'), 121.2 (C3), 104.9 (C5), 59.9 (-OCH₂), 44.4 (C\alpha'), 20.6 (CH₃), 14.6 (-OCH₂CH₃); IR (cm⁻¹): $\tilde{\nu} = 3261$ (N-H), 1686 (C=O); HRMS ((ESI) m/z) calculated for [C₁₆H₁₉N₃O₂ + H]⁺: 286.1550, found: 286.1549.

Ethyl {6-[(3-methoxybenzyl)amino]-2-methylpyridin-3-yl}carbamate (11c)

Compound **10e** (3.5 mmol, 954 mg) and Pd/C (10%, 350 mg) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for overnight. Triethylamine (5.25 mmol, 732 µL) and ethyl chloroformate (4.375 mmol, 420 µL) added respectively and the mixture was stirred for 5 h. The mixture was filtered and washed with ethanol (3 x 25 mL). The product was separated using flash chromatography (solvent: dichloromethane and ethanol). The filtrate containing the product were combined, evaporated to dryness and re-dissolved in ethanol. Eventually, water added to precipitate the product. Yield: 14%, white solid; Purity 100%; Mp: 85-86 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.54 (bs, 1H, *N*³H), 7.22 (m, 2H, C(4)H & C(3')H), 6.91 (m, 2H, C(2')H & C(6')H), 6.86 (t, 1H, ³J = 6.1 Hz, *N*⁶H), 6.78 (m, 1H, C(4')H), 6.28 (d, 1H, ³J = 8.6 Hz, C(5)H), 4.40 (d, 2H, ³J = 6.1 Hz, C(\alpha')H₂), 4.07 (q, ³J = 7.0 Hz, 2H, -OCH₂), 3.72 (s, 3H, OCH₃), 2.16 (s, 3H, CH₃), 1.23 (t, 3H, ³J = 6.1 Hz, -OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, DMSO-d₆): δ = 159.2 (C5'), 156.0 (C6), 155.0 (C=O), 151.1 (C2), 142.4 (C1'), 129.2 (C3'), 121.3 (C3), 119.4 (C6'), 113.0 (C2'), 111.8 (C4'), 104.9 (C5), 59.9 (-OCH₂), 54.9 (OCH₃), 44.4 (C\alpha'), 20.6 (CH₃), 14.6 (-OCH₂C<u>H₃</u>); IR (cm⁻¹): \tilde{v} = 3270 (N-H), 1687 (C=O); HRMS ((ESI) m/z) calculated for [C₁₇H₂₁N₃O₃ + H]⁺: 316.1656, found: 316.1646.

Ethyl {6-[(4-fluorobenzyl)amino]-2-(methylamino)pyridine-3-yl}carbamate (11d)

Compound **10c** (2.8 mmol, 774 mg) and Pd/C (10%, 280 mg) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for 4 h. Triethylamine (4.2 mmol, 586 μ L) and ethyl chloroformate (4 mmol, 380 μ L) added respectively and the mixture was stirred for additional 5 h. The mixture was filtered and washed with ethanol (3 x 25 mL). The product separated using flash chromatography (solvent: dichloromethane and ethanol). The combined filtrate was evaporated to dryness, re-dissolved in ethanol and water added to precipitate the product. The product further purified by recrystallization from dichloromethane. Yield: 18%, off-white solid; Purity 100%; Mp: 196-197 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.16 (bs, 1H, *N*³H), 7.34 (m, 2H, C2' & C6'), 7.04 (m, 2H, C3' & C5'), 6.84 (bs, 1H, C(4)H), 5.63 (d, 1H, ³J = 4.4 Hz, *N*²H), 5.38 (t, 1H, ³J = 5.8 Hz, *N*⁶H), 4.47 (t, 2H, ³J = 6 Hz, C(α')H₂), 4.06 (q, 2H, ³J = 6.8 Hz, -OCH₂), 2.73 (d, 3H, ³J = 4.6 Hz, *N*²(CH₃)), 1.20 (bs, 3H, -OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.0 (d, ¹J_{C,F} = 240 Hz, C4'), 155.2 (C=O), 152.3 (C6), 152.1 (C2), 138.0 (d, ⁴J_{C,F} = 2 Hz, C1'), 136.8 (C4), 129.2 (d, ³J_{C,F} = 7 Hz, C2' & C6'), 114.6 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 107.5 (C3), 102.7 (C4), 60.0 (-OCH₂), 44.0 (C α'), 27.9 (*N*²(CH₃)), 14.6 (-OCH₂C<u>H</u>₃); IR (cm⁻¹): \tilde{v} = 3223 (N-H), 1683 (C=O), 1059 (C-O); HRMS ((ESI) m/z) calculated for [C₁₆H₁₉N₄O₂F + H]⁺: 319.1565, found: 319.1564.

Ethyl-{6-[(4-fluorbenzyl)amino]-2-hydroxypyridin-3-yl}carbamate (11e)

In a 3-necked flask, compound **10f** (1 mmol, 0.26 g) and 0.05 g of palladium activated carbon (10%) were suspended in pyridine (10 mL), which then stirred under hydrogen atmosphere for 3.5 h. The reaction mixture cooled to 0 °C and ethyl chloroformate (1.25 eq., 1.25 mmol, 117 µL) added by pots. The suspension stirred for 3 h at 0 °C and then added another 1.25 mmol of ethyl chloroformate (1.25 eq., 117 µL). The reaction completed 45 min after the second addition and the catalyst filtered through diatomaceous earth. The residue washed with a little pyridine and the product precipitated by the addition of water to the filtrate. The solid filtered off, recrystallized from methanol (60 mL) and dried in a partially evacuated desiccator. Yield: 0.08 g (27%) of colourless, fine needles; Purity 100%; Mp: 227-230 °C (solid from pyridine); $R_f = 0.66$ (*n*-hexane/ethyl acetate/acetic acid 6:4:0.5); ¹H-NMR (DMSO- d_6): $\delta = 1.17$ (t, ³J = 7.1 Hz, 3H, C¹⁴H₃), 4.02 (q, ³J = 7.1 Hz, 2H, C¹³H₂), 4.27 (d, ³ $J = C^7$ H₂), 5.23 (bs, 1H, C⁵H), 6.26 (bs, 1H, N⁶H), 7.13-7.19 (m, 2H, 2×C¹⁰H), 7.35-7.39 (m, 3H, C⁴H & 2×C⁹H), 7.69 (s, 1H, N³H), 10.92 (s, 1H, OH); ¹³C-NMR (DMSO- d_6): $\delta = 14.5$ (C¹⁴), 44.5 (C⁷), 59.9 (C¹³), 115.1 (d, ²J = 21 Hz, 2×C¹⁰), 129.1 (d, ³J = 8 Hz, 2×C⁹), 135.1 (C³), 154.2 (C⁶), 157.6 (C²), 160.0 & 162.4 (d, ¹J = 243 Hz, C¹¹);

MIR: $\tilde{v} = 1691$ (s, $v_{C=0}$), 3296, 3386 & 3413 (w, v_{N-H}); HRMS: calculated for $[C_{15}H_{16}N_3O_3F + H]^+$: 306.1248, found: 306.1252

Ethyl-{6-[(4-fluorbenzyl)amino]-2-methoxypyridin-3-yl)carbamate (11f)

Compound **10g** (1 mmol, 0.28 g) and 0.05 g of palladium-carbon (10%) suspended in pyridine (20 mL) and stirred under hydrogen atmosphere for 22.5 h. The reaction mixture cooled to 0 °C and ethyl chloroformate (1.25 eq., 1.25 mmol, 117 µL) added dropwise. After 2.5 h of stirring, the reaction was complete and the catalyst filtered through diatomaceous earth. The residue washed with a little pyridine; the filtrate taken up by water (100 mL) and then extracted with dichloromethane (2×50 mL). The organic phase washed with water (3 × 100 mL) and 100 mL of saturated brine, and dried over Na₂SO₄. The solvent was removed in a partial vacuum, the oily residue was dissolved in little ethanol. A milky emulsion resulted from the addition of water, which was stored for a week in a refrigerator, forming a colourless precipitate with yellow inclusions. The water decanted off and the solid taken up in diethyl ether and again concentrated in a partial vacuum. The residue combined with *n*-hexane and heated to boiling. After cooling to 0 °C, a mixture of yellow and colourless solid formed that was recrystallized twice from n-hexane. Yield: 0.06 g (19%) of colourless needles; Purity 100%; Mp: 83-84 °C (solid from *n*-hexane); $R_f = 0.90$ (*n*-hexane/ethyl acetate/acetic acid 5:5:0.5); ¹H-NMR (DMSO- d_6): δ = 1.17 (t, ³*J* = 6.3 Hz, 3H, C¹⁵H₃), 3.72 (s, 3H, C¹²H₃), 4.01 (q, ³*J* = 7.1 Hz, 2H, C¹⁴H₂), 4.40 (d, ³*J* = 6.1 Hz, 2H, C⁷H₂), 5.99 (d, ³J = 8.3 Hz, 1H, C⁵H), 7.02 (d, ³J = 6.0 Hz, 1H, N⁶H), 7.09-7.14 (m, 2H, 2×C¹⁰H), 7.27 (d, ${}^{3}J$ = 5.4 Hz, 1H, C⁴H), 7.35-7.38 (m, 2H, 2×C⁹H), 8.15 (s, 1H, N³H); 13 C-NMR (DMSO- d_6): δ = 14.6 (C¹⁵), 43.9 (C⁷), 52.5 (C¹²), 59.8 (C¹⁴), 98.4 (C⁵), 108.5 (C³), 114.8 (d, ²J = 21 Hz, 2×C¹⁰), 129.1 (d, ³J = 8 Hz, 2×C⁹), 136.5 (C⁴), 137.1 (d, ${}^{4}J$ = 3 Hz, C⁸), 154.7 (C²), 154.9 (C⁶), 159.8 & 162.2 (d, ${}^{1}J$ = 242 Hz, C¹¹); MIR: $\tilde{\nu}$ = 1500 (m, v_{C-NO}), 1719 (s, v_{C=O}), 2955 (w, v_{C-H}), 3281, 3310 & 3360 (w, v_{N-H}); HRMS: calculated for [C₁₆H₁₈N₃O₃F + H]⁺: 320.1405, found: 320,1406.

Ethyl-{6-[(4-fluorbenzyl)amino]-2-isopropoxypyridin-3-yl}carbamate (11g)

Compound **10d** (1 mmol, 0.30 g), iron powder (3.0 eq., 3 mmol, 0.17 g) and NH₄Cl (4.5 eq., 4.5 mmol, 0.24 g) were suspended in a mixture of 2-propanol (10 mL) and water (6 mL). The mixture heated under

reflux for 3 h and after subsequent cooling to rt, the solvent was removed in a partial vacuum. The residue mixed with 100 ml of water and extracted with ethyl acetate (3 × 50 mL). The combined organic phases washed with saturated brine, dried over Na₂SO₄ and cooled to 0 °C. Triethylamine (1.4 eq., 1.4 mmol, 193 µL) and a solution of ethyl chloroformate (1.2 eq., 1.2 mmol, 114 µL) in ethyl acetate (2 mL) added dropwise and the mixture stirred for 3 h at 0 °C. The solvent was evaporated and the residue purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 8:2). The purple residue was further purified by preparative HPLC (self-packed column, mobile phase: methanol/water, gradient: 0-70 min 60% methanol, 70 -95 min 80% methanol, flow rate: 15 mL/min). The fractions containing the product freed from methanol in a partial vacuum and the resulting emulsion finally lyophilized. Yield: 0.06 (17%) of pink, viscous oil; Purity 100%; Mp: not determined; $R_f = 0.68$ (*n*-hexane/ethyl acetate 7:3); ¹H-NMR (DMSO- d_6): δ = 1.16 (d, ³J = 6.2 Hz, 6H, 2×C⁸H₃), 1.18 (t, ³J = 6.3 Hz, 3H, C¹⁶H₃), 4.02 (q, ³J = 7.0 Hz, 2H, C¹⁵H₂), 4.37 (d, ³J = 6.0 Hz, 2H, C⁹H₂), 5.04 (sep, ³J = 6.1 Hz, 1H, C⁷H), 5.99 (d, ³J = 8.3 Hz, 1H, C⁵H), 6.97 (t, ³*J* = 5.8 Hz, 1H, N⁶H), 7.08-7.13 (m, 2H, 2×C¹²H), 7.32-7.35 (m, 3H, C⁴H & 2×C¹¹H), 7,96 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): δ = 14.6 (C¹⁶), 22.0 (2×C⁸), 43.9 (C⁹), 59.8 (C¹⁵), 67.2 (C⁷), 98.2 (C⁵), 109.0 (C³), 114.8 (d, ${}^{2}J$ = 21 Hz, 2×C¹²), 128.8 (d, ${}^{3}J$ = 8 Hz, 2×C¹²), 135.5 (C⁴), 137.2 (d, ${}^{4}J$ = 3 Hz, C¹⁰), 154.3 (C⁶), 154.7 (C¹⁴), 155.1 (C²), 159.7 & 162.1 (d, ${}^{1}J$ = 241 Hz, C¹³); MIR: $\tilde{\nu}$ = 1714 (m, v_{C=0}), 2978 (w, v_{Ar-H}), 3390 & 3435 (w, v_{N-H}); HRMS: calculated for [C₁₉H₂₄N₃O₂F + H]⁺:346.1925, found: 346.1917

Ethyl {6-[(4-flurobenzyl)amino]-2-morpholinopyridin-3-yl}carbamate (11h)

Compound **24b** (2.5 mmol, 831 mg) and Pd/C (250 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred at 40 °C for overnight. Triethylamine (4.5 mmol, 630 µL) and ethyl chloroformate (4 mmol, 400 µL) added respectively and stirred at 40 °C for 1 h. The mixture filtered off and washed with ethanol (3 x 25 mL). The product separated using flash chromatography (solvent: *n*-hexane and ethyl acetate). The filtrate containing the product combined and evaporated to dryness. Yield: 43%, brown solid; Purity 99%; Mp: 70-71 °C (solid from *n*-hexane and ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.14 (bs, 1H, *N*³H), 7.36 (m, 2H, C(2')H & C(6')H), 7.16 (m, 3H, C(4)H, C(3')H & C(5')H), 6.91 (t, 1H, ³J = 6.06 Hz, *N*⁶H), 6.05 (d, 1H, ³J = 8.4 Hz, C(5)H), 4.39 (d, 2H, ³J = 6.00 Hz, C(\alpha')H₂), 4.06 (q, 2H, ³J = 7.08 Hz, -OCH₂), 3.63 (m, 4H, C(8")H_a, C(9")H_a, C(8")H_b & C(9")H_b), 3.07 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 1.19 (t, 3H, ³J = 6.92 Hz, -OCH₂CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.1 (d, ¹J_{C,F} = 240 Hz, C4'), 155.0 (C6), 154.9 (C=O), 154.6 (C2), 137.8 (C4), 137.3 (d, ⁴J_{C,F} = 2 Hz, C1'), 129.1 (d, ³J_{C,F} = 7 Hz, C2' & C6'), 114.8 (d, ²J_{C,F} = 2 Hz, C1')

C3' & C5'), 112.2 (C3), 100.2 (C5), 66.1 (C8" & C9"), 59.9 (-OCH₂), 48.6 (C7" & C10"), 43.8 (C α '), 14.7 (-OCH₂<u>C</u>H₃); MIR (cm⁻¹): \tilde{v} = 3326 (N-H), 1703 (C=O); HRMS ((ESI) m/z) calculated for [C₁₉H₂₃FN₄O₃ + H]⁺: 375.1827, found: 375.1839.

Ethyl-{2-(1,3-dioxoisoindolin-2-yl)-4-[(4-fluorbenzyl)amino]phenyl}carbamate (13)

Compound **2** (10 mmol, 3.03 g) and phthalic anhydride (1.0 eq, 10 mmol, 1.48 g) dissolved in toluene (50 mL) and heated to reflux with the removal of water for 6 h. The solution stored overnight in a refrigerator, forming a brown precipitate. The product filtered off and dried at 60 °C in a drying oven. Yield: 3.97 g (92%) of brown, acicular solid; Mp: 176-178 °C (toluene); $R_f = 0.75$ (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): $\delta = 1.07$ (t, ³J = 7.2 Hz, 3H, C¹⁴H₃), 3.95 (q, ³J = 7.2 Hz, 2H, C¹³H₂), 4.22 (d, ³J = 6.0 Hz, 2H, C⁷H₂), 6.29 (t, ³J = 6.0 Hz, 1H, N⁶H), 6.54 (d, ⁴J = 2.7 Hz, 1H, C¹H), 6.65 (dd, ³J = 8.9 Hz, ⁴J = 2.7 Hz, 1H, C⁵H), 7.11–7.16 (m, 2H, 2×C¹⁰H), 7.38-7.41 (m, 3H, C⁴H & 2×C⁹H), 7.86-7.93 (m, 4H, 2×C¹⁷H & 2×C¹⁸H), 8.88 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): $\delta = 14.4$ (C¹⁴), 45.9 (C⁷), 59.8 (C¹³), 112.6 (C⁵), 113.0 (C¹), 114.9 (d, ²J = 21 Hz, 2×C¹⁰), 123.1 (2×C¹⁷), 124.5 (C⁴), 125.1 (C³), 129.1 (d, ³J = 8 Hz, 2×C⁹), 132.4 (2×C¹⁶), 134.2 (2×C¹⁸), 136.1 (d, ⁴J = 3 Hz, C⁸), 145.4 (C⁶), 154.2 (C¹²), 159.9 & 162.3 (d, ¹J = 242 Hz, C¹¹), 166.8 (2×C¹⁵); MIR: $\tilde{v} = 1712$ & 1763 (s, v_{C=0}), 2977 (w, v_{C-H}), 3311 & 3364 (w, v_{N-H}); HRMS: calculated for [C₂₄H₂₀N₃O₄F + H]*: 434.1511, found: 434.1512.

2-{2-Amino-5-[(4-fluorbenzyl)amino]phenyl}isoindolin-1,3-dione (14)

Method A: compound **13** (3.8 mmol, 1.64 g) dissolved in 20 mL of hydrobromic acid (32% in acetic acid) and stirred at rt. After 22 and 40 h, additional 20 mL of hydrobromic acid (32% in acetic acid) added. After 64 h, the reaction mixture was neutralized using 10% strength sodium hydroxide solution and extracted with ethyl acetate (100 mL). The organic phase washed with saturated NaHCO₃ solution (100 mL) and saturated common salt solution (100 mL), dried over Na₂SO₄ and adsorbed on diatomaceous earth using a partial vacuum. The product was purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 4:6) and dried at 40 °C and 6 mbar. Yield: 0.70 g (51%) of light brown, amorphous solid; Mp: 143-145 °C (solid from *n*-hexane/ethyl acetate); R_f = 0.63 (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO-*d*₆): δ = 4.12 (d, ³J = 5.2 Hz, 2H, C⁷H₂), 4.47 (s, 2H, NH₂), 5.51

(t, ${}^{3}J$ = 5.6 Hz, 1H, N⁶H), 6.37 (d, ${}^{4}J$ = 2,5 Hz, 1H, C¹H), 6.53 (dd, ${}^{3}J$ = 8.6 Hz, ${}^{4}J$ = 2.6 Hz, 1H, C⁵H), 6.60 (d, ${}^{3}J$ = 8,6 Hz, 1H, C⁴H), 7.09-7.14 (m, 2H, 2×C¹⁰H), 7.37-7.40 (m, 2H, 2×C⁹H), 7.85-7.92 (m, 4H, 2×C¹⁴H & 2×C¹⁵H); 13 C-NMR (DMSO- d_6): δ = 46.8 (C⁷), 113.7 (C⁵), 114.8 (d, ${}^{2}J$ = 21 Hz, 2×C¹⁰), 115.4 (C¹), 117,0 (C⁴); 117.3 (C³), 123.0 (2×C¹⁴), 129.2 (d, ${}^{3}J$ = 8 Hz, 2×C⁹), 132.3 (2×C¹³), 134.1 (2×C¹⁵), 136.7 (d, ${}^{4}J$ = 3 Hz, C⁸), 136.9 (C⁶), 140.0 (C²), 159.8 & 162.2 (d, ${}^{1}J$ = 242 Hz, C¹¹), 167.4 (2×C¹²); MIR: $\tilde{\nu}$ = 1705 & 1773 (s, v_{C=0}), 2851 (w, v_{C-H}), 3342 & 3418 (w, v_{N-H}); HRMS: calculated for [C₂₁H₁₆N₃O₂F + H]⁺: 362.1299, found: 362,1298.

Method B: In a 3-necked flask, compound **13** (1 mmol, 0.43 g) dissolved under argon atmosphere in 10 mL of anhydrous dichloromethane (if possible use alcohol without a stabilizer). Subsequently, a solution of trimethylsilyl iodide (1.2 eq., 1.2 mmol, 171 μ L) in dichloromethane (2 mL) added dropwise and the reaction mixture heated to reflux. After 24 and 30.5 h, an additional trimethylsilyl iodide (1.2 eq., 1.2 mmol, 171 μ L) added dropwise. After a total of 48 h, the reaction mixture was cooled to rt and methanol (4.0 eq., 4 mmol 162 μ L) was added. The suspension was concentrated in a partial vacuum, sodium methoxide (0.5 eq., 0.5 mmol, 0.03 g) was added and the solid dissolved in methanol. The solution again concentrated and then purified by flash chromatography (mobile phase: n-hexane/ethyl acetate/ triethylamine 50:49:1). The product dried at 40 °C and 4 mbar. Yield: 0.18 g (36%) of light brown, amorphous solid. The analytical data collected were similar to method A.

N-{2-(1,3-Dioxoisoindolin-2-yl)-4-[(4-fluorbenzyl)amino]phenyl}-4-fluorbenzamide (15a)

Compound **14** (0.89 mmol, 0.32 g), 4-fluorobenzoic acid (1.0 eq, 0.89 mmol, 0.13 g), O-(7azabenzotriazol-1-yl)N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, 2.0 eq, 1.78 mmol 0.68 g) and diisopropylethylamine (3.0 eq, 2.67 mmol, 453 μ L) dissolved in dimethylformamide (10 mL). The reaction mixture heated at 40 °C for 18 h, then diluted with dichloromethane (100 mL) and washed with water (2 × 100 mL) and saturated brine (100 mL). The organic phase was concentrated under partial vacuum and the residue was purified by flash chromatography (EZ Prep system from Axel Semrau, column: 24 g silica, mobile phase: *n*-hexane/ethyl acetate, gradient: 0-12 min 0-60% ethyl acetate , 12-15 min 60% ethyl acetate, 15-17 min 60-100% ethyl acetate, 17-25 min 100% ethyl acetate, flow rate: 38 mL/min). For structural analysis, the product recrystallized from ethanol. Yield: 0.29 g (67%) of orange, amorphous solid; Mp: 240-242 °C (solid from ethanol); $R_f = 0.60$ (*n*-hexane/ethyl acetate 5:5); ¹H-NMR (DMSO-*d*₆): δ = 4.28 (d, ³*J* = 6.0 Hz, 2H, C⁷H₂), 6.48 (t, ³*J* = 6.0 Hz, 1H, N⁶H), 6.64 (d, ⁴*J* = 2.6 Hz, 1H, C¹H), 6.69 (dd, ³*J* = 8.7 Hz, ⁴*J* = 2.6 Hz, 1H, C⁵H), 7.15 (t, ³*J* = 8.9 Hz, 2H, 2×C¹⁰H), 7.20 (t, ³*J* = 8.9 Hz, 2H, 2×C¹⁵H), 7.37 (d, ³*J* = 8.6 Hz, 1H, C⁴H), 7.41-7.44 (m, 2H, 2×C⁹H), 7.70–7.73 (m, 2H, 2×C¹⁴H), 7.83–7.90 (m, 4H, 2×C¹⁹H und 2×C²⁰H), 9.71 (s, 1H, N³H); ¹³C-NMR (DMSO-*d*₆): δ = 45.8 (C⁷), 112.4 (C⁵), 112.4 (C¹), 115.0 (d, ²*J* = 21 Hz, 2×C¹⁰), 115.0 (d, ²*J* = 21 Hz, 2×C¹⁵), 123.1 (2×C²⁰), 123.7 (C²), 126.8 (C³), 127.2 (C⁴), 129.1 (d, ³*J* = 8 Hz, 2×C⁹), 130.0 (d, ³*J* = 9 Hz, 2×C¹⁴), 131.4 (d, ⁴*J* = 3 Hz, C¹³), 131.9 (2×C¹⁸), 134.4 (2×C¹⁹), 136.0 (d, ³*J* = 3 Hz, C⁸), 146.6 (C⁶), 159.9 & 162.3 (d, ¹*J* = 242 Hz, C¹¹), 162.5 & 164.9 (d, ¹*J* = 248 Hz, C¹⁶), 164.3 (C¹²), 166.6 (2×C¹⁷); MIR: $\tilde{\nu}$ = 1651, 1712 & 1782 (s, v_{C=0}), 2898 (w, v_{C-H}), 3360 & 3397 (w, v_{N-H}).

2-(3,5-Difluophenyl)-N-{2-(1,3-dioxoindolin-2-yl)-4-[(4-fluorbenzyl)amino]phenyl}acetamide (15b)

Compound 14 (1 mmol, 0.36 g), 3,5-difluoroacetic acid (1.0 eq., 1 mmol, 0.17 g), HATU (2.0 eq., 2 mmol, 0.76 g) and diisopropylethylamine (3.0 eq., 3 mmol, 510 μ L) dissolved in of dimethylformamide (10 mL) and stirred for 6 h at rt. Diethyl ether (100 mL) and ethyl acetate (150 mL) added, and the organic phase was washed with water (200 mL), saturated NaHCO₃ solution (2×100 mL) and saturated common salt solution (100 mL). The organic phase dried over Na₂SO₄ and adsorbed on diatomaceous earth in a partial vacuum. The product was purified by flash chromatography (Puriflash system from Interchim, column: 40 g silica 15 µm spherical, mobile phase: n-hexane/ethyl acetate + 5% triethylamine, gradient: 1 CV 10% ethyl acetate, 10 CV 10-80% ethyl acetate, 5 CV 80% ethyl acetate, flow rate: 26 mL/min). The product was dried at 40 ° C and 4 mbar. Yield: 0.23 g (44%) of orange, amorphous solid; Mp: 236-238 °C (solid from *n*-hexane/ethyl acetate/triethylamine); $R_f = 0.51$ (*n*hexane/ethyl acetate 5:5); ¹H-NMR (DMSO- d_6): δ = 3.45 (s, 2H, C¹³H₂), 4.24 (d, ³J = 5.4 Hz, 2H, C⁷H₂), 6.41 (t, ³J = 5.5 Hz, 1H, N⁶H), 6.58 (d, ⁴J = 1.7 Hz, 1H, C¹H), 6.65 (dd, ³J = 8.8 Hz, ⁴J = 1.7 Hz, 1H, C⁵H), 6.79 (d, ³J = 7.0 Hz, 2H, 2×C¹⁵H), 6.97 (t, ³J = 9.3 Hz, 1H, C¹⁷H), 7.14 (t, ³J = 8.7 Hz, 2H, 2×C¹⁰H), 7.36-7.41 (m, 3H, C⁴H & 2×C⁹H), 7.86 (s, 4H, 2×C²⁰H & 2×C²¹H), 9.40 (s, 1H, N³H); ¹³C NMR (DMSO- d_6): δ = 41.9 (C¹³), 45.7 (C⁷), 101.8 (t, ²J = 26 Hz, C¹⁷), 111.9 (dd, ²J = 18 Hz, ⁴J = 7 Hz, 2×C¹⁵), 112.5 (C¹), 112,6 (C⁵), 115.0 (d, ${}^{2}J$ = 21 Hz, 2×C¹⁰), 123.1 (2×C²¹H), 124.0 (C³), 125.9 (C⁶), 126.0 (C⁴), 129.1 (d, ${}^{3}J$ = 8 Hz, 2×C⁹), 131.9 (2×C¹⁹), 134.3 (2×C²⁰), 136.0 (d, ⁴J = 3 Hz, C⁸), 140.3 (t, ³J = 10 Hz, C¹³), 146.3 (C²), 159.9 & 162.3 (d, ¹*J* = 242 Hz, C¹¹), 160.8 & 163.2 (dd, ¹*J* = 245 Hz, ³*J* = 13 Hz, 2×C¹⁶), 166.6 (2×C¹⁸), 167.6 (C¹²); MIR: \tilde{v} = 1633 (m, v_{c=0}), 1715 (s, v_{c=0}), 2927 (w, v_{c-H}), 3244, 3354 & 3462 (w, v_{N-H}).

N-{2-Amino-4-[(4-fluorbenzyl)amino]phenyl}-4-fluorbenzamide (**16a**)

Compound **15a** (0.6 mmol, 0.29 g) was dissolved in 40 mL methanol/2-propanol (1:1) and hydrazine hydrate (1.5 eq, 0.9 mmol, 59 mL of an 80% aqueous solution) added to the solution. The reaction mixture stirred for 17 h at rt, then treated with water (100 mL) and stored in a refrigerator. The resulting brown precipitate filtered off, dissolved in ethyl acetate/tetrahydrofuran (1:1) and precipitated by bubbling HCl gas as a hydrochloride salt. The product dried at 40 °C and 6 mbar. Yield: 0.11 g (47%) of orange, amorphous solid; Purity 100%; Mp: 232-235 °C (solid from ethyl acetate/tetrahydrofuran); Mp: it did not melt uniformly; $R_f = 0.84$ (*n*-hexane/ethyl acetate 5:5); ¹H-NMR (DMSO- d_6): d = 4.29 (s, 2H, C7H₂), 6.61 (dd, ³J = 8.7 Hz, ⁴J = 2.6 Hz, 1H, C⁵H), 6.67 (d, ⁴J = 2.3 Hz, 1H, C¹H), 7.17 (t, ³J = 8.9 Hz, 2H, 2×C¹⁰H), 7.18 (d, ³J = 8.7 Hz, ¹H, C⁴H), 7.35 (t, ³J = 8.8 Hz, 2H, 2×C¹⁵), 7.40-7.44 (m, 2H, 2×C⁹H), 8.13-8.18 (m, 2H, 2×C¹⁰), 115.2 (d, ²J = 21 Hz, 2×C¹⁵), 119.8 (C³), 128.4 (C⁴), 129.4 (d, ³J = 8 Hz, 2×C³), 130.4 (d, ⁴J = 3 Hz, 2×C¹⁰), 115.2 (d, ²J = 21 Hz, 2×C¹⁵), 119.8 (C³), 128.4 (C⁴), 129.4 (d, ³J = 8 Hz, 2×C³), 130.4 (d, ⁴J = 3 Hz, 2×C¹¹), 162.9 & 165.4 (d, ¹J = 249 Hz, C¹⁶), 164.6 (C¹²); MIR: $\tilde{v} = 1654$ (s, $v_{C=0}$), 2865 (w, v_{C-H}), 3038 (w, v_{Ar-H}), 3296, 3327 & 3440 (w, v_{N-H}); HRMS: calculated for [C₂₀H₁₇N₃OF₂ + H]⁺: 354.1412, found: 354.1425.

N-{2-Amino-4-[(4-fluorbenzyl)amino]phenyl}-2-(3,5-difluorphenyl)acetamide (16b)

Compound **15b** (0.44 mmol, 0.23 g) and hydrazine hydrate (1.5 eq., 0.66 mmol, 40.3 µL of 80% aqueous solution) dissolved in 100 mL of tetrahydrofuran/2-propanol/methanol (3: 1: 1). The reaction mixture stirred for 24 h at rt and then concentrated in a partial vacuum. The resulting grey solid dissolved in methanol/tetrahydrofuran (1:1), adsorbed on diatomaceous earth and purified by flash chromatography (Reveleris system from Büchi, column: 24 g silica, 20 µm spherical, mobile phase: *n*-hexane/ethyl acetate +5% triethylamine, gradient: 0-1 min 16% ethyl acetate, 1-12 min 16-100% ethyl acetate, 12-28 min 100% ethyl acetate, 28-30 min 0-20% methanol instead of *n*-hexane, 30-38 min 20% methanol, flow rate: 32 mL/min). The first fraction further purified by preparative HPLC (column: Lichrospher xy, mobile phase: water/acetonitrile, gradient: 0-2 min 50% acetonitrile, 2-12 min 50-90% acetonitrile, 12-18 min 90% acetonitrile, 18-22 min 50% acetonitrile, flow rate 39 mL/min). When the

fractions containing the product were being concentrated, a colourless solid precipitated. This was filtered off and dried at 40 °C and 6 mbar. Yield: 0.07 g (41%) of colourless, amorphous solid; Purity 100%; Mp: 172-174 °C (solid from water/acetonitrile); $R_f = 0.72$ (ethyl acetate/triethylamine 100:1); ¹H-NMR (DMSO- d_6): $\delta = 3.63$ (s, 2H, C¹³H₂), 4.18 (d, ³J = 6.1 Hz, 2H, C⁷H₂), 4.56 (s, 2H, NH₂), 5.85 (dd, ³J = 8,5 Hz, ⁴J = 2,4 Hz, 1H, C⁵H), 5.94 (t, ³J = 6.5 Hz, 1H, N⁶H), 5.95 (d, ⁴J = 2.6 Hz, 1H, C¹H), 6.72 (d, ³J = 8,4 Hz, 1H, C⁴H), 7.05-7.08 (m, 3H, 2×C¹⁵H & C¹⁷H), 7.10-7.15 (m, 2H, 2×C⁹H), 7.34-7.38 (m, 2H, 2×C⁹H), 9.08 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): $\delta = 41.9$ (C¹³), 45.8 (C⁷), 99.0 (C¹), 101.7 (C⁵), 101.9 (t, ²J = 26 Hz, C¹⁷), 112.3 (dd, ²J = 18 Hz, ⁴J = 6 Hz, 2×C¹⁵), 112.9 (C³), 114.8 (d, ²J = 21 Hz, 2×C¹⁰), 126.8 (C⁴), 128.8 (d, ³J = 8 Hz, 2×C⁹), 136.7 (d, ⁴J = 3 Hz, C⁸), 140.9 (t, ³J = 10 Hz, C¹³), 143.3 (C²), 147.3 (C⁶), 159.8 & 162.2 (d, ¹J = 242 Hz, C¹¹), 160.9 & 163.4 (dd, ¹J = 245 Hz, ³J = 14 Hz, 2×C¹⁶), 168,0 (C¹²); MIR: $\tilde{v} = 1642$ (s, v_{C=0}), 3027 (w, v_{Ar-H}), 3254, 3370 & 3406 (w, v_{N-H}); HRMS: calculated for [C₂₁H₁₈N₃OF₃ + H]⁺: 386.1475, found: 386.1464.

N²-(4-Fluorobenzyl)-5-nitropyridin-2,6-diamine (i12)

Compound **5** (5 mmol, 868 mg), triethylamine (10 mmol, 1.4 mL) and 4-fluorobenzylamine (7.5 mmol, 858 µL) were suspended in 2-propanol (15 mL). The suspension held at reflux for overnight. A yellow product precipitated with the addition of water, which was washed with *n*-hexane; Yield: 95%, yellow solid; Mp: 180 -181 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.38 (bs, 1H, *N*⁶H), 8.12 (bs, bs, 2H, *N*²H₂), 7.98 (d, 1H, ³*J* = 9.2 Hz, C(4)H), 7.41 (m, 2H, C(2')H & C(6')H), 7.18 (m, 2H, C(3')H & C(5')H), 6.01 (d, 1H, ³*J* = 9.2 Hz, C(5)H), 4.57 (d, 2H, C(\alpha')H₂); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.5 (d, ¹*J*_{*C,F*} = 241 Hz, C4'), 160.4 (C6), 155.7 (C2), 135.2 (d, ⁴*J*_{*C,F*} = 3 Hz, C1'), 134.5 (C4), 129.7 (d, ³*J*_{*C,F*} = 8 Hz, C2' & C6'), 117.6 (C3), 115.2 (d, ²*J*_{*C,F*} = 21 Hz, C3' & C5'), 102.3 (C5), 43.1 (Ca'), IR (cm⁻¹): $\tilde{\nu}$ = 749 (Ar-H).

N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}butyramide hydrochloride (12a)

In a 3-necked flask, compound **i12** (1 mmol, 0.26 g) together with 0.10 g of palladium-activated carbon (10%) were suspended in 2-propanol (20 mL) and stirred under hydrogen atmosphere for 3.5 h at rt, then for 19 h at 40 °C. The reaction mixture then cooled to 0 °C and treated with triethylamine (1.4

eq., 1.4 mmol, 0.2 mL). A solution of butyric acid chloride (1.2 eq, 1.2 mmol, 125 μL) in tetrahydrofuran (2 mL) added dropwise and the suspension stirred for 7 h at 0 °C. The suspension treated with water (50 mL) and then extracted with dichloromethane (50 mL). The organic phase washed with water (50 mL) and saturated brine (100 mL), dried over Na₂SO₄ and concentrated in a partial vacuum. The residue was purified by flash chromatography (Büchi MPLC, self-packed column, mobile phase: dichloromethane/methanol, gradient: 0-3 min 100% dichloromethane, 3-13 min 0-10% methanol, 13-16 min 10% methanol, flow rate: 40 mL/min). The product then dissolved in 2-propanol (100 mL) and precipitated by adjusting the pH to 2 using 10% hydrochloric acid. The product dried at 40 °C and 3 mbar. Yield: 0.07 g (22%) of bluish shimmering crystals; Purity 100%; Mp; 255-257 °C (solid from 2propanol); $R_f = 0.39$ (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): $\delta = 0.90$ (t, ³J = 7.4 Hz, 3H, $C^{15}H_3$), 1.57 (sep, ${}^{3}J$ = 7.3 Hz, 2H, $C^{14}H_2$), 2.27 (t, ${}^{3}J$ = 7.4 Hz, 2H, $C^{13}H_2$), 4.54 (d, ${}^{3}J$ = 3.8 Hz, 2H, $C^{7}H_2$), 5.94 (d, ³J = 8.8 Hz, 1H, C⁵H), 7.19 (t, ³J = 8.8 Hz, 2H, 2×C¹⁰H), 7.37 (bs, 2H, NH₂), 7.43-7.47 (m, 2H, 2×C⁹H), 7.50 (d, ³J = 8.8 Hz, 1H, C⁴H), 8.22 (s, 1H, N⁶H), 9.20 (s, 1H, N³H), 13.25 (s, 1H, HCl); ¹³C-NMR $(DMSO-d_6): \delta = 13.6 (C^{15}), 18.3 (C^{14}), 37.2 (C^{13}), 44.5 (C^7), 93.6 (C^5), 107.1 (C^3), 115.3 (d, ²J = 21 Hz, C^{12})$ 2×C¹⁰), 129.5 (d, ³*J* = 8 Hz, 2×C⁹), 133.7 (d, ⁴*J* = 3 Hz, C⁸), 142.4 (C⁴), 148.3 (C²), 148.9 (C⁶), 160.3 & 162.7 (d, ${}^{1}J$ = 243 Hz, C¹¹), 172.1 (C¹²); MIR: \tilde{v} = 1636 (s, v_{C=0}), 2872 & 2960 (w, v_{C-H}), 3168, 3277 & 3355 (w, v_{N-H} ; HRMS: calculated for $[C_{16}H_{19}N_4OF + H]^+$: 303.1616, found: 303,1603.

2-(1,3-Dioxoisoindolin-2-yl)acetic acid (i112b)

In a glass vial, glycine (20 mmol, 1.50 g) mixed with phthalic anhydride (1.0 eq, 20 mmol, 2.96 g) and heated in the microwave reactor (210 °C for 30 min). Upon cooling to rt, a colourless solid crystallized, which was finally recrystallized from ethanol. The product was dried at 40 ° C and 4 mbar. Yield: 2.93 g (72%) of colourless plates; Mp; 194-196 °C (solid from ethanol); ¹H-NMR (DMSO-*d*₆): δ = 4.33 (s, 2H, C²H₂), 7.90 (m, 2H, 2×C⁶H), 7.94 (m, 2H, 2×C⁵H), 13.26 (s, 1H, OH); ¹³C-NMR (DMSO-*d*₆): δ = 38.9 (C²), 123.4 (2×C⁵), 131.4 (2×C⁴), 134.8 (2×C⁶), 167.2 (2×C³), 168.9 (C¹); MIR: $\tilde{\nu}$ = 1742 (s, v_{C=O}), 1704 & 1771 (s, v_{C=O}), 3100 (w, v_{Ar-H}), 3210 (w, v_{O-H}).

2-(1,3-Dioxoisoindolin-2-yl)acetyl chloride (i212b)

Compound **i112b** (5 mmol, 1.03 g) dissolved in anhydrous toluene (10 mL) and cooled to 0 °C. Under argon atmosphere, a solution of thionyl chloride (1.2 eq., 6 mmol, 435 µL) in anhydrous toluene (5 mL)

added dropwise and the reaction mixture heated to reflux. After 18 h, additional thionyl chloride (1.2 eq., 6 mmol, 435 µL) added and the reaction continued for another 6 h. Subsequently, the reaction mixture allowed to cool to rt and then concentrated using partial vacuum. Finally, the resulting solid dried in at 10 mbar for overnight. Yield: 1.01 g (99%) of brown, amorphous solid; Mp: 117–119 °C (solid from toluene); ¹H-NMR (DMSO-*d*₆): δ = 4.33 (s, 2H, C²H₂), 7.90 (m, 2H, 2×C⁶H), 7.94 (m, 2H, 2×C⁵H); ¹³C-NMR (DMSO-*d*₆): δ = 39.0 (C²), 123.5 (2×C⁵), 131.5 (2×C⁴), 134.9 (2×C⁶), 167.3 (2×C³), 168.9 (C¹); MIR: \tilde{v} = 1704, 1771 & 1801 (s, v_{c=0}), 2936 (w, v_{c-H}).

N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-2-(1,3-dioxoisoindolin-2-yl)acetamide (i312b)

The synthesis carried out according to the GWP2. The acylation carried out with **i212b** (1.2 eq., 1.2 mmol, 0.27 g) and completed 1 h after addition. The reaction mixture was then washed with water (5 × 20 mL), dried over Na₂SO₄ and adsorbed onto diatomaceous earth using a partial vacuum. Finally, the product purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 8:2). Yield: 0.19 g (46%) of yellow, amorphous solid; Mp: 209-211 °C (solid from *n*-hexane/ethyl acetate); R_f = 0.51 (*n*-hexane/ethyl acetate 8:2); ¹H-NMR (DMSO- d_6): δ = 4.36 (d, ³*J* = 6.1 Hz, 2H, C⁷H₂), 4.40 (s, 2H, C¹³H₂), 5.28 (s, 2H, N²H₂), 5.68 (d, ³*J* = 8.3 Hz, 1H, C⁴H), 6.58 (t, ³*J* = 6.2 Hz, 1H, N⁶H), 6.99 (d, ³*J* = 8.3 Hz, 1H, C⁴H), 7.10 (m, 2H, 2×C¹⁰H), 7.34 (m, 2H, 2×C⁹H), 7.88 (m, 2H, 2×C¹⁷H), 7.92 (m, 2H, 2×C¹⁶H), 9.19 (s, 1H, N³H); ¹³C NMR (DMSO- d_6): δ = 40.5 (C¹³), 43.6 (C⁷), 95.1 (C⁵), 105.6 (C³), 114.7 (d, ²*J* = 21 Hz, 2×C¹⁰), 123.2 (2×C¹⁶), 129.0 (d, ³*J* = 8 Hz, 2×C⁹), 131.7 (2×C¹⁵), 134.6 (2×C¹⁷), 135.8 (C⁴), 137.1 (d, ⁴*J* = 3 Hz, C⁸), 153.1 (C²), 156.1 (C⁶), 159.7 & 162.1 (d, ¹*J* = 242 Hz, C¹¹), 165.4 (C¹²), 167.6 (2×C¹⁴); MIR: $\tilde{\nu}$ = 1656, 1717 & 1775 (s, v_{C=0}), 3075 (w, v_{Ar-H}), 3279, 3355, 3444 & 3483 (m, v_{N-H}); HRMS: calculated for [C₂₂H₁₈N₅O₃F + H]⁺: 420.1466, found: 420.1474.

2-Amino-N-{2-amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}acetamide hydrochloride (12b)

In a 3-necked flask, compound **i312b** (0.81 mmol, 0.34 g) dissolved in methanol (50 mL) and treated with hydrazine hydrate (1.44 eq., 1.17 mmol, 71 μ L of 80% aqueous solution). Under argon atmosphere, the reaction mixture heated to reflux for 8 h. Subsequently, another hydrazine hydrate

(0.77 eq., 0.62 mmol, 36 µL of 80% aqueous solution) added and the mixture heated to reflux for a further 3 h. After cooling to rt, the solution was concentrated in a partial vacuum, then dissolved in 60 ml of a mixture of ethyl acetate/tetrahydrofuran/ethanol (1:1:1) and the product precipitated as a hydrochloride salt by introducing HCl gas. The product was dried at 40 °C and 6 mbar. Yield: 0.16 g (62%) of light brown, amorphous solid; Purity 100%; Mp: 263-265 °C (solid form ethyl acetate/tetrahydrofuran/ethanol); $R_f = 0.60$ for the free base (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO-*d*₆): $\delta = 3.75$ (d, ³*J* = 5.2 Hz, 2H, C¹³H₂), 4.57 (d, ³*J* = 3.6 Hz, C⁷H₂), 5.97 (d, ³*J* = 8.8 Hz, C⁵H), 7.20 (m, 2H, 2×C¹⁰H), 7.47 (m, 3H, C⁴H & 2×C⁹H), 7.66 (s, 2H, N²H₂), 8.29 (s, 2H, N¹³H₂), 8.40 (s, 1H, N⁶H), 9.99 (s, 1H, N³H), 13.47 (s, 1H, HCl); ¹³C-NMR (DMSO-*d*₆): $\delta = 40.6$ (C¹³), 44.5 (C⁷), 93.8 (C⁵), 105.3 (C³), 115.3 (d, ²*J* = 21 Hz, 2×C¹⁰), 129.6 (d, ³*J* = 8 Hz, 2×C⁹), 133.7 (d, ⁴*J* = 3 Hz, C⁸), 142.2 (C⁴), 148.7 (C²), 149.5 (C⁶), 160.3 & 162.7 (d, ¹*J* = 242, C¹¹), 166.1 (C¹²); MIR: $\tilde{\nu} = 1639$ (s, $\nu_{c=0}$), 3007 (w, ν_{Ar-H}), 2300–3600 (m, $\nu_{N-H protonated}$), 3144 (w, ν_{N-H}); HRMS: calculated for [C₁₄H₁₆N₅OF + H]⁺: 290.1412, found: 290.1417.

(R)-2-(1,3-Dioxoisoindolin-2-yl)-3-phenylpropionic acid (i112c)

In a glass vial, D-phenylalanine (20 mmol, 3.30 g) and phthalic anhydride (1.0 eq, 20 mmol, 2.96 g) were mixed and heated in a microwave reactor at 210 °C for 30 min. On cooling to rt and storage at 10 mbar, a solid slowly crystallizes out of the brown, viscous substance. The solid dissolved in dichloromethane (20 mL) and washed with hydrochloric acid (2 × 20 mL, 0.1 mol/L). The organic phase dried over Na₂SO₄ and then concentrated in a partial vacuum. The residue recrystallized from dichloromethane and dried at 40 °C and 4 mbar. Yield; 2.89 g (49%) of beige, amorphous solid; Purity 100%; Mp: 170-172 °C (solid from dichloromethane); ¹H-NMR (DMSO-*d*₆): δ = 3.35 & 3.49 (m & m, 2H, C⁷H₂), 5.13 (m, 1H, C²H), 7.08-7.20 (m, 5H, 2×C⁹H, 2×C¹⁰H & C¹²H), 7.84 (s, 4H, 2×C⁵H & 2×C⁶H), 13.36 (s, 1H, OH); ¹³C-NMR (DMSO-*d*₆): δ = 33.9 (C⁸), 52.9 (C³), 123.4 (2×C⁵), 126.5 (C¹¹), 128.3 (2×C⁹), 128.7 (2×C¹⁰), 130.7 (2×C⁴), 134.9 (2×C⁶), 137.3 (C⁸), 167.1 (2×C³), 170.0 (C¹); MIR: \tilde{v} = 1697 & 1771 (s, v_{C=0}), 2934 (w, v_{C-H}). 3029 (w, v_{Ar-H}), 3250 (w, v_{O-H}).

(R)-2-(1,3-Dioxoisoindolin-2-yl)-3-phenylpropanoylchloride (i212c)

The synthesis is analogous to **i212b** except compound **i112c** (5 mmol, 1.48 g) and thionyl chloride (2.4 eq., 12 mmol, 870 µL) were used. Yield: 1.47 g (94%) of beige, amorphous solid; Mp: 119-121 °C (solid from toluene); ¹H-NMR (DMSO- d_6): δ = 3.41 (m, 2H, C⁷H₂), 5.12 (m, 1H, C²H), 7.10-7.19 (m, 5H, 2×C⁹H, 2×C¹⁰H & C¹²H), 7.84 (s, 4H, 2×C⁵H & 2×C⁶H); ¹³C-NMR (DMSO- d_6): δ = 33.9 (C⁸), 52.9 (C³), 123.4 (2×C⁵), 126.6 (C¹¹), 128.3 (2×C⁹), 128.7 (2×C¹⁰), 130.7 (2×C⁴), 134.9 (2×C⁶), 137.3 (C⁸), 167.1 (2×C³), 170.0 (C¹); MIR: $\tilde{\nu}$ = 1697, 1774 & 1794 (s, v_{C=0}), 2924 (w, v_{C-H}), 3030 (w, v_{Ar-H}).

(*R*)-*N*-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-2-(1,3-dioxoisoindolin-2-yl)-3phenylpropanamide hydrochloride (**i312c**)

The synthesis carried out according to GWP2, while compound i212c (1.2 eq., 1 mmol, 0.38 g) used for the acylation. Following the completion of the reaction, the solution washed with water (5×20 mL), dried over Na2SO4 and adsorbed onto diatomaceous earth in a partial vacuum. The product was purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 1:1) and precipitated as hydrochloride salt by passing HCl gas. The product was dried at 40 °C and 6 mbar. Yield: 0.32 g (58%) of colourless, amorphous solid; Mp: 161-163 °C (solid from tetrahydrofuran/ethyl acetate); $R_f = 0.81$ for the free base (*n*-hexane/ethyl acetate 2:8); ¹H-NMR (DMSO- d_6): δ = 3.21 (dd, ³J = 13.8 Hz, ${}^{3}J$ = 11.6 Hz, 1H, C¹³H), 3.56 (dd, ${}^{2}J$ = 13.9 Hz, ${}^{3}J$ = 4.6 Hz, 1H, C¹⁸H₂), 4.54 (d, ${}^{3}J$ = 6.8 Hz, 2H, C⁷H₂), 5.26 (dd, ²*J* = 11.4 Hz, ³*J* = 4.6 Hz, 1H, C¹⁸H₂), 5.97 (d, ³*J* = 8.8 Hz, C⁵H), 7.09-7.47 (bs, 2H, NH₂), 7.09-7.14 (m, 5H, 2×C²⁰H, 2×C²¹H & C²²H), 7.20 (t, ³J = 8.8 Hz, 2H, 2×C¹⁰H), 7.30 (d, ³J = 8.8 Hz, 1H, C⁴H), 7.47-7.43 (m, 2H, 2×C⁹H), 7.82 (s, 4H, 2×C¹⁶H & 2× C¹⁷H), 8.28 (s, 1H, N⁶H), 9.46 (s, 1H, N³H), 13.25 (s, 1H, HCl); ¹³C-NMR (DMSO- d_6): δ = 34.2 (C¹⁸), 44.5 (C⁷), 53.9 (C¹³), 93.8 (C⁵), 106.0 (C³), 115.3 (d, ²J = 21 Hz, 2×C¹⁰), 123.1 (2×C¹⁷), 126.5 (C²²), 128.2 (2×C²⁰), 128.9 (2×C²¹), 129.6 (d, ³*J* = 8 Hz, 2×C⁹), 131.3 (2×C¹⁵), 133.6 (d, ${}^{4}J$ = 3 Hz, C⁸), 134.5 (2×C¹⁶), 137.4 (C¹⁹), 143.2 (C⁴), 149.1 (C⁶), 149.6 (C²), 160.3 & 162.7 (d, ${}^{1}J$ = 242 Hz, C¹¹), 167.4 (C¹²), 168.0 (2×C¹⁴); MIR: \tilde{v} = 1650, 1703 & 1779 (s, v_{C=0}), 3066 (w, v_{Ar-H}), 2600–3300 (w, v_{N-H}) protonated), 3401 (m, v_{N-H}); HRMS: calculated for [C₂₉H₂₄N₅O₃F + H]⁺: 510.1936, found: 510.1945.

(*R*)-2-Amino-*N*-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-phenylpropanamide hydrochloride (**12c**)

In a 3-necked flask, compound i312c (0.48 mmol, 0.25 g) dissolved in methanol (50 mL) and treated with hydrazine hydrate (1.44 eq., 0.69 mmol, 42 µL of 80% aqueous solution). Under argon atmosphere, the reaction mixture heated under reflux for 18 h. Subsequently, additional hydrazine hydrate (1.44 eq., 0.69 mmol, 42 µL of 80% aqueous solution) added and heated to reflux for a further 6 h. After cooling to rt, the solution was concentrated under partial vacuum and the product was adsorbed onto diatomaceous earth. The product purified by flash chromatography (mobile phase: dichloromethane/methanol 9:1). Finally, the product taken up in ethyl acetate/tetrahydrofuran (1:1) and precipitated as hydrochloride salt by introducing HCl gas. The product was dried at 40 °C and 6 mbar. Yield: 0.12 g (62%) of light brown, amorphous solid; Purity 100%; Mp: 238-240 °C (solid from ethyl acetate/tetrahydrofuran); R_f = 0.69 for the free base (dichloromethane/methanol 9:1); ¹H-NMR $(DMSO-d_6)$: $\delta = 3.12$ (d, ${}^{3}J = 7.3$ Hz, 2H, $C^{14}H_2$), 4.20 (d, ${}^{3}J = 4.8$ Hz, 1H, $C^{13}H$), 4.56 (s, 2H, $C^{7}H_2$), 5.94 (d, ³J = 8.8 Hz, 1H, C⁵H), 7.08 (d, ³J = 8.8 Hz, 1H, C⁴H), 7.19 (t, ³J = 9.0 Hz, 2H, 2×C¹⁰H), 7.32 (m, 5H, 2×C¹⁶H, 2×C¹⁷H & C¹⁸H), 7.46 (m, 2H, 2×C⁹H), 7.63 (s, 2H, N²H₂), 8.37 (s, 1H, N⁶H), 8.60 (s, 2H, N¹³H₂), 10.04 (s, 1H, N³H), 13,37 (s, 1H, HCl); ¹³C-NMR (DMSO- d_6): δ = 36.6 (C¹⁴), 44.5 (C⁷), 53.8 (C¹³), 93.7 (C⁵), 105.0 (C³), 115.3 (d, ²J = 21 Hz, 2×C¹⁰), 127.1 (C¹⁸), 128.5 (2×C¹⁷), 129.6 (d, ³J = 8 Hz, 2×C⁹), 129.6 (2×C¹⁶) 133.7 (d, ⁴*J* = 3 Hz, C⁸), 135.0 (C¹⁵), 141.9 (C⁴), 148.7 (C²), 149.6 (C⁶), 160.3 & 162.7 (d, ¹*J* = 242, C¹¹), 167.9 (C¹²); MIR: $\tilde{v} = 1643$ (s, $v_{C=0}$), 3144 (m, v_{N-H}); HRMS: calculated for $[C_{21}H_{22}N_5OF + H]^+$: 380.1881, found: 380.1891.

(S)-2-(1,3-Dioxoisoindolin-2-yl)-3-phenylpropionsäure (i112d)

The synthesis is analogous to **i112c**, while L-phenylalanine (20 mmol, 3.30 g) and phthalic anhydride (1.0 eq., 20 mmol, 2.96 g) were used. Yield; 3.26 g (55%) of colourless, amorphous solid; Mp: 171-173 °C (solid from dichloromethane); ¹H-NMR (DMSO- d_6): δ = 3.33 & 3.48 (m & m, 2H, C⁷H₂), 5.12 (m, 1H, C²H), 7.08-7.20 (m, 5H, 2×C⁹H, 2×C¹⁰H & C¹²H), 7.84 (s, 4H, 2×C⁵H & 2×C⁶H), 13.36 (s, 1H, OH); ¹³C-NMR (DMSO- d_6): δ = 33.9 (C⁸), 52.9 (C³), 123.4 (2×C⁵), 126.5 (C¹¹), 128.3 (2×C⁹), 128.7 (2×C¹⁰), 130.7

(2×C⁴), 134.9 (2×C⁶), 137.3 (C⁸), 167.1 (2×C³), 170.0 (C¹); MIR: $\tilde{\nu}$ = 1697, 1740 & 1772 (s, v_{C=O}), 2923 (w, v_{C-H}). 3027 (w, v_{Ar-H}), 3252 (w, v_{O-H}).

(S)-2-(1,3-Dioxoisoindolin-2-yl)-3-phenylpropanoyl chloride (i212d)

The synthesis is analogous to **i212b**; **i112d** (5 mmol, 1.48 g) and thionyl chloride (2.4 eq., 12 mmol, 870 μ L) were used. Yield: 2.91 g (93%) of colourless, amorphous solid; Mp: 119-121 °C (solid from toluene); ¹H-NMR (DMSO-*d*₆): δ = 3.35 & 3.49 (m & m, 2H, C⁷H₂), 5.13 (m, 1H, C²H), 7.10-7.19 (m, 5H, 2×C⁹H, 2×C¹⁰H & C¹²H), 7.84 (s, 4H, 2×C⁵H & 2×C⁶H); ¹³C NMR (DMSO-*d*₆): δ = 34.0 (C⁸), 52.9 (C³), 123.4 (2×C⁵), 126.6 (C¹¹), 128.3 (2×C⁹), 128.7 (2×C¹⁰), 130.7 (2×C⁴), 135.0 (2×C⁶), 137.3 (C⁸), 167.1 (2×C³), 170.0 (C¹); MIR: $\tilde{\nu}$ = 1698, 1775 & 1793 (s, v_{C=0}), 2899 (w, v_{C-H}), 3030 (w, v_{Ar-H}).

(S)-*N*-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropan hydrochloride (**i312d**)

The synthesis carried out according to GWP2, while it was acylated with **i212c** (1.2 eq., 1.2 mmol, 0.38 g). The reaction completed after 1 h of complete addition. The solution then washed with water (5 × 20 mL), dried over Na₂SO₄ and adsorbed onto diatomaceous earth using partial vacuum. The product purified by flash chromatography (n-hexane/ethyl acetate 4:6). The product precipitated as hydrochloride from ethyl acetate/tetrahydrofuran (1:1) by bubbling HCl gas. Yield: 0.23 g (43%) of colourless, amorphous solid; Mp: 168-170 °C (solid from tetrahydrofuran/ethyl acetate); R_f = 0.70 for the free base (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO-*d*₆): δ = 3.20 (dd, ³*J* = 13.8 Hz, ³*J* = 11.6 Hz, 1H, C¹³H), 3.56 (dd, ²*J* = 13.9 Hz, ³*J* = 4.6 Hz, 1H, C¹⁸H₂), 4.53 (d, ³*J* = 6.8 Hz, 2H, C⁷H₂), 5.25 (dd, ²*J* = 11.4 Hz, ³*J* = 4.6 Hz, 1H, C¹⁸H₂), 5.97 (d, ³*J* = 8.8 Hz, C⁵H), 7.11 (bs, 2H, NH₂), 7.09-7.14 (m, 5H, 2×C²⁰H, 2×C²¹H & C²²H), 7.20 (t, ³*J* = 8.8 Hz, 2H, 2×C¹⁰H), 7.30 (d, ³*J* = 8.8 Hz, 1H, C⁴H), 7.47-7,43 (m, 2H, 2×C⁹H), 7.82 (s, 4H, 2×C¹⁶H & 2×C¹⁷H), 8.25 (s, 1H, N⁶H), 9.45 (s, 1H, N³H), 13.20 (s, 1H, HCl); ¹³C-NMR (DMSO-*d*₆): δ = 34.2 (C¹⁸), 44.5 (C⁷), 53.9 (C¹³), 93.8 (C⁵), 106.0 (C³), 115.3 (d, ²*J* = 21 Hz, 2×C¹⁰), 123.1 (2×C¹⁷), 126.5 (C²²), 128.2 (2×C²⁰), 128.9 (2×C²¹), 129.6 (d, ³*J* = 8 Hz, 2×C⁹), 131.3 (2×C¹⁵), 133.6 (d,

 ${}^{4}J$ = 3 Hz, C⁸), 134.5 (2×C¹⁶), 137.4 (C¹⁹), 143.2 (C⁴), 149.1 (C⁶), 149.7 (C²), 160.3 & 162.7 (d, ${}^{1}J$ = 242 Hz, C¹¹), 167.4 (C¹²), 168.0 (2×C¹⁴); MIR: \tilde{v} = 1650, 1703 & 1779 (s, v_{C=O}), 3066 (w, v_{Ar-H}), 2600–3300 (w, v_{N-H})_{protonated}), 3401 (m, v_{N-H}); HRMS: calculated for [C₂₉H₂₄N₅O₃F + H]⁺: 510.1936, found: 510.1931.

(*S*)-2-Amino-*N*-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-phenylpropanamide hydrochloride (**12d**)

The synthesis was similar to **12c** except it started from compound **i312d**. Yield: 0.09 g (45%) of beige, amorphous solid; Purity 100%; Mp: 213-215 °C (solid from ethyl acetate/tetrahydrofuran); $R_f = 0.67$ for the free base (dichloromethane/methanol 9:1); ¹H-NMR (DMSO- d_6): $\delta = 3.11$ (dd, ²J = 7.2 Hz, ³J = 3.2 Hz, 2H, C¹⁴H₂), 4.19 (m, 1H, C¹³H), 4.54 (s, 2H, C⁷H₂), 5.93 (d, ³J = 8.8 Hz, 1H, C⁵H), 7.09 (d, ³J = 8.8 Hz, 1H, C⁴H), 7.17-7.22 (m, 2H, 2×C¹⁰H), 7.29-7.37 (m, 5H, 2×C¹⁶H, 2×C¹⁷H & C¹⁸H), 7.43-7.47 (m, 2H, 2×C⁹H), 7.57 (s, 2H, N²H₂), 8.37 (s, 1H, N⁶H), 8.60 (s, 2H, N¹³H₂), 10.01 (s, 1H, N³H), 13.36 (s, 1H, HCl); ¹³C NMR (DMSO- d_6): $\delta = 36.6$ (C¹⁴), 44.5 (C⁷), 53.8 (C¹³), 93.7 (C⁵), 105.0 (C³), 115.3 (d, ²J = 21 Hz, 2×C¹⁰), 127.1 (C¹⁸), 128.5 (2×C¹⁷), 129.6 (d, ³J = 8 Hz, 2×C⁹), 129.6 (2×C¹⁶) 133.7 (d, ⁴J = 3 Hz, C⁸), 135.0 (C¹⁵), 141.9 (C⁴), 148.7 (C²), 149.6 (C⁶), 160.3 & 162.7 (d, ¹J = 242, C¹¹), 167.9 (C¹²); MIR: $\tilde{\nu} = 1638$ (s, $\nu_{c=0}$), 3167 (m, ν_{N+H}); HRMS: calculated for [C₂₁H₂₂N₅OF + H]⁺: 380.1881, found: 380.1889.

4-Amino-N-{2-amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}benzamide hydrochloride (12e)

The synthesis is analogously to **12f**, while compound **i12** (1 mmol, 0.26 g), 0.10 g of palladium-activated carbon (10%), triethylamine (1.4 eq., 1.4 mmol, 194 μ L) and 4-nitrobenzoyl chloride (1.2 eq., 1.2 mmol, 0.22 g) were used. After purification by column chromatography, the product dissolved in tetrahydrofuran (10 mL) and treated with 0.10 g of palladium-activated carbon (10%). Under hydrogen atmosphere, the reaction mixture stirred for 3.5 h at 40 ° C. The catalyst then filtered off through diatomaceous earth and the residue washed with tetrahydrofuran (30 mL). The solution was concentrated using partial vacuum and by introducing HCl gas, the product finally precipitated as a
hydrochloride salt. The product was dried at 40 °C and 6 mbar. Yield: 0.11 g (28%) of brown, amorphous solid; 281-283 °C (solid from tetrahydrofuran); $R_f = 0.28$ for the free base (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): $\delta = 4.60$ (s, 2H, C⁷H₂), 6.01 (d, ³J = 8.8 Hz, 1H, C⁵H), 7.14 (d, ³J = 7.9 Hz, 2H, 2×C¹⁵H), 7.21 (t, ³J = 8.6 Hz, 2H, 2×C¹⁰H), 7.47-7.50 (m, 2H, 2×C⁹H), 7.53 (d, ³J = 8.8 Hz, 1H, C⁴H), 7.95 (d, ³J = 8.0 Hz, 2×C¹⁴H), 8.40 (s, 1H, N⁶H), 9.60 (s, 1H, N³H), 13.36 (s, 1H, HCl); ¹³C-NMR (DMSO- d_6): $\delta = 46.1$ (C⁷), 95.7 (C⁵), 107.1 (C³), 117.1 (d, ²J = 21 Hz, 2×C¹⁰), 122.1 (2×C¹⁴), 130.6 (d, ³J = 8 Hz, 2×C⁹), 131.1 (2×C¹⁴), 134.1 (d, ⁴J = 2 Hz, C⁸), 140.7 (C¹³), 145.9 (C⁴), 146.0 (C¹⁶), 150.2 (C⁶), 151.1 (C²), 162.1 & 164.5 (d, ¹J = 244 Hz, C¹¹), 169.7 (C¹²); MIR: $\tilde{\nu} = 1634$ (s, $\nu_{C=0}$), 2559-3127 (m, $\nu_{N-H, protonated}$), 3285 (m, ν_{N-H}); HRMS: calculated for [C₁₉H₁₈N₅OF + H]⁺: 352.1568, found: 352.1559.

N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-4-nitrobenzaminde hydrochloride (12f)

The synthesis carried out according to the GWP2. The residue washed with ethyl acetate (20 mL) and dichloromethane (10 mL). The acylation carried out by a solution of 4-nitrobenzoyl chloride (1.2 eq, 1.2 mmol, 0.22 g) in 5 mL of ethyl acetate. After complete addition, the reaction mixture stirred for 2 h. The solution then washed with water (5 \times 20 mL), the organic phase dried over Na₂SO₄ and concentrated using partial vacuum. The residue adsorbed onto diatomaceous earth and purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 4: 6). The product then dissolved in tetrahydrofuran/ethyl acetate (1:1) and precipitated as hydrochloride salt by introducing HCl gas. The product was dried at 40 °C and 4 mbar. Yield: 0.17 g (40%) of bright green, amorphous solid; Purity 100%; Mp: 269-271 °C (solid from tetrahydrofuran/ethyl acetate); $R_f = 0.52$ for the free base (nhexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): δ = 4.58 (s, 2H, C⁷H₂), 6.00 (d, ³J = 8.8 Hz, 1H, C⁵H), 7.21 (t, ³*J* = 8.8 Hz, 2H, 2×C¹⁰H), 7.46-7.50 (m, 2H, 2×C⁹H), 7.56 (d, ³*J* = 8.8 Hz, 1H, C⁴H), 8.22 (d, ³*J* = 8.8 Hz, 2H, 2×C¹⁴H), 8.33 (s, 1H, N⁶H), 8.36 (d, ³J = 8.8 Hz, 2×C¹⁵H), 10.01 (s, 1H, N³H), 13.32 (s, 1H, HCl); ¹³C-NMR (DMSO- d_6): δ = 44.5 (C⁷), 93.7 (C⁵), 106.0 (C³), 115.3 (d, ²J = 21 Hz, 2×C¹⁰), 123.3 (2×C¹⁴), 129.5 (2×C¹⁵), 129.6 (d, ³*J* = 8 Hz, 2×C⁹), 133.7 (d, ⁴*J* = 3 Hz, C⁸), 139.6 (C¹³), 143.8 (C⁴), 149.2 (C⁶), 149.3 (C²), 149.8 (C¹⁶) 160.3 & 162.7 (d, ¹J = 243 Hz, C¹¹), 160.3 & 162.7 (d, ¹J = 243 Hz, C¹¹), 164.7 (C¹²); MIR: \tilde{v} = 1582 (s. v_{C-NO}), 1636 (s, v_{C=O}), 2956 (w, v_{C-H}), 2700-3400 (m, v_{N-H, protonated}), 3303 (m, v_{N-H}); HRMS: calculated for [C₁₉H₁₆N₅O₃F + H]⁺: 382.1310, found: 382.1324.

1-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-[m-tolyl)urea hydrochloride (12g)

In a 3-necked flask, compound i12 (1 mmol, 0.26 g) together with 0.10 g of palladium activated carbon (10%) were suspended in dichloromethane (10 mL) and stirred under hydrogen atmosphere for 20 h at rt. The catalyst then filtered off through diatomaceous earth and the residue washed ethyl acetate (30 mL). The filtrate sprinkled with nitrogen via a capillary and cooled to 0 °C and triethylamine (1.4 eq., 1.4 mmol, 194 μ L) added and then a solution of m-tolyl isocyanate (1.2 eq., 1.2 mmol, 142 μ L) in ethyl acetate (5 mL) added dropwise. After complete addition, the reaction mixture stirred for 1 h at rt. By storing for 2 h at -15 °C, a solid crystallizes out, which filtered off and recrystallized from methanol. Finally, the solid dissolved in ethyl acetate/ tetrahydrofuran (1:1) and precipitated as hydrochloride by introducing HCl gas. The product dried at 40 °C and 6 mbar. Yield = 0.09 g (21%) of beige, amorphous solid; Purity 100%; Mp: 203–205 °C (solid from ethyl acetate/tetrahydrofuran); R_f = 0.35 for the free base (cyclohexane/ethanol/triethylamine 6:2:2); ¹H-NMR (DMSO- d_6): δ = 2.25 (s, 3H, C¹⁹H₃), 4.53 (s, 2H, C⁷H₂), 5.95 (d, ³J = 8.0 Hz, 1H, C⁵H), 6.75 (m, 1H, C¹⁶H), 7.13 (m, 1H, C¹⁷H), 7.23 (m, 4H, 2×C¹⁰H, C¹⁴H & C¹⁸H), 7.39 (s, 2H, NH₂), 7.45 (s, 2H, 2×C⁹H), 7.57 (d, ³J = 8.0 Hz, C⁴H), 8.03 (s, 1H, N³H), 8.11 (s, 1H, N⁶H), 8.93 (s, 1H, N¹²H), 13.05 (s, 1H, HCl); 13 C-NMR (DMSO- d_6): δ = 21.2 (C¹⁹), 44.5 (C⁷), 93.6 (C⁵), 107.7 (C³), 115.2 (d, ²J = 21 Hz, 2×C¹⁰), 118.5 (C¹⁴), 122.3 (C¹⁶), 128.5 C¹⁷), 129.5 (d, ³J = 8 Hz, 2×C⁹), 133.8 (d, ⁴J = 3 Hz, C⁸), 137.8 (C¹⁵), 139.8 (C¹³), 142.4 (C⁴), 148.7 (C⁶), 149.6 (C²), 153.8 (C¹²) 160.3 & 162.7 (d, ¹*J* = 242, C¹¹); MIR: $\tilde{\nu}$ = 1634 (s, v_{c=0}), 3052 (w, v_{Ar-H}), 3177, 3245, 3354 & 3395 (m, v_{N-H}); HRMS: calculated for $[C_{20}H_{20}N_5OF + H]^+$: 366.1725, found: 366.1727.

N-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-4-fluorbenzamide hydrochloride (12h)

In a 3-necked flask, compound **i12** (1 mmol, 0.26 g) together with 0.10 g of palladium activated carbon (10%) were suspended in dichloromethane (10 mL) and stirred under hydrogen atmosphere for 20 h at rt. Subsequently, triethylamine (1.4 eq., 1.4 mmol, 194 μ L) added and the reaction mixture cooled to 0 °C. A solution of 4-fluorobenzoyl chloride (1.2 eq, 1.2 mmol, 142 μ L) in dichloromethane (5 mL) added dropwise. After complete addition, the reaction continued for 30 min at rt and then the catalyst filtered through diatomaceous earth. The residue washed with ethyl acetate (30 mL) and the filtrate

was concentrated under partial vacuum. The residue dissolved in a little methanol and precipitated by the addition of water. The resulting solid was filtered off, dissolved in a little 2-propanol and the solution was adjusted to pH 2 with 10% strength hydrochloric acid. The crystallized hydrochloride filtered off and finally recrystallized from methanol/ethanol (2:1). The product dried at 40 °C and 4 mbar. Yield: 0.10 g (26%) of colourless, crystalline solid; Purity 100%; Mp: 296-298 °C (solid from methanol/ethanol); $R_f = 0.31$ for the free base (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): $\delta = 4.58$ (s, 2H, C⁷H₂), 5.99 (d, ³J = 8.6 Hz, 1H, C⁵H), 7.21 (t, ³J = 8.5 Hz, 2H, 2×C¹⁰H), 7.35 (d, ³J = 8.4 Hz, 2H, 2×C⁹H), 7.48 (t, ³J = 6.1 Hz, 2H, 2×C¹⁵H), 7.53 (d, ³J = 8.7 Hz, 1H, C⁴H), 8.07 (t, ³J = 6.2 Hz, 2H, 2×C¹⁴H), 8.32 (s, 1H, N⁶H), 9.70 (s, 1H, N³H), 13.32 (s, 1H, HCl); ¹³C NMR (DMSO- d_6): $\delta = 44.5$ (C⁷), 93.7 (C⁵), 106.5 (C³), 115.1 (d, ²J = 22 Hz, 2×C¹⁰), 115.3 (d, ²J = 21 Hz, 2×C¹⁵), 129.6 (d, ³J = 8 Hz, 2×C⁹), 130.4 (d, ⁴J = 3 Hz, C⁸), 130.7 (d, ³J = 9 Hz, 2×C¹⁴), 133.7 (d, ⁴J = 3 Hz, C¹³), 143.8 (C⁴), 149.3 (C⁶), 149.5 (C²), 160.3 & 162.7 (d, ¹J = 243 Hz, C¹¹), 162.9 & 165.4 (d, ¹J = 249 Hz, C¹⁶), 165.1 (C¹²); MIR: $\tilde{v} = 1634$ (s, $v_{c=0}$), 2949 (w, v_{c-H}), 3172, 3282 & 3345 (m, v_{N-H}); HRMS: calculated for [C₁₉H₁₆N₄OF₂ + H]*: 355.1365, found: 355.1351.

N-{2-Amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}-2-(3,5-difluorophenyl)acetamide (12i)

Compound **i12** (3 mmol, 787 mg) and Pd/C (300 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for 24 h at 40 °C. The reaction mixture filtered off and washed with ethyl acetate (3 x 15 mL). The filtrate cooled using ice-cooled water and then triethylamine (3.75 mmol, 523 µL) and 3,5-difluorobenzoyl chloride (3.3 mmol) added respectively. After complete addition, the mixture stirred for 2 h. The reaction mixture evaporated to dryness and dissolved in ethanol. Eventually, the product precipitated with the addition of water. Yield: 16%, off-white solid; Purity 100%; Mp: 172-173 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 9.04 (s, 1H, *N*³H), 7.36 (m, 2H, C(2')H & C(6')H), 7.12 (m, 6H, C(4)H, C(3')H, C(5')H, C(2'')H, C(6'')H, & C(4'')H), 6.58 (m, 1H, *N*⁶H), 5.69 (d, 1H, ³*J* = 8.4 Hz, C(5)H), 5.25 (s, 2H, *N*²H₂), 4.37 (m, 2H, C(α')H₂), 3.36 (s, 2H, C(α'')H₂); ¹³C NMR (100 MHz, DMSO-d₆): δ = 168.2 (C=O), 163.4 (dd, ¹*J*_{C,F} = 244 Hz, ³*J*_{C,F} = 13 Hz, C3'' & C5'') 162.1 (d, ¹*J*_{C,F} = 23 Hz, C4'), 155.8 (C6), 152.9 (C2), 140.8 (d, ³*J*_{C,F} = 10 Hz, C4''), 137.2 (d, ⁴*J*_{C,F} = 3 Hz, C1'), 135.6 (C4), 129.1 (d, ³*J*_{C,F} = 8 Hz, C2' & C6'), 114.8 (d, ²*J*_{C,F} = 21 Hz, C3' & C5'), 112.5 (²*J*_{C,F} = 19 Hz, ⁴*J*_{C,F} = 6 Hz, C2'' & C6''), 106.4 (C3), 102.1 (t, ²*J*_{C,F} = 51 Hz, C4''), 95.2 (C5), 43.6 (C α'), 41.8 (C α''); MIR (cm⁻¹): \tilde{v} = 3421 & 3334 (N-H), 1644 (C=O), 1224 (C-F); HRMS ((ESI) m/z) calculated for [C₂₀H₁₇F₃N₄O + H]⁺: 387.1427, found: 387.1445.

1-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}-3-[m-tolyl)thiourea hydrochloride (12j)

The synthesis carried out in accordance with GWP2, except tolyl isothiocyanate (1.2 eq., 1.2 mmol, 0.18 g) instead of carboxylic acid chloride used and the addition of triethylamine omitted. After the completed addition of the isothiocyanate, the batch was stirred for 5 h at rt. The solution then washed with water (5 \times 20 mL), dried over Na₂SO₄ and adsorbed on diatomaceous earth in a partial vacuum. The product purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 1:1). The solid taken up in ethyl acetate/tetrahydrofuran (1:1) and precipitated as hydrochloride by bubbling HCl gas. The product dried at 40 °C and 6 mbar. Yield: 0.18 g (44%) of light grey, amorphous solid; Purity 100%; Mp: 244-246 °C (solid from ethyl acetate/tetrahydrofuran); $R_f = 0.21$ for the free base (*n*-hexane/ethyl acetate 1:1); ¹H-NMR (DMSO- d_6): δ = 2.27 (s, 3H, C¹⁷H₃), 4.56 (d, ³J = 5.2 Hz, 2H, C⁷H₂), 5.95 (d, ${}^{3}J$ = 8.8 Hz, 1H, C⁵H), 7.13 (d, ${}^{3}J$ = 8.4 Hz, 2H, 2×C¹⁵H), 7,21 (t, ${}^{3}J$ = 8.8 Hz, 2H, 2×C¹⁰H), 7.39-7.49 (bs, 2H, NH₂), 7.41 (m, 2H, 2×C¹⁴H), 7.45 (s, 1H, C⁴H), 7.47 (m, 2H, 2×C⁹H), 8.29 (s, 1H, N⁶H), 8.96 (s, 1H, N¹²H), 9.99 (s, 1H, N³H), 13.13 (s, 1H, HCl); ¹³C NMR (DMSO- d_6): δ = 20.5 (C¹⁷), 44.5 (C⁷), 93.7 (C⁵), 108.3 (C³), 115.3 (d, ${}^{2}J$ = 21 Hz, 2×C¹⁰), 123.7 (2×C¹⁴), 128.8 (2×C¹⁵), 129.6 (d, ${}^{3}J$ = 8 Hz, 2×C⁹), 133.7 (d, ${}^{4}J$ = 3 Hz, C⁸), 133.7 (C¹³), 136.8 (C¹⁶), 145.1 (C⁴), 149.5 (C⁶), 149.9 (C²), 160.3 & 162.7 (d, ¹*J* = 242, C¹¹), 181.5 (C¹⁴); MIR: \tilde{v} = 1634 (s, v_{C=0}), 3052 (w, v_{Ar-H}), 3177, 3245, 3354 & 3395 (m, v_{N-H}); HRMS: calculated for $[C_{20}H_{20}N_5FS + H]^+$: 382.1496, found: 382.1512.

1-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}pyrrolidin-2,5-dione sulfate (12k)

The synthesis carried out in accordance with GWP2, while succinic anhydride (1.2 eq., 1.2 mmol, 0.12 g) used for the derivatization of the primary amine. After complete addition, the mixture first stirred for 2.5 h at rt (after amide formation), concentrated sulfuric acid (2.8 eq., 1.4 mmol, 75 μ L) was added and the reaction mixture heated to reflux with water separation. After 2 h, the imide formation was complete and the solution washed with water (5 × 20 mL), dried over Na₂SO₄ and adsorbed onto diatomaceous earth in a partial vacuum. The product purified by flash chromatography (mobile phase: ethyl acetate). The resulting solid finally recrystallized from ethanol and dried at 40 °C and 6 mbar. Yield: 0.13 g (37%) of colourless, amorphous solid; Purity 100%; Mp: 187–189 °C (solid from ethyl acetate); $R_f = 0.37$ (ethyl acetate); ¹H-NMR (DMSO- d_6): $\delta = 2.62-2.74$ (m, 4H, 2×C¹³H₂), 4.46 (d,

 ${}^{3}J$ = 4.2 Hz, 2H, C⁷H₂), 5.81 (d, ${}^{3}J$ = 8.5 Hz, 1H, C⁵H), 6.30 (bs, 2H, NH₂), 6.99 (d, ${}^{3}J$ = 7.9 Hz, 1H, C⁴H), 7.15 (t, ${}^{3}J$ = 8.8 Hz, 2H, 2×C¹⁰H), 7.38-7.42 (m, 3H, N⁶H & 2×C⁹H), 13.31 (s, 1H, H₂SO₄); 13 C-NMR (DMSO-*d*₆): δ = 28.7 (2×C¹³), 43.8 (C⁷), 94.7 (C⁵), 100.4 (C³), 115.0 (d, ${}^{2}J$ = 21 Hz, 2×C¹⁰), 129.2 (d, ${}^{3}J$ = 8 Hz, 2×C⁹), 135.8 (C⁸), 140.3 (C⁴), 153.0 (C²), 155.6 (C⁶), 160.0 & 162.4 (d, ${}^{1}J$ = 242 Hz, C¹¹), 177.5 (C¹⁴); MIR: \tilde{v} = 1701 (s, v_{C=O}), 2943 (w, v_{C-H}), 3181, 3348 & 3378 (m, v_{N-H}); HRMS: calculated for [C₁₆H₁₅N₄OF + H]⁺: 315.1252, found: 315.1251.

2-{2-Amino-6-[(4-fluorbenzyl)amino]pyridin-3-yl}isoindolin-1,3-dione hydrochloride (12l)

The synthesis carried out in accordance with GWP2, while phthalic anhydride (1.2 eq., 1.2 mmol, 0.18 g) used. After complete addition of the anhydride, the reaction mixture stirred for 1 h at rt and then heated to reflux under water for 3.5 h. The solution then washed with of water (5 × 20 mL), dried over Na₂SO₄ and adsorbed on diatomaceous earth using a partial vacuum. The product purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 6:4). The resulting solid dissolved in ethyl acetate/tetrahydrofuran (1:1) and precipitated as hydrochloride by bubbling HCl gas. The product was dried at 40 °C and 6 mbar. Yield: 0.15 g (38%) of pale yellow, amorphous solid; Purity 100%; Mp: 187-189 °C (solid from ethyl acetate/tetrahydrofuran); $R_f = 0.57$ for the free base (*n*-hexane/ethyl acetate 6:4); ¹H-NMR (DMSO-*d*₆): $\delta = 4.61$ (s, 2H, C⁷H₂), 6.07 (d, ³J = 8.9 Hz, 1H, C⁵H), 7.22 (t, ³J = 8.9 Hz, 2H, 2×C¹⁰H), 7.49-7.52 (m, 2H, 2×C¹⁴H), 8.71 (s, 1H, NH), 13.58 (s, 1H, HCl); ¹³C NMR (DMSO-*d*₆): $\delta = 44.6$ (C⁷), 94.3 (C⁵), 99.3 (C³), 115.4 (d, ²J = 22 Hz, 2×C¹⁰), 123.3 (2×C¹⁵), 129.7 (d, ³J = 8 Hz, 2×C⁹), 132.4 (C¹⁴), 133.5 (d, ³J = 3 Hz, C⁸), 134.4 (2×C¹³), 145.3 (C⁴), 150.5 (C²), 151.3 (C⁶), 160.3 & 162.8 (d, ¹J = 242 Hz, C¹¹), 167.3 (C¹⁴); MIR: $\tilde{\nu} = 1704$ & 1785 (s, v_{C=0}), 2977 (w, v_{C-H}), 3166, 3249 & 3387 (m, v_{N-H}); HRMS: calculated for [C₂₀H₁₅N₄O₂F + H]*: 363.1252, found: 363.1245.

Ethyl-{2-(1,3-dioxoisoindolin-2-yl)-4-[(4-fluorbenzyl)amino]phenyl}carbamate (13)

Compound **2** (10 mmol, 3.03 g) and phthalic anhydride (1.0 eq, 10 mmol, 1.48 g) were dissolved in toluene (50 mL) and heated to reflux with the removal of water for 6 h. The solution was stored

overnight in a refrigerator, forming a brown precipitate. The product was filtered off and dried at 60 °C in a drying oven. Yield: 3.97 g (92%) of brown, acicular solid; Mp: 176-178 °C (toluene); $R_f = 0.75$ (*n*-hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): $\delta = 1.07$ (t, ³J = 7.2 Hz, 3H, C¹⁴H₃), 3.95 (q, ³J = 7.2 Hz, 2H, C¹³H₂), 4.22 (d, ³J = 6.0 Hz, 2H, C⁷H₂), 6.29 (t, ³J = 6.0 Hz, 1H, N⁶H), 6.54 (d, ⁴J = 2.7 Hz, 1H, C¹H), 6.65 (dd, ³J = 8.9 Hz, ⁴J = 2.7 Hz, 1H, C⁵H), 7.11–7.16 (m, 2H, 2×C¹⁰H), 7.38-7.41 (m, 3H, C⁴H & 2×C⁹H), 7.86-7.93 (m, 4H, 2×C¹⁷H & 2×C¹⁸H), 8.88 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): $\delta = 14.4$ (C¹⁴), 45.9 (C⁷), 59.8 (C¹³), 112.6 (C⁵), 113.0 (C¹), 114.9 (d, ²J = 21 Hz, 2×C¹⁰), 123.1 (2×C¹⁷), 124.5 (C⁴), 125.1 (C³), 129.1 (d, ³J = 8 Hz, 2×C⁹), 132.4 (2×C¹⁶), 134.2 (2×C¹⁸), 136.1 (d, ⁴J = 3 Hz, C⁸), 145.4 (C⁶), 154.2 (C¹²), 159.9 & 162.3 (d, ¹J = 242 Hz, C¹¹), 166.8 (2×C¹⁵); MIR: $\tilde{v} = 1712$ & 1763 (s, v_{C=0}), 2977 (w, v_{C-H}), 3311 & 3364 (w, v_{N-H}); HRMS: calculated for [C₂₄H₂₀N₃O₄F + H]⁺: 434.1511, found: 434.1512.

2-{2-Amino-5-[(4-fluorbenzyl)amino]phenyl}isoindolin-1,3-dione (14)

Method A: Compound 13 (3.8 mmol, 1.64 g) was dissolved in hydrobromic acid (20 mL, 32% in acetic acid) and stirred at rt. After 22 and 40 h, additional hydrobromic acid (20 mL, 32% in acetic acid) were added. After 64 h, the reaction mixture was neutralized using 10% strength sodium hydroxide solution and extracted with ethyl acetate (100 mL). The organic phase washed with of saturated NaHCO₃ solution (100 mL) and saturated common salt solution (100 mL), dried over Na₂SO₄ and adsorbed on diatomaceous earth using a partial vacuum. The product was purified by flash chromatography (mobile phase: n-hexane/ethyl acetate 4:6) and dried at 40 °C and 6 mbar. Yield: 0.70 g (51%) of light brown, amorphous solid; Mp: 143-145 °C (solid from *n*-hexane/ethyl acetate); R_f = 0.63 (*n*hexane/ethyl acetate 4:6); ¹H-NMR (DMSO- d_6): δ = 4.12 (d, ³J = 5.2 Hz, 2H, C⁷H₂), 4.47 (s, 2H, NH₂), 5.51 (t, ³J = 5.6 Hz, 1H, N⁶H), 6.37 (d, ⁴J = 2,5 Hz, 1H, C¹H), 6.53 (dd, ³J = 8.6 Hz, ⁴J = 2.6 Hz, 1H, C⁵H), 6.60 (d, ³*J* = 8,6 Hz, 1H, C⁴H), 7.09-7.14 (m, 2H, 2×C¹⁰H), 7.37-7.40 (m, 2H, 2×C⁹H), 7.85-7.92 (m, 4H, 2×C¹⁴H & $2 \times C^{15}$ H); ¹³C-NMR (DMSO- d_6): δ = 46.8 (C⁷), 113.7 (C⁵), 114.8 (d, ²J = 21 Hz, 2×C¹⁰), 115.4 (C¹), 117,0 (C⁴); 117.3 (C³), 123.0 (2×C¹⁴), 129.2 (d, ${}^{3}J$ = 8 Hz, 2×C⁹), 132.3 (2×C¹³), 134.1 (2×C¹⁵), 136.7 (d, ${}^{4}J$ = 3 Hz, C⁸), 136.9 (C⁶), 140.0 (C²), 159.8 & 162.2 (d, ¹J = 242 Hz, C¹¹), 167.4 (2×C¹²); MIR: $\tilde{\nu}$ = 1705 & 1773 (s, v_{C=0}), 2851 (w, v_{C-H}), 3342 & 3418 (w, v_{N-H}); HRMS: calculated for $[C_{21}H_{16}N_3O_2F + H]^+$: 362.1299, found: 362,1298.

Method B: In a 3-necked flask, compound **13** (1 mmol, 0.43 g) was dissolved under argon atmosphere in anhydrous dichloromethane (10 mL, if possible without alcohols used as stabilizer). Subsequently, a solution of trimethylsilyl iodide (1.2 eq., 1.2 mmol, 171 μ L) in of dichloromethane (2 mL) was added

dropwise and the reaction mixture was heated to reflux. After 24 and 30.5 h, an additional trimethylsilyl iodide (1.2 eq., 1.2 mmol, 171 μ L) dissolved in of dichloromethane (2 mL) were added dropwise. After a total of 48 h, the reaction mixture was cooled to rt and methanol (4.0 eq., 4 mmol 162 μ L) was added. The suspension was concentrated in a partial vacuum, sodium methoxide (0.5 eq., 0.5 mmol, 0.03 g) was added and the solid was dissolved in methanol. The solution was concentrated again and then purified by flash chromatography (mobile phase: *n*-hexane/ethyl acetate/ triethylamine 50:49:1). The product was dried at 40 °C and 4 mbar. Yield: 0.18 g (36%) of light brown, amorphous solid. Analytical data similar to method A were obtained.

N-{2-(1,3-Dioxoisoindolin-2-yl)-4-[(4-fluorbenzyl)amino]phenyl}-4-fluorbenzamide (15a)

Compound 14 (0.89 mmol, 0.32 g), 4-fluorobenzoic acid (1.0 eq, 0.89 mmol, 0.13 g), O- (7azabenzotriazol-1-yl) Dissolve N, N, N', N'-tetramethyluronium hexafluorophosphate (HATU, 2.0 eq, 1.78 mmol 0.68 g) and diisopropylethylamine (3.0 eq, 2.67 mmol, 453 µL) were dissolved in dimethylformamide (10 mL). The reaction mixture was heated at 40 °C for 18 h, then diluted with dichloromethane (100 mL) and washed with water (2 × 100 mL) and saturated brine (100 mL). The organic phase was concentrated under partial vacuum and the residue was purified by flash chromatography (EZ Prep system from Axel Semrau, column: 24 g silica, mobile phase: n-hexane/ethyl acetate, gradient: 0-12 min 0-60% ethyl acetate , 12-15 min 60% ethyl acetate, 15-17 min 60-100% ethyl acetate, 17-25 min 100% ethyl acetate, flow rate: 38 mL/min). For structural analysis, the product was recrystallized from ethanol. Yield: 0.29 g (67%) of orange, amorphous solid; Mp: 240-242 °C (solid from ethanol); $R_f = 0.60$ (*n*-hexane/ethyl acetate 5:5); ¹H-NMR (DMSO- d_6): $\delta = 4.28$ (d, ³J = 6.0 Hz, 2H, $C^{7}H_{2}$), 6.48 (t, ${}^{3}J$ = 6.0 Hz, 1H, N⁶H), 6.64 (d, ${}^{4}J$ = 2.6 Hz, 1H, C¹H), 6.69 (dd, ${}^{3}J$ = 8.7 Hz, ${}^{4}J$ = 2.6 Hz, 1H, C⁵H), 7.15 (t, ³J = 8.9 Hz, 2H, 2×C¹⁰H), 7.20 (t, ³J = 8.9 Hz, 2H, 2×C¹⁵H), 7.37 (d, ³J = 8.6 Hz, 1H, C⁴H), 7.41-7.44 (m, 2H, 2×C⁹H), 7.70–7.73 (m, 2H, 2×C¹⁴H), 7.83–7.90 (m, 4H, 2×C¹⁹H und 2×C²⁰H), 9,71 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): δ = 45.8 (C⁷), 112.4 (C⁵), 112.4 (C¹), 115.0 (d, ²J = 21 Hz, 2×C¹⁰), 115.0 (d, ²J = 21 Hz, 2×C¹⁵), 123.1 (2×C²⁰), 123.7 (C²), 126.8 (C³), 127.2 (C⁴), 129.1 (d, ³J = 8 Hz, 2×C⁹), 130.0 (d, ³*J* = 9 Hz, 2×C¹⁴), 131.4 (d, ⁴*J* = 3 Hz, C¹³), 131.9 (2×C¹⁸), 134.4 (2×C¹⁹), 136.0 (d, ³*J* = 3 Hz, C⁸), 146.6 (C⁶), 159.9 & 162.3 (d, ¹*J* = 242 Hz, C¹¹), 162.5 & 164.9 (d, ¹*J* = 248 Hz, C¹⁶), 164.3 (C¹²), 166.6 (2×C¹⁷); MIR: \tilde{v} = 1651, 1712 & 1782 (s, v_{C=0}), 2898 (w, v_{C-H}), 3360 & 3397 (w, v_{N-H}).

2-(3,5-Difluophenyl)-N-{2-(1,3-dioxoindolin-2-yl)-4-[(4-fluorbenzyl)amino]phenyl}acetamide (15b)

Compound 14 (1 mmol, 0.36 g), 3,5-difluoroacetic acid (1.0 eq., 1 mmol, 0.17 g), HATU (2.0 eq., 2 mmol, 0.76 g) and diisopropylethylamine (3.0 eq., 3 mmol, 510 μ L) were dissolved in dimethylformamide (10 mL) and stirred for 6 h at rt. Diethyl ether (100 mL) and ethyl acetate (150 mL) added to the solution, and the organic phase washed with water (200 mL), saturated NaHCO₃ solution (2 × 100 mL) and of saturated common salt solution (100 mL). The organic phase dried over Na₂SO₄ and adsorbed on diatomaceous earth in a partial vacuum. The product was then purified by flash chromatography (Puriflash system from Interchim, column: 40 g silica 15 µm spherical, mobile phase: n-hexane/ethyl acetate + 5% triethylamine, gradient: 1 CV 10% ethyl acetate, 10 CV 10-80% ethyl acetate, 5 CV 80% ethyl acetate, flow rate: 26 mL/min). The product was dried at 40 ° C and 4 mbar. Yield: 0.23 g (44%) of orange, amorphous solid; Mp: 236-238 °C (solid from *n*-hexane/ethyl acetate/triethylamine); $R_{\rm f}$ = 0.51 (*n*-hexane/ethyl acetate 5:5); ¹H-NMR (DMSO-*d*₆): δ = 3.45 (s, 2H, C¹³H₂), 4.24 (d, ³J = 5.4 Hz, 2H, C⁷H₂), 6.41 (t, ³J = 5.5 Hz, 1H, N⁶H), 6.58 (d, ⁴J = 1.7 Hz, 1H, C¹H), 6.65 (dd, ³J = 8.8 Hz, ⁴J = 1.7 Hz, 1H, C⁵H), 6.79 (d, ³J = 7.0 Hz, 2H, 2×C¹⁵H), 6.97 (t, ³J = 9.3 Hz, 1H, C¹⁷H), 7.14 (t, ³J = 8.7 Hz, 2H, 2×C¹⁰H), 7.36-7,41 (m, 3H, C⁴H & 2×C⁹H), 7.86 (s, 4H, 2×C²⁰H & 2×C²¹H), 9.40 (s, 1H, N³H); ¹³C NMR (DMSO-*d*₆): δ = 41.9 (C¹³), 45.7 (C⁷), 101.8 (t, ²J = 26 Hz, C¹⁷), 111.9 (dd, ²J = 18 Hz, ⁴J = 7 Hz, 2×C¹⁵), 112.5 (C¹), 112,6 (C⁵), 115.0 (d, ²*J* = 21 Hz, 2×C¹⁰), 123.1 (2×C²¹H), 124.0 (C³), 125.9 (C⁶), 126.0 (C⁴), 129.1 (d, ³*J* = 8 Hz, 2×C⁹), 131.9 (2×C¹⁹), 134.3 (2×C²⁰), 136.0 (d, ⁴J = 3 Hz, C⁸), 140.3 (t, ³J = 10 Hz, C¹³), 146.3 (C²), 159.9 & 162.3 (d, ¹*J* = 242 Hz, C¹¹), 160.8 & 163.2 (dd, ¹*J* = 245 Hz, ³*J* = 13 Hz, 2×C¹⁶), 166.6 (2×C¹⁸), 167.6 (C¹²); MIR: \tilde{v} = 1633 (m, v_{C=0}), 1715 (s, v_{C=0}), 2927 (w, v_{C-H}), 3244, 3354 & 3462 (w, v_{N-H}).

N-{2-Amino-4-[(4-fluorbenzyl)amino]phenyl}-4-fluorbenzamide (16a)

Compound **15a** (0.6 mmol, 0.29 g) was dissolved in methanol/2-propanol (40 mL, 1:1) and hydrazine hydrate (1.5 eq, 0.9 mmol, 59 mL, 80% aqueous solution) added was added to the solution. The reaction mixture was stirred for 17 h at rt, then treated with water (100 mL) and stored in a refrigerator. The resulting brown precipitate was filtered off, dissolved in ethyl acetate/tetrahydrofuran (1:1) and precipitated by bubbling HCl gas as a hydrochloride salt. The product was dried at 40 °C and 6 mbar. Yield: 0.11 g (47%) of orange, amorphous solid; Purity 100%;

Mp: 232-235 °C (solid from ethyl acetate/Tetrahydrofuran); Mp: it did not melt uniformly; $R_f = 0.84$ (*n*-Hexane/Ethyl acetate 5:5); ¹H-NMR (DMSO- d_6): d = 4.29 (s, 2H, C⁷H₂), 6.61 (dd, ³J = 8.7 Hz, ⁴J = 2.6 Hz, 1H, C⁵H), 6.67 (d, ⁴J = 2.3 Hz, 1H, C¹H), 7.17 (t, ³J = 8.9 Hz, 2H, 2×C¹⁰H), 7.18 (d, ³J = 8.7 Hz, 1H, C⁴H), 7.35 (t, ³J = 8.8 Hz, 2H, 2×C¹⁵), 7.40-7.44 (m, 2H, 2×C⁹H), 8.13-8.18 (m, 2H, 2×C¹⁴H), 10.18 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): $\delta = 46.2$ (C⁷), 106.9 (C⁵), 111.6 (C¹), 115.1 (d, ²J = 21 Hz, 2×C¹⁰), 115.2 (d, ²J = 21 Hz, 2×C¹⁵), 119.8 (C³), 128.4 (C⁴), 129.4 (d, ³J = 8 Hz, 2×C⁹), 130.4 (d, ⁴J = 3 Hz, 2×C⁸), 130.6 (d, ³J = 9 Hz, C¹⁴), 135.2 (d, ⁴J = 3 Hz, C¹³), 144.3 (C²), 146.2 (C⁶), 160.1 & 162.5 (d, ¹J = 242 Hz, C¹¹), 162.9 & 165.4 (d, ¹J = 249 Hz, C¹⁶), 164.6 (C¹²); MIR: $\tilde{\nu} = 1654$ (s, v_{C=0}), 2865 (w, v_{C-H}), 3038 (w, v_{Ar-H}), 3296, 3327 und 3440 (w, v_{N-H}); HRMS: calculated for [C₂₀H₁₇N₃OF₂ + H]⁺: 354.1412, found: 354.1425.

N-{2-Amino-4-[(4-fluorbenzyl)amino]phenyl}-2-(3,5-difluorphenyl)acetamide (16b)

Compound 15b (0.44 mmol, 0.23 g) and hydrazine hydrate (1.5 eq., 0.66 mmol, 40.3 IL of 80% aqueous solution) were dissolved in 100 mL of tetrahydrofuran/2-propanol/methanol (3: 1: 1). The reaction mixture was stirred for 24 h at rt and then concentrated in a partial vacuum. The resulting gray solid was dissolved in methanol/tetrahydrofuran (1:1), adsorbed on diatomaceous earth and purified by flash chromatography (Reveleris system from Büchi, column: 24 g silica, 20 µm spherical, mobile phase: n-hexane/ethyl acetate +5% triethylamine, gradient: 0-1 min 16% ethyl acetate, 1-12 min 16-100% ethyl acetate, 12-28 min 100% ethyl acetate, 28-30 min 0-20% methanol instead of n-hexane, 30-38 min 20% methanol, flow rate: 32 mL/min). The first fraction was further worked up by preparative HPLC (column: Lichrospher xy, mobile phase: water/acetonitrile, gradient: 0-2 min 50% acetonitrile, 2-12 min 50-90% acetonitrile, 12-18 min 90% acetonitrile, 18-22 min 50% acetonitrile, flow rate 39 mL/min). During the subsequent concentration of the product containing fractions in a partial vacuum, a colorless solid precipitated. This was filtered off and dried at 40 °C and 6 mbar. Yield: 0.07 g (41%) of colorless, amorphous solid; Purity 100%; Mp: 172-174 °C (solid from water/acetonitrile); $R_f = 0.72$ (ethyl acetate/triethylamine 100:1); ¹H-NMR (DMSO- d_6): $\delta = 3.63$ (s, 2H, C¹³H₂), 4.18 (d, ³J = 6.1 Hz, 2H, C⁷H₂), 4.56 (s, 2H, NH₂), 5.85 (dd, ³J = 8,5 Hz, ⁴J = 2,4 Hz, 1H, C⁵H), 5.94 (t, ³J = 6.5 Hz, 1H, N⁶H), 5.95 (d, ⁴J = 2.6 Hz, 1H, C¹H), 6.72 (d, ³J = 8,4 Hz, 1H, C⁴H), 7.05-7.08 (m, 3H, 2×C¹⁵H & C¹⁷H), 7.10-7.15 (m, 2H, $2 \times C^9 H$), 7.34-7.38 (m, 2H, $2 \times C^9 H$), 9.08 (s, 1H, N³H); ¹³C-NMR (DMSO- d_6): $\delta = 41.9$ (C¹³), 45.8 (C⁷), 99.0 (C¹), 101.7 (C⁵), 101.9 (t, ²J = 26 Hz, C¹⁷), 112.3 (dd, ²J = 18 Hz, ⁴J = 6 Hz, 2×C¹⁵), 112.9 (C³), 114.8 (d, ²J = 21 Hz, 2×C¹⁰), 126.8 (C⁴), 128.8 (d, ³J = 8 Hz, 2×C⁹), 136.7 (d, ⁴J = 3 Hz, C⁸), 140.9 (t, ³J = 10 Hz, C¹³), 143.3 (C²), 147.3 (C⁶), 159.8 & 162.2 (d, ¹*J* = 242 Hz, C¹¹), 160.9 & 163.4 (dd, ¹*J* = 245 Hz, ³*J* = 14 Hz, $2 \times C^{16}$), 168,0 (C^{12}); MIR: $\tilde{v} = 1642$ (s, $v_{C=0}$), 3027 (w, v_{Ar-H}), 3254, 3370 & 3406 (w, v_{N-H}); HRMS: calculated for [$C_{21}H_{18}N_3OF_3 + H$]⁺: 386.1475, found: 386.1464.

2-Chloro-5-methyl-3-nitropyridine 1-oxide (17)

2-Chloro-5-methyl-3-nitropyridine (20 mmol, 3.452 g) and urea-hydrogen peroxide (42 mmol, 3.95 g) dissolved in dichloromethane (80 mL). The mixture cooled using ice-cold water. Trifluoroacetic anhydride (42 mmol, 6 mL) added slowly and the mixture stirred for 30 min. The temperature was raised to rt and stirred for 36 h. Following completion of the reaction, the mixture filtered and poured into water (50 mL). The product extracted using dichloromethane (2 x 25 mL) and then washed with brine. The product separated using flash chromatography (solvent *n*-hexane and ethyl acetate). Yield: 81.64%, yellow solid; Mp: 137-138 °C (solid from *n*-hexane and ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.71 (q, 1H, ⁴J = 0.9 Hz, C(6)H), 8.00 (q, 1H, ⁴J = 0.8 Hz, C(4)H), 2.33 (m, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 146.6 (C2), 142.8 (C6), 134.9 (C3), 132.9 (C5), 122.3 (C4), 17.2 (CH₃); IR (cm⁻): $\tilde{\nu}$ = 1338 & 1534 (NO₂).

2,6-Dichloro-3-methyl-5-nitropyridine (18)

Compound **17** (32.3 mmol, 6.091 g) suspended in phosphorous oxychloride (30 mL) and the suspension was refluxed for 5 h. The mixture carefully added to pre-warmed water, then cooled and extracted with ethyl acetate (3 x 20 mL). The ethyl acetate phase washed with sodium bicarbonate solution (aq.) and packed for flash chromatography (*n*-hexane and ethyl acetate). Yield: 74%, off-white solid; Mp:68-69 °C (solid from *n*-hexane and ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.69 (d, 1H, ⁴J = 0.6 Hz, C(4)H), 2.42 (d, 3H, ⁴J = 0.6 Hz, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 152.0 (C2), 143.2 (C6), 138.3 (C3), 138.1 (C4), 134.1 (C5), 18.2 (CH₃); IR: (cm⁻¹): \tilde{v} = 1512 & 1333 (NO₂).

6-Chloro-5-methyl-3-nitropyridin-2-amine (19a)

Compound **18** (11.85 mmol, 2.453 g) suspended in 2-propanol (100 mL) and followed by addition of a relatively excess aqueous ammonia (10 mL, 25%). The reaction mixture then warmed to 35 °C and stirred for 5 days. A yellow product collected by filtration, which was further purified using flash chromatography (*n*-hexane and ethyl acetate). Yield: 50.38%, yellow solid; Mp: 196-197 °C (*n*-hexane and ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.38 (d, 1H, ⁴*J* = 0.4 Hz, C(4)H), 8.03 (bs, 2H, *N*²H₂), 2.23 (d, 3H, ⁴*J* = 0.4 Hz, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 155.4 (C6), 151.8 (C2), 137.6 (C4), 125.9 (C3), 119.5 (C5), 17.6 (CH₃); IR: (cm⁻¹): $\tilde{\nu}$ = 3461 (N-H), 1553 (NO₂).

4-(6-Chloro-5-methyl-3-nitropyridin-2-yl)morpholine (19b)

Compound **18** (5 mmol, 1.035 g) dissolved in acetonitrile (25 mL). After adding triethylamine (15 mmol, 2.1 mL), the mixture was cooled to about 0 °C. Morpholine (5.5 mmol, 480 μ L) taken up in acetonitrile (10 mL) and added slowly over a period of 30 min. After complete addition, the mixture stirred for 30 min at about 0 °C and then allowed to rise to rt. The mixture was stirred at rt for 3 h. The mixture taken up by water (50 mL) and extracted using ethyl acetate (3 x 25 mL). The product purified using silica gel chromatography (solvent: *n*-hexane and ethyl acetate). Yield: 62%, yellow oil; ¹H NMR (400 MHz, DMSO-d₆): δ = 8.33 (d, 1H, ⁴J= 0.04 Hz, C(4)H), 3.68 (m, 4H, C(8")H_a, C(9")H_a, C(8")H_b & C(9")H_b), 3.33 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 1.99 (s, 3H, CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 151.4 (C6), 150.0 (C2), 138.9 (C4), 131.4 (C3), 121.6 (C5), 65.7 (C8" & C9"), 47.9 (C7" & C10"), 17.3 (CH₃).

N²-(4-Fluorobenzyl)-3-methyl-5-nitropyridine-2,6-diamine (20a)

Compound **19a** (1.5 mmol, 282 mg), 4-fluorobenzyl amine (2.7 mmol, 309 µL) and triethylamine (4.5 mmol, 628 µL) suspended in dimethyl sulfoxide (10 mL). The suspension heated in microwave (100 °C, 2.5 hours), poured into water (150 mL) and extracted with ethyl acetate (2 x 50 mL). A pure product collected by evaporated to dryness. Yield: 93%, yellow solid; Mp: 176-177 °C (solid from ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ = 7.90 (t, 1H, ³*J* = 5.98 Hz, *N*⁶H), 7.83 (d, 1H, ⁴*J* = 0.8 Hz, C(4)H), 7.44 (m, 2H, C(2')H & C(6')H), 7.15 (m, 2H, C(3')H & C(5')H), 4.62 (d, 2H, ³*J* = 6.04 Hz, C(\alpha')H₂), 2.03 (s, 3H,

CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.4 (d, ¹*J*_{*C,F*} = 242 Hz, C4'), 159.4 (C6), 154.5 (C2), 135.8 (d, ⁴*J*_{*C,F*} = 3 Hz, C1'), 133.0 (C4), 129.7 (d, ³*J*_{*C,F*} = 8 Hz, C2' & C6'), 117.3 (C3), 115.0 (d, ²*J*_{*C,F*} = 21 Hz, C3' & C5'), 109.9 (C5), 43.3 (C α '), 15.8 (CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 3493 (N-H), 1231 (C-F).

N-(4-Fluorobenzyl)-3-methyl-6-morpholino-5-nitropyridin-2-amine (20b)

Compound **19b** (3.1 mmol, 800 mg), triethylamine (6.2 mmol, 865 μ L) and 4-fluorobenzylamine (4.65 mmol, 530 μ L) suspended in 2-propanol (15 mL) and the suspension held at reflux for 24 h. The mixture partitioned between dichloromethane and water. The dichloromethane phase packed for flash chromatography (solvent: *n*-hexane and ethyl acetate). The fractions containing the product combined and evaporated to dryness to yield a sticky yellow semi-solid. The product used for the next reaction without further purification.

Ethyl {2-amino-6-[(4-fluorobenzyl)amino]-5-methylpyridin-3-yl}carbamate (21a)

Compound **20a** (2.5 mmol, 690 mg) and Pd/C (250 mg, 10% Pd) suspended in 2-propanol (15 mL). The suspension carefully set under hydrogen atmosphere and stirred for 24 h at 40 °C. The reaction mixture cooled using ice-cooled water and triethylamine (3.75 mmol, 523 µL) was added. Ethyl chloroformate (3.125 mmol, 297 µL) then added slowly. After complete addition, the mixture was stirred at rt until the reaction was completed. The reaction progress was monitored using thin layer chromatography (*n*-hexane and ethyl acetate). Water added to precipitate the product, which further purified by recrystallization from ethanol. Yield: 38.4%, pale yellow solid; Purity 100%; Mp: 156-157 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.17 (bs, 1H, *N*³H), 7.38 (m, 2H, C(3')H & C(5')H), 7.11 (m, 2H, C(2')H & C(6')H), 6.92 (bs, 1H, C(4)H), 6.08 (t, 1H, ³J = 6.12 Hz, *N*⁶H), 4.93 (s, 2H, *N*²H₂), 4.49 (d, 2H, ³J = 6.04 Hz, C(\alpha')H₂), 4.06 (q, 2H, ³J = 7.06 Hz, -OCH₂), 1.93 (s, 3H, CH₃), 1.21 (t, 3H, ³J = 6.34 Hz, -OCH₂C<u>H₃</u>); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.0 (d, ¹J_{C,F} = 241 Hz, C4'), 155.1 (C=O), 153.0 (C6), 150.8 (C2), 138.0 (d, ⁴J_{C,F} = 3 Hz, C1'), 136.1 (C4), 129.2 (d, ³J_{C,F} = 8 Hz, C2' & C6'), 114.6 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 106.1 (C3), 103.6 (C5), 59.9 (OCH₂), 43.2 (C\alpha'), 15.8 (CH₃), 14.6 (OCH₂CH₃); IR (cm⁻¹): $\tilde{\nu}$ = 3355 (N-

H), 1686 (C=O), 1255 (C-F); HRMS ((ESI) m/z) calculated for $[C_{16}H_{19}FN_4O_2 + H]^+$: 319.1565, found: 319.1555.

Ethyl {6-[(4-fluorobenzyl)amino]-5-methyl-2-morpholinopyridin-3-yl}carbamate (21b)

Compound **20b** (2 mmol, 680 mg) and Pd/C (200 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension carefully set under hydrogen atmosphere and stirred for overnight. Triethylamine (3 mmol, 368 μ L) and ethyl chloroformate (2.2 mmol, 220 μ L) added respectively and stirred for 1 h. The mixture filtered off and washed with ethanol (3 x 25 mL). The product was separated using flash chromatography (solvent: *n*-hexane and ethyl acetate). The filtrate containing the product combined, evaporated to dryness and dissolved in ethanol. Eventually, the product precipitated with the addition of water. Yield: 35%, off-white solid; Purity 100%; Mp: 193-194 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.08 (bs, 1H, *N*³H), 7.37 (m, 2H, C(2')H & C(6')H), 7.11 (m, 3H, C(4)H, C(3')H & C(5')H), 6.46 (t, 1H, ³J = 5.84 Hz, *N*⁶H), 4.49 (d, 2H, ³J = 5.72 Hz, C(α')H₂), 4.06 (q, 2H, ³J = 7.03 Hz, -OCH₂), 3.61 (m, 4H, C(8")H_a, C(9")H_a, C(8")H_b & C(9")H_b), 2.96 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 2.01 (s, 3H, CH₃), 1.23 (t, 3H, ³J = 6.70 Hz, -OCH₂CH₃); ¹³C NMR (100 MHz, DMSO-d₆): δ = 162.0 (d, ¹J_{C,F} = 240 Hz, C4'), 154.9 (C=O), 152.5 (C6), 138.0 (d, ⁴J_{C,F} = 3 Hz, C1'), 128.9 (d, ³J_{C,F} = 8 Hz, C2' & C6'), 114.6 (d, ²J_{C,F} = 21 Hz, C3' & C5'), 112.4 (C3), 109.1 (C5), 66.1 (C8" & C9"), 59.9 (-OCH₂), 49.0 (C7" & C10"), 43.7 (C α'), 15.7 (CH₃), 14.7 (-OCH₂CH₃); MIR (cm⁻¹): \tilde{v} = 3379 (N-H), 1703 (C=O), 1496 (C=C); HRMS ((ESI) m/z) calculated for [C₂₀H₂₅FN₄O₃ + H]*: 389.1983, found: 389.1998.

Benzyl [2-amino-6-(cyclohexylamino)pyridin-3-yl]carbamate (22a)

Compound **6a** (3.75 mmol, 887 mg) and Pd/C (375 mg, 10% Pd) were suspended in 2-propanol (20 mL). The suspension carefully set under hydrogen atmosphere and stirred for overnight. The reaction mixture filtered off and washed with 2-propanol (3 x 10 mL). Triethylamine (5.63 mmol, 785 μ L) and benzyl chloroformate (4.7 mmol, 670 μ L) added respectively and the mixture stirred for 30 min. The mixture packed for flash chromatography (*n*-hexane and ethyl acetate). The fractions containing the product combined, evaporated to dryness and re-dissolved in ethanol. Eventually, the product

precipitated with the addition of water. Yield: 31%, pale lavender coloured solid; Purity 100%; Mp: 153-154 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): $\delta = 8.31$ (bs, 1H, N^{3} H), 7.40 (m, 5H, C(2")H, C(6")H, C(3")H, C(5")H & C(4")H), 7.01 (d, 1H, ³J = 8.0 Hz, C(4)H), 5.72 (d, 1H, ³J = 8.00 Hz, C(5)H), 5.72 (m, 1H, N^{6} H), 5.12 (s, 2H, N^{2} H₂), 5.07 (s, 2H, -OCH₂), 3.54 (m, 1H, C(1')H), 1.87 (m, 5H, C(2')H_a, C(6')H_a, C(3')H_a, C(5')H_a & C(4')H_a), 1.29 (m, 5H, C(3')H_b, C(5')H_b, C(2')H_b, C(6')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 155.4$ (C6), 155.0 (C=O), 137.0 (C1"), 135.6 (C4), 128.33 (C2", C3", C5" & C6"), 127.8 (C4"), 105.7 (C3), 95.5 (C5), 65.5 (OCH₂), 48.8 (C1'), 32.9 (C2' & C6'), 25.5 (C4'), 24.7 (C3' & C5'); IR (cm⁻¹): $\tilde{v} = 3378$ (N-H), 1721 (C=O); HRMS ((ESI) m/z) calculated for [C₁₉H₂₄N₄O₂ + H]⁺: 341.1972, found: 341.1982.

N-[2-Amino-6-(cyclohexylamino)pyridin-3-yl]-3,4-difluorobenzamide (22b)

Compound **6a** (3.75 mmol, 887 mg) and Pd/C (375 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for overnight. The reaction mixture filtered off and washed with 2-propanol (3 x 10 mL). After adding triethylamine (5.63 mmol, 784 μ L) to the filtrate, 3,4-difluorobenzoyl chloride (3.75 mmol, 470 μ L) added over a period of 30 min. After complete addition, the mixture stirred at rt for 30 min. Water added to precipitate the product, which was further purified by recrystallization from ethanol. Yield: 33%, off-white solid; Purity 100%; Mp: 209-210 °C (solid from dichloromethane); ¹H NMR (400 MHz, DMSO-d₆): δ = 9.40 (s, 1H, *N*³H), 8.05 (m, 1H, C(2")H), 7.86 (m, 1H, C(5")H), 7.60 (m, 1H, C(6")H), 7.05 (d, 1H, ³J = 8.4 Hz, C(4)H), 5.84 (d, 1H, *N*⁶H), 5.72 (d, 1H, ³J = 8.4 Hz, C(5)H), 5.25 (s, 2H, *N*²H₂), 3.61 (m, 1H, C(1')H), 1.90 (m, 5H, C(2')H_a, C(6')H_a, C(3')H_a, C(5')H_a & C(4')H_a), 1.34 (m, 5H, C(3')H_b, C(5')H_b, C(2')H_b, C(6')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 163.4 (C=O), 155.9 (C6), 153.6 (C2), 152.5 (dd, ¹J_{C,F} = 242 Hz, ²J_{C,F} = 12 Hz, C3"), 150.1 (dd, ¹J_{C,F} = 238 Hz, ²J_{C,F} = 13 Hz, C4"), 136.5 (C4), 132.3 (q, ³J_{C,F} = 8 Hz, C1"), 125.2 (dd, ²J_{C,F} = 11 Hz, ³J_{C,F} = 4 Hz, C5"), 117.4 (d, ²J_{C,F} = 18 Hz, C2"), 117.0 (C6"), 105.3 (C3), 95.5 (C5), 48.8 (C1'), 33.0 (C2' & C6'), 25.5 (C4'), 24.8 (C3' & C5'); IR (cm⁻¹): $\tilde{\nu}$ = 3342 & 3305 (N-H), 766 (Ar-H); HRMS ((ESI) m/z) calculated for [C₁₈H₂₀N₄O₂F + H]*: 347.1678, found: 347.1673.

N²-Cyclopropyl-5-nitropyridine-2,6-diamine (i22c)

Compound **5** (6 mmol, 1.042 g), cyclopropyl amine (9 mmol, 627 µL) and triethylamine (12 mmol, 1.673 mL) were suspended in 2-propanol (10 mL). The suspension heated in microwave (120 °C, 30 min). The reaction mixture cooled to allow the precipitation of the product, which collected by filtration and washed with water (10 mL). The product further purified by recrystallization from dichloromethane. Yield: 75%, yellow solid; Mp:164-165 °C (solid from dichloromethane); ¹H NMR (400 MHz, DMSO-d₆): d = 8.13 (m, 4H, N^2 H₂, C(4)H, N^6 H), 5.90 (bs, 1H, C(5)H), 2.94 (bs, 1H, C(1')H), 0.77 (m, 2H, C(2')H_a & C(3')H_a), 0.54 (m, 2H, C(2')H_b & C(3')H_b); ¹³C NMR (100 MHz, DMSO-d₆): d = 161.7 (C6), 155.8 (C2), 134.0 (C4), 117.5 (C3), 102.4 (C5), 23.9 (C2' & C3'), 6.34 (C1'); IR (cm⁻¹): $\tilde{\nu}$ = 3332 (N-H), 1380 (NO₂).

N-[2-Amino-6-(cyclopropylamino)pyridin-3-yl]-3,4-difluorobenzamide (22c)

Compound **i22c** (4 mmol, 777 mg) and Pd/C (400 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for overnight. The reaction mixture filtered off and washed with 2-propanol (2 x 10 mL). The filtrate then cooled using ice-cooled water. Triethylamine (6 mmol, 837 µL) and 3,4-difluorobenzoyl chloride (4 mmol, 504 µL) added respectively and the mixture stirred for 1 h. After concentrating the mixture, water added to precipitate the product. The product further purified by recrystallization from ethanol. Yield: 15%, white solid; Purity 100%; Mp: 188-189 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 9.45 (s, 1H, *N*³H), 8.06 (m, 1H, C(2")H), 7.87 (m, 1H, C(5")H), 7.61 (m, 1H, C(6")H), 7.17 (d, 1H, ³J = 8.4 Hz, C(4)H), 6.20 (m, 1H, *N*⁶H) 5.92 (d, 1H, ³J = 8.0 Hz, C(5)H), 5.32 (s, 2H, *N*²H₂), 2.24 (m, 1H, C(1')H), 0.67 (m, 2H, C(2')H_a & C(3')H_a), 0.42 (m, 2H, C(2')H_b & C(3')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 163.5 (C=O), 157.4 (C6), 153.8 (C2), 152.8 (dd, ¹J_{C,F} = 244 Hz, ²J_{C,F} = 12 Hz, C3"), 150.1 (dd, ¹J_{C,F} = 242 Hz, ²J_{C,F} = 12 Hz, C4"), 136.8 (C4), 132.2 (q, ³J_{C,F} = 11 Hz, C1"), 125.3 (dd, ²J_{C,F} = 10 Hz, ³J_{C,F} = 2 Hz, C5"), 117.4 (C2"), 117.2 (d, ³J_{C,F} = 19 Hz, C6"), 107.0 (C3), 93.9 (C5), 23.9 (C1'), 6.9 (C2' & C3'); IR (cm⁻¹): $\tilde{\nu}$ = 1623 (C=O), 752 (Ar-H); HRMS ((ESI) m/z) calculated for [C₁₅H₁₄N₄OF₂ + H]⁺: 305.1208, found: 305.1211.

2-Benzoxy-6-chloro-3-nitropyridin (i122d)

In a 3-necked flask, 2,6-dichloro-3-nitropyridine (5 mmol, 0.97 g) and benzyl alcohol (1.2 eq., 6 mmol, 623 µL) dissolved in anhydrous toluene (50 mL) and placed under argon atmosphere. The mixture then cooled to 0 °C and NaH (1.4 eq, 7 mmol, 0.17 g) added. The reaction stirred at rt overnight. Since the TLC monitoring still detected a starting material, the solution cooled to 0 °C and a further 3 mmol of benzyl alcohol and 3.5 mmol of NaH added under counter current to argon. After a further 3 h, the reaction was complete and saturated saline (50 mL) added to the solution. The phases separated using a separating funnel and the organic phase washed with water (3 × 50 mL) and saturated brine (50 mL). After the toluene phase dried over Na₂SO₄, the solvent removed in a partial vacuum. Yield: 0.98 g (74%) of yellow, amorphous solid; Mp: 74–76 °C (solid from toluene); R_f = 0.68 (*n*-hexane/diethyl ether 9:1); ¹H-NMR (DMSO-*d*₆): δ = 5.53 (s, 2H, C⁷H₂), 7.34-7.44 (m, 3H, C¹¹H & 2×C¹⁰H), 7.38 (d, ³J = 8.3 Hz, 1H, C⁵H), 7.50-7.52 (m, 2H, 2×C⁹H), 8.54 (d, ³J = 8.3 Hz, 1H, C⁴H); ¹³C-NMR (DMSO-*d*₆): δ = 69.4 (C⁷), 117.5 (C⁵), 127.9 (2×C¹⁰), 128.2 (C¹¹), 128.4 (2×C⁹), 132.8 (C³), 135.5 (C⁸), 138.8 (C⁴), 151.2 (C⁶), 154.9 (C²); MIR: \tilde{v} = 1562 (m, v_{C-NO}), 2854 (w, v_{C-H}), 3087 (w, v_{Ar-H}).

6-Benzoxy-2-[(4-fluorbenzyl)amino]- 5-nitropyridine (i222d)

In a microwave vessel, **i122d** (3.7 mmol, 0.98 g) was suspended in 2-propanol (15 mL), triethylamine (1.4 eq., 3.9 mmol, 538 µL) and 4-fluorobenzylamine (1.2 Eq., 3.34 mmol, 381 µL). In the microwave reactor, the reaction mixture heated to 120 °C for 2 h. Subsequently, a further 4-fluorobenzylamine (0.6 eq., 1.67 mmol, 191 µL) added to the suspension and heated in the microwave to 120 °C for 30 min. Since the TLC monitor still detected starting material, a further 1.11 mmol of 4-fluorobenzylamine added and again heated to 120 °C for 30 min. The resulting yellow solution was poured onto water (100 mL) and stored in the refrigerator to complete the precipitation. The product filtered off and dried at 60 °C in a drying oven. Yield: 1.27 g (97%) of yellow, amorphous solid; Mp: 159-162 °C (solid from 2-propanol); $R_f = 0.52$ (*n*-hexane/ethyl acetate 7:3); ¹H-NMR (DMSO- d_6): $\delta = 4.58$ (d, ³J = 4.5 Hz, 2H, C¹²H₂), 6.24 (d, ³J = 9.0 Hz, 1H, C⁵H), 7.12-7.16 (m, 2H, 2×C¹⁵H), 7.31-7.40 (m, 5H, 2×C¹⁴H, 2×C⁹H, 2×C¹⁰H & C¹¹H), 8.14 (d, ³J = 9.0 Hz, 1H, C⁴H), 8.65 (bs, 1H, NH); ¹³C-NMR (DMSO- d_6): $\delta = 43.7$ (C¹²), 67.4 (C⁷), 102.1 (C⁵), 115.1 (d, ²J = 21 Hz, 2×C¹⁵), 121.2 (C³), 127.2 (C⁹), 127.6 (C¹¹), 128.3 (C¹⁰), 129.3 (d, ³J = 8 Hz, 2×C¹⁴), 135.2 (C¹³), 136.6 (C⁴), 136.7 (C⁸), 157.6 (C⁶), 159.5 (C²), 160.0 & 162.4 (d, ¹J = 243 Hz); MIR: $\tilde{v} = 1537$ (m, v_{C-NO}), 3034 (w, v_{Ar-H}), 3316 (m, v_{N-H}); HRMS: calculated for [C₁₉H₁₆N₃O₃F + H]⁺: 354.1248, found: 354.1256.

N-{2-(benzyloxy)-6-[(4-fluorbenzyl)amino]pyridin-3-yl}butyramide (22d)

Intermediate i222d (1 mmol, 0.35 g) was suspended in a mixture of 2-propanol (10 mL), of water (6 mL), iron powder (3.0 eq., 3 mmol, 0.17 g) and NH₄Cl (4, 5 eq., 4.5 mmol, 0.24 g). The reaction mixture heated to reflux for 3 h, cooled to rt and the solvent removed in partial vacuum. The residue combined with water (100 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic phase washed with saturated brine and dried over Na_2SO_4 . To the filtrate were added triethylamine (1.4 eq., 1.4 mmol, 193 µL) followed by dropwise addition of a solution of butyric acid chloride (1.2 eq., 1.2 mmol, 124 μ L) in ethyl acetate (10 mL) and the reaction mixture stirred for 3 h at rt. The solvent was then evaporated, the residue adsorbed on diatomaceous earth and purified by flash chromatography (puriFlash 450 system from Interchim, column: silica 37 g, mobile phase: n-hexane/ethyl acetate, gradient: 0-4 min 0% ethyl acetate, 4-34 min 0-30% ethyl acetate, 34-50 min 30% ethyl acetate, 50-60 min 50% ethyl acetate, flow rate: 26 mL / min). After concentrating the product fractions, an oily residue remained, which taken up in diethyl ether and the solvent evaporated over several days at 0 °C. Yield; 0.03 g (8%) of grey, amorphous solid; Purity 100%; Mp: 85-87 °C (solid from diethyl ether), $R_{\rm f}$ = 0.66 (*n*-hexane/ethyl acetate 6:4); ¹H-NMR (DMSO- $d_{\rm 6}$): δ = 0.88 (t, ³J = 7.4 Hz, 3H, C²⁰H₃), 1.56 (se, ³J = 9.2 Hz, 2H, C¹⁹H₂), 2.22 (t, ³J = 7.3 Hz, C¹⁸H₂), 4.38 (d, ³J = 6.0 Hz, 2H, C¹²H₂), 5.27 (s, 2H, C⁷H₂), 6.03 (d, ³*J* = 8.3 Hz, 1H, C⁵H), 7.00 (t, ³*J* = 6.1 Hz, N⁶H), 7.06-7.11 (m, 2H, 2×C¹⁵H), 7.27-7.33 (m, 5H, 2×C¹⁰H, C¹¹H, 2×C¹⁴H), 7.36-7.38 (m, 2H, 2×C⁹H), 7.49 (d, ³J = 8.3 Hz, 1H, C⁴H), 8.84 (s, 1H, N³H); ¹³C-NMR $(DMSO-d_6)$: $\delta = 13.5 (C^{20})$, 18.8 (C^{19}) , 37.5 (C^{18}) , 43.5 (C^{12}) , 66.0 (C^7) , 98.8 (C^5) , 109.0 (C^3) , 114.8 (d, ²J = 21 Hz, 2×C¹⁵), 127.3 (2×C⁹), 127.3 (C¹¹), 128.1 (2×C¹⁰), 129.0 (d, ³J = 8 Hz, 2×C¹⁴), 136.1 (C⁴), 137.1 (d, ⁴*J* = 3 Hz, C¹³), 138.0 (C⁸), 154.2 (C⁶), 154.6 (C²), 159.7 & 162.1 (d, ¹*J* = 241 Hz, C¹⁶), 171.2 (C¹⁷); MIR: $\tilde{\nu}$ = 1649 (m, v_{C=O}), 2870 & 2930 (w, v_{C-H}), 2961 (w, v_{Ar-H}), 3294 & 3423 (w, v_{N-H}); HRMS: calculated for [C₂₃H₂₄N₃O₂F + H]⁺: 394.1925, found: 394.1930.

6-Chloro-2-isopropoxy-3-nitropyridine (i122e)

In a 3-necked flask, 2,6-dichloro-3-nitropyridine (5 mmol, 0.97 g) was dissolved in anhydrous toluene (50 mL) and placed under argon atmosphere. The mixture cooled to 0 °C and 2-propanol (1.2 eq., 6 mmol, 462 μ L) and NaH (1.4 eq., 7 mmol, 0.17 g) added over the side neck under counter current to

argon. The batch stirred overnight at rt. Since the starting material was detected, the suspension again cooled to 0 °C and a further 6 mmol of 2-propanol and 7 mmol of NaH added under counter current to argon. The reaction completed after 3 h and the reaction stopped by adding saturated saline (50 mL). The phases separated in a separating funnel, the toluene phase washed with water (3 × 50 mL) and saturated saline solution (50 mL) and finally dried over Na₂SO₄. Removal of the solvent under partial vacuum gave a brown solid that finally purified using flash chromatography (mobile phase: *n*-hexane/diethyl ether 9:1). Yield: 0.73 g (67%) of yellow, amorphous solid; Mp: 66–68 °C (solid from *n*-hexane/ethyl acetate); $R_f = 0.56$ (*n*-hexane/diethyl ether 9:1); ¹H-NMR (DMSO-*d*₆): $\delta = 1.36$ (d, ³*J* = 6.2 Hz, 6 H, 2×C⁸H₃), 5.37 (sep, ³*J* = 6.2 Hz, 1H, C⁷H), 7.30 (d, ³*J* = 8.3 Hz, 1H, C⁵H), 8.47 (d, ³*J* = 8.3 Hz, 1H, C⁴H); ¹³C NMR (DMSO-*d*₆): $\delta = 21.4$ (2×C⁸), 72.0 (C⁷), 116.7 (C⁵), 132.9 (C³), 138.5 (C⁴), 151.1 (C⁶), 154.7 (C²); MIR: $\tilde{\nu} = 1554$ (m, v_{c-NO}), 2988 (w, v_{C-H}), 3177 (w, v_{Ar-H}).

2-[(4-Fluorbenzyl)amino]-6-isopropoxy-5-nitropyridine (i222e)

In a microwave vessel, **i122e** (3.6 mmol, 0.79 g) was suspended in a mixture of 2-propanol (15 mL), triethylamine (1.4 eq., 5.04 mmol, 696 µL) and 4-fluorobenzylamine (1.2 eq., 4.32 mmol, 493 µL). The batch heated in microwave for 1.5 h at 120 °C. Since the TLC monitoring detected the starting material, a further 4-fluorobenzylamine (0.6 eq., 2.16 mmol, 247 µL) added and the suspension heated in the microwave reactor for a further 3 h at 120 °C. The resulting yellow solution poured onto water (100 mL) to precipitate the product. The solid filtered off and dried at 60 °C in a drying oven. Yield: 1.07 g (97%) of yellow, amorphous solid; Mp: 137-139 °C (solid from 2-propanol); R_f = 0.49 (*n*-hexane/ethyl acetate 7:3); ¹H-NMR (DMSO-*d*₆): δ = 1.23 (d, ³*J* = 6.0 Hz, 6H, 2×C⁸H₂), 4.55 (d, ³*J* = 4.9 Hz, 2H, C⁹H₂), 5.31 (sep, ³*J* = 6.0 Hz, 1H, C⁷H), 6.21 (d, ³*J* = 8.9 Hz, 1H, C⁵H), 7.14-7.19 (m, 2H, 2×C¹²H), 7.34-7.37 (m, 2H, 2×C¹¹H), 8.10 (d, ³*J* = 9.0 Hz, 1H, C⁴H), 8.60 (bs, 1H, NH); ¹³C-NMR (DMSO-*d*₆): δ = 21.7 (2×C⁸), 43.7 (C⁹), 69.5 (C⁷), 101.5 (C⁵), 115.1 (d, ²*J* = 21 Hz, 2×C¹²), 121.3 (C³), 129.0 (d, ³*J* = 8 Hz, 2×C¹¹), 135.4 (C¹⁰), 136.5 (C⁴), 157.6 (C²), 159.5 (C⁶), 160.0 & 162,4 (d, ¹*J* = 242 Hz, C¹³); MIR: \tilde{v} = 1531 (m, v_{c-N0}), 2977 (w, v_{c-H (alkyl)}), 3174 (w, v_{Ar-H}), 3307 & 3355 (m, v_{N-H}); HRMS: calculated for [C₁₅H₁₆FN₃O₃ + H]⁺: 306.1248, found: 306.1263.

N-{6-[(4-fluorbenzyl)amino]-2-isopropoxypyridin-3-yl}butyramide (22e)

Compound i222e (1.5 mmol, 0.45 g) along with iron powder (3.0 eq, 4.5 mmol, 0.25 g) and NH_4Cl (4.5 eq, 6.75 mmol, 0.36 g) suspended in a mixture of 2-propanol (15 mL) and water (9 mL). The reaction mixture was heated to reflux for 3.5 h and concentrated after subsequent cooling to rt in a partial vacuum. The residue combined with water (150 mL) and extracted with ethyl acetate (3×50 mL). The combined organic phase washed with saturated brine (150 mL), dried over Na_2SO_4 , cooled to 0 °C and triethylamine (1.4 eq., 2.1 mmol, 290 μL) was added. Butyric acid chloride (1.2 eq., 1.8 mmol, 186 μL, dissolved in 10 mL of ethyl acetate) added dropwise. After 3 h of stirring at 0 °C, the reaction was complete and the solvent evaporated. The residue purified by flash chromatography (mobile phase: nhexane/ethyl acetate 7:3). Finally, the product recrystallized twice from *n*-hexane to give two different crystal forms, which, however, do not differ in their identity or purity. Yield: 0.22 g (43%) of fine, colourless, crystalline solid next to larger colourless needles; Purity 100%; Mp: 94–95 °C (solid from nhexane); $R_f = 0.37$ (*n*-hexane/ethyl acetate 7:3); ¹H-NMR (DMSO- d_6): $\delta = 0.91$ (t, ³J = 7.4 Hz, 3H, C¹⁷H₂), 1.18 (d, ³*J* = 6.2 Hz, 3H, 2×C⁸H₃), 1.57 (sep, ³*J* = 7.3 Hz, 2H, C¹⁶H₂), 2.22 (t, ³*J* = 7.2 Hz, 2H, C¹⁵H₂), 4.38 (d, ${}^{3}J = 5,9$ Hz, 2H, C ${}^{9}H_{2}$), 5.06 (sep, ${}^{3}J = 6.2$ Hz, 1H, C 7 H), 5.99 (d, ${}^{3}J = 8.3$ Hz, 1H, C 5 H), 6.97 (t, ${}^{3}J = 5.9$ Hz, 1H, N⁶H), 7.09-7.14 (m, 2H, 2×C¹²H), 7.33–7.36 (m, 2H, 2×C¹¹H), 7.51 (d, ³J = 8.3 Hz, 1H, C⁴H), 8.59 (s, 1H, N³H); ¹³C NMR (DMSO-*d*₆): δ = 13.5 (C¹⁷), 18.8 (C¹⁶), 22.0 (2×C⁸), 37.5 (C¹⁵), 43.8 (C⁹), 67.2 (C⁷), 98.1 (C⁵), 109.4 (C³), 114.8 (d, ²J = 21 Hz, 2×C¹²), 128.8 (d, ³J = 8 Hz, 2×C¹¹), 135.4 (C⁴), 137.2 (C¹⁰), 154.1 (C⁶), 154.4 (C²), 159.7 & 162.1 (d, ¹J = 241 Hz, C¹³), 171.0 (C¹⁴); MIR: \tilde{v} = 1631 (m, v_{C=0}), 2938 & 2971 (w, v_{C=0}) H), 3310 & 3355 (m, v_{N-H}); HRMS: calculated for [C₁₉H₂₄N₃O₂F + H]⁺: 346.1925, found: 346.1917.

4-(6-Chloro-3-nitropyridin-2-yl)morpholine (23a)

2,6-Dichloro-3-nitropyridine (5 mmol, 1.0 g) dissolved in acetonitrile (25 mL). After adding triethylamine (15 mmol, 2.1 mL), the mixture cooled to about 0 °C. Morpholine (5.5 mmol, 480 μ L) in acetonitrile (10 mL) added slowly over a period of 30 min. After complete addition, the mixture was stirred for 30 min at about 0 °C and then allowed to rise to rt. The mixture was stirred at rt for 3 h. The product was purified using silica gel chromatography (solvent: *n*-hexane and ethyl acetate). Yield: 72%, yellow solid; Mp: 118-119 °C (solid from *n*-hexane and ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ

= 8.31 (d, 1H, ${}^{3}J$ = 8.4 Hz, C(4)H), 6.95 (d, 1H, ${}^{3}J$ = 8.4 Hz, C(5)H), 3.65 (m, 4H, C(8")H_a, C(9")H_a, C(8")H_b & C(9")H_b), 3.39 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b); 13 C NMR (100 MHz, DMSO-d₆): δ = 151.4 (C6), 151.3 (C2), 134.4 (C4), 131.1 (C3), 113.2 (C5), 65.7 (C8" & C9"), 47.9 (C7" & C10"); IR: (cm⁻¹): $\tilde{\nu}$ = 1549 & 1314 (NO₂).

N-Cyclohexyl-6-morpholino-5-nitropyridin-2-amine (24a)

Compound **23a** (3 mmol, 731 mg), triethylamine (6 mmol, 837 µL) and cyclohexylamine (4.5 mmol, 515 µL) suspended in 2-propanol (15 mL). The suspension held at reflux for overnight. The product precipitated with the addition of water, which was washed with *n*-hexane. Yield: 86%, yellow solid; Mp: 160-162 °C (solid from 2-propanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.01 (d, 1H, ³*J* = 8.8 Hz, C(4)H), 7.81 (bs, 1H, *N*⁶H), 6.03 (d, 1H, ³*J* = 8.8 Hz, C(5)H), 3.78 (m, 1H, C(1')H), 3.67 (m, 4H, C(8")H_a, C(9")H_a, C(8")H_b & C(9")H_b), 3.36 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 1.91 (m, 2H, C(2')H_a & C(6')H_a), 1.73 (m, 2H, C(3')H_a & C(5')H_a), 1.60 (m, 1H, C(4')H_a), 1.34 (m, 5H, C(2')H_b, C(6')H_b), C(3')H_b, C(5')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 157.9 (C6), 155.3 (C2), 136.7 (C4), 120.6 (C3), 101.9 (C5), 66.0 (C8" & C9"), 49.7 (C1'), 48.8 (C7" & C10"), 32.0 (C2' & C6'), 25.2 (C4'), 24.4 (C3' & C5'); IR (cm⁻¹): \tilde{v} = 3323 & 1587 (N-H).

N-[6-(Cyclohexylamino)-2-morpholinopyridin-3-yl]-2-(3,5-difluorophenyl)acetamide (25a)

Compound **24a** (2.25 mmol, 690 mg) and Pd/C (225 mg, 10% Pd) suspended in ethyl acetate (15 mL). The suspension carefully set under hydrogen atmosphere and stirred for overnight. The reaction mixture filtered off and washed with ethyl acetate (3 x 15 mL). The filtrate cooled using ice-cooled water and triethylamine (3.375 mmol, 435 µL) was added. 3,5-difluorobenzoyl chloride (2.475 mmol) then added slowly. After complete addition, the mixture stirred for 30 min at rt. The reaction mixture evaporated to dryness and dissolved in ethanol. The product precipitated with the addition of water and further purified by preparative HPLC (methanol and water). Yield: 64%, white solid; Purity 100%; Mp: 145-146 °C (solid from methanol and water); ¹H NMR (400 MHz, DMSO-d₆): δ = 9.04 (s, 1H, *N*³H), 7.30 (d, 1H, ³J = 8.4 Hz, C(4)H), 7.16 (m, 3H, C(2")H, C(6")H & C(4")H), 6.15 (d, 1H, ³J = 8.4 Hz, N⁶H), 6.04 (d, 1H, ³J = 8.4 Hz, C(5)H), 3.64 (s, 2H, C(α ")H₂), 3.59 (m, 5H, C(1')H), C(8")H_a, C(9")H_a, C(8")H_b & C(9")H_b),

3.36 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 1.91 (m, 2H, C(2')H_a & C(6')H_a), 1.73 (m, 2H, C(3')H_a & C(5')H_a), 1.60 (m, 1H, C(4')H_a), 1.34 (m, 5H, C(2')H_b, C(6')H_b, C(3')H_b, C(5')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 167.9 (C=O), 163.5 (dd, ¹J_{C,F} = 244 Hz, ³J_{C,F} = 13 Hz, C3" & C5"), 154.7 (C6), 153.9 (C2), 140.5 (t, ³J_{C,F} = 10 Hz, C1"), 136.6 (C4), 112.4 (dd, ²J_{C,F} = 25 Hz, ⁴J_{C,F} = 7 Hz, C2" & C6"), 111.8 (C3), 102.3 (t, ²J_{C,F} = 51 Hz, C4"), 100.7 (C5), 66.0 (C8" & C9"), 49.3 (C1'), 48.9 (C7" & C10"), 42.2 (Cα"), 32.6 (C2' & C6'), 25.6 (C4'), 24.7 (C3' & C5'); IR (cm⁻¹): $\tilde{\nu}$ = 3352 (N-H), 1619 (C=O); HRMS ((ESI) m/z) calculated for [C₂₃H₂₈F₂N₄O₂ + H]⁺: 431.2253, found: 431.2266.

N-(4-Fluorobenzyl)-6-morpholino-5-nitropyridin-2-amine (24b)

Compound **23a** (3 mmol, 731 mg), triethylamine (9 mmol, 1.25 mL) and 4-fluorobenzylamine (5.4 mmol, 670 μ L) were suspended in dimethyl sulfoxide (10 mL). The suspension heated in a microwave (100 °C, 2 h). The reaction mixture poured onto water (150 mL) and extracted using ethyl acetate (3 x 50 mL). The ethyl acetate phase evaporated to dryness to yield a sticky yellow semi-solid. The product used for the next reaction without any further purification.

4,4'-(3-Nitropyridine-2,6-diyl)dimorpholine (23b)

Compound **23b** is a side product in the synthesis of **23a**. Compound **23b** separated from the reaction mixture using flash chromatography (solvent: *n*-hexane and ethyl acetate). The product dried using a desiccator. Yield: 28%, yellow solid; Mp: 105-106 °C (solid from *n*-hexane and ethyl acetate); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.16 (d, 1H, ³*J* = 9.2 Hz, C(4)H), 6.40 (d, 1H, ³*J* = 9.2 Hz, C(5)H), 3.70 (m, 12H, C(8")H_a, C(9")H_a, C(8")H_b, C(9")H_b, C(2')H_a, C(2')H_a, C(2')H_b, C(3')H_b, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 3.36 (m, 4H, C(1')H_a, C(4')H_a, C(1')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 157.8 (C6), 153.9 (C2), 138.1 (C4), 121.9 (C3), 98.5 (C5), 65.9 (C8" & C9"), 65.8 (C2' & C3'), 48.7 (C1' & C4'), 44.6 (C7" & C10").

2-(3,5-Difluorophenyl)-N-(2,6-dimorpholinopyridin-3-yl)acetamide (25b)

Compound **23b** (3 mmol, 883 mg) and Pd/C (300 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for overnight. The reaction mixture filtered off and washed with ethyl acetate (3 x 25 mL). Triethylamine (4.5 mmol, 630 μ L) and compound **AS-69** (4.5 mmol, 627 μ L) added respectively and stirred for 2 h. The reaction mixture evaporated to dryness and re-dissolved in ethanol. The product precipitated with the addition of water. Yield: 82%, off-white solid; Purity 100%; Mp: 137-138 °C (solid from ethanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 9.18 (s, 1H, *N*³H), 7.55 (d, 1H, ³*J* = 8.4 Hz, C(4)H), 7.16 (m, 3H, C(2")H, C(6")H & C(4")H), 6.38 (d, 1H, ³*J* = 8.4 Hz, C(5)H), 3.69 (m, 6H, C(8")H_a, C(9")H_a, C(7")H_b, C(α")H₂) 3.62 (m, 4H, C(2')H_a, C(3')H_a, C(2')H_b, C(3')H_b), 2.99 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 2.51 (m, 4H, C(1')H_a, C(4')H_a, C(1')H_b, & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 168.0 (C=O), 163.5 (dd, ¹*J*_{C,F} = 244 Hz, ³*J*_{C,F} = 13 Hz, C3" & C5"), 155.3 (C6), 153.4 (C2), 140.3 (³*J*_{C,F} = 20 Hz, C1"), 136.9 (C4), 114.3 (C3), 112.4 (dd, ²*J*_{C,F} = 25 Hz, ⁴*J*_{C,F} = 7 Hz, C2" & C6"), 102.4 (t, ²*J*_{C,F} = 52 Hz, C4"), 99.5 (C5), 65.9 (C8", C9", C2' & C3'), 48.8 (C1' & C4'), 48.7 (C7" & C10"), 44.6 (Ca"); IR (cm⁻¹): \tilde{v} = 3317 (N-H), 1592 (C=C); HRMS ((ESI) m/z) calculated for [C₂₁H₂₄F₂N₄O₃ + H]⁺: 419.1889, found: 419.1816.

2-(3,5-Dimethoxyphenyl)-N-(2,6-dimorpholinopyridin-3-yl)acetamide (25c)

Compound **23b** (1 mmol, 295 mg) and Pd/C (100 mg, 10% Pd) were suspended in 2-propanol (15 mL). The suspension was carefully set under hydrogen atmosphere and stirred for overnight. The reaction mixture filtered off and washed with ethyl acetate (3 x 25 mL). Triethylamine (1.5 mmol, 210 μ L) and compound **AS-118** (1.5 mmol) were added respectively and stirred for 2 h. The product separated using flash chromatography (solvent: *n*-hexane and ethyl acetate). The product further purified by recrystallization from methanol. Yield: 61%, white solid; Purity 100%; Mp: 157-158 °C (solid from methanol); ¹H NMR (400 MHz, DMSO-d₆): δ = 8.92 (s, 1H, *N*³H), 7.63 (d, 1H, ³*J* = 8.4 Hz, C(4)H), 6.52 (m, 2H, C(2")H & C(6")H), 6.42 (m, 2H, C(4")H & C(5)H), 3.73 (m, 12H, C(8")H_a, C(9")H_a, C(8")H_b, C(9")H_b, C(3")OCH₃, C(5")OCH₃ & C(α ")H₂), 3.54 (m, 4H, C(2')H_a, C(3')H_a, C(2')H_b), 3.36 (m, 4H, C(7")H_a, C(10")H_a, C(7")H_b & C(10")H_b), 2.94 (m, 4H, C(1')H_a, C(4')H_a, C(1')H_b & C(4')H_b); ¹³C NMR (100 MHz, DMSO-d₆): δ = 168.7 (C=O), 160.5 (C3" & C5"), 155.1 (C6), 152.9 (C2), 137.9 (C1"), 136.1 (C4), 114.8

(C3), 107.3 (C2" & C6"), 99.7 (C5), 98.3 (C4"), 65.9 (C8", C9", C2' & C3'), 55.1 (C(3")OCH₃ & C(5")OCH₃), 48.8 (C1' & C4'), 45.2 (C7" & C10"), 43.2 (C α "); IR (cm⁻¹): $\tilde{\nu}$ = 3381 (N-H), 1671 (C=O); HRMS ((ESI) m/z) calculated for [C₂₃H₃₀N₄O₅ + H]⁺:, 443.2289 found: 443.2269.

Determination of LogD_{7.4}

Thirteen solvents used as references: uracil (unretained solvent), pyridine, benzyl alcohol, acetanilide, picoline, acetophenone, methyl benzoate, ethyl benzoate, benzophenone, phenyl benzoate, diphenyl ether, dibenzyl and triphenylamine. Reference solutions were prepared by dissolving 4 mg or the equivalent reference solutions in methanol (2 mL). 2-propanol (2 mL), however, used to dissolve dibenzyl and triphenylamine. A reference mixture created by transferring a similar amount (50 μ L) of each reference into an HPLC vial. As per the synthesized analogues, 1 mmol solution in methanol was prepared (2 mL).

Using the HPLC method given in the article, the retention time of each reference was determined (Figure 1). Once a capacity factor (k') calculated from references' retention times, a calibration curve computed (Figure 2). A capacity factor or retention factor used in order to determine the affinity of compounds to the stationary phase and calculate using a formula below;

$$k' = (t_R - t_0) / t_0$$

Where t_0 and t_R are retention times of uracil (the unretained reference) and references respectively.

Figure 1: the chromatogram of the reference solvents

Figure 2: the calibration curve

Retention times of the synthesized analogues measured in duplicate and the mean value used to calculate their retention factor. The calibration equation (Figure 1) applied in order to determine the logD_{7.4} of the synthesized analogues (Table 1).

Analogues	Logk'	LogD _{7.4}	Analogues	Logk'	LogD7.4
7a	1.067	3.12	12c	1.076	3.21
7b	0.859	1.68	12d	1.077	3.21
7c	0.922	2.02	12e	1.011	2.64
7d	1.030	2.80	12f	1.100	3.44
7e	0.754	1.22	12g	1.117	3.62
7f	0.872	1.74	12h	1.086	3.30
7g	0.801	1.41	12i	1.113	3.58
7h	1.079	3.23	12j	1.125	3.71
7i	1.031	2.80	12k	0.976	2.38
7j	1.007	2.62	12l	1.108	3.53
7k	1.082	3.26	16a	1.085	3.30
11a	1.077	3.21	16b	1.113	3.58
11b	n.d.	n.d.	21 a	1.066	3.11
11c	1.075	3.19	21b	1.148	3.98
11d	1.206	4.73	22a	1.138	3.86
11e	1.062	3.08	22b	1.116	3.62
11f	1.130	3.76	22c	1.075	2.80
11g	1.248	5.36	22d	1.176	4.32
11h	0.895	3.74	22e	1.152	4.02
12a	0.818	2.49	25a	1.173	4.29
12b	0.887	1.82	25b	1.113	3.58

Table 1; the logk' and log $D_{7.4}$ of synthesized analogues

A different calibration curve (Figure 3) assembled using a different column, employed for the determination of **11h** and **12a**.

Figure 3: a calibration curve used for **11h** and **12a**.

Cyclic voltammetry

Oxidation potential of the synthesized analogues measured using Metrohm 797 VA computrace.

Working electrode:	Glassy carbon electrode
Reference electrode:	Ag/AgCl electrode
Auxiliary electrode:	Platinum wire

A compound (0.01 mmol) suspended in Tris-HCl buffer (0.1 M, pH 7.4, 10 mL) and sonicated for 3 min. After transferring the above mixture into the sample holder of the cyclic voltammetry, the mixture purged with nitrogen for 3 min. The cycles swept through -0.5 to 1.0 V in triplicate. A pre-treatment of working electrode using aluminum oxide powder was necessary between measurements.

Hepatotoxicity profile of 11g

The initial cells viability in TAMH and HEPG-2 cells was less than 80% and 60% respectively. As displayed in the curves below, the increase in the concentration of **11g** briefly increased cells viability followed by no change in cells viability.

4	umeter 510 • 52 • 52 • 52 • 52 • 52 • 52 • 536 • 65 • 65 • 65 • 65 • 65 • 61 • 82 • 61 • 82 • 61 • 82 • 61 • 82 • 82 • 9 • 2 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6	1 13C 13C 00 us 986 W 298 MF	216 1H 1H 000 dB 200 dB 200 dB 200 dB 172 W 723 W	neters 768 L86 MH EM EM
a Para 201705 201705 20 20 20 655 655	20,3667,4038,4 30,3667,4 36314,4 36314,4 260,3667,6 20,3667,6 20,2595 10,2595 00000000000000000000000000000000000	L f1 = 1 10. 676505 676505	L f2 = waltz waltz 60, -5, 10, 15, 7975973 7975973 7975973 7975973	param 327 .61281
· · · · · · · · · · · · · · · · · · ·	5 mm Pi 2 2 1 0.	CHANNE 62. 100	30. 30. 400	essing 100 0
	Acqu. – Acqu. RUM ENT ENT ES		RG[2 WW 2	Proc
	F2 - Time Time PROBT PROBT PULP PULP PROBT SOLV NS NS SWH SWH AQ DS SWH AQ DS DW DW DD DE D11 D11	TD0 NUC1 PL1 PL1 SF01 SF01	CPDP CPDP PCPD PL12 PL13 PL13 PL13 PL13 PL13 SF02 SF02	F2 SI SSB SSB LB

الخليل يدلين

اطعار بغال والرمي بمطلعهم المتعا ولمرتم كركر ككال بالعطر والتك

SI.42

07.201 -----

AS-31 (13C-NMR, DMSO-d6)

- 145.85 >70.881 —

Ľ

	Current Data Paramet NAME S. Kar EXPNO PROCNO	F2 - Acquisition Par Date2161 Time21 Time21	PULFROG 5 MM PABBO PULFROG 5 MM PABBO PULFROG 5 MM PABBO 290 65 SOLVENT 65	NS DS SUN FIDRES 0.366 AO 1.3631	20 2 DEE DEE	D1 2.00000 D11 0.03000 TD0	======== CHANNEL f1 NUC1 10 P1 20 PL1 -2	PLIW 62.67650 SFO1 100.6228	====== CHANNEL f2 CPDPRG[2 walt NUC2	PCPD2 60 PL2 -5 PL12 10	PLI3 PL13 PL13 PL2W 30.18447 PL2W 0.79759 PL12W 0.79759	SFO2 400.1316	F2 - Processing para
84.41 —													
								_					
- 38.88 - 39.09 - 39.20 - 39.25 - 39.25 - 39.30 - 40.14													_
~- 48.57 ~- 51.05 ~- 23.41													

_

_ '

----- 60.49 01.63

60.901 -----

SK18B (13C-NMR, DMSO-d6)

BRUKER	Z	Current Data Parameters NAME S. Kamenz EXPNO 207 PROCNO 1	F2 - Acquisition Paramete Date20170418 Time18.26 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG 29P930 TD 65536 SOLVENT DMSO NS 3000	DS 24038.461 SWH 24038.461 FIDRES 0.366798 AQ 1.3561488 RG 2050	DW 20,800 DE 10,000 TE 2,00000000 D11 0,03000000 TD0 1	====== CHANNEL fl ==== NUC1 13C Pl 1000 Pl 62.67650986 1 PLIW 62.67650986 1 SFO1 100.6228298 1	======= CHANNEL f2 ==== CPDPRG[2 waltz16 NUC2 60.00 PL2 60.00 PL2 -5.00 PL12 10.78 PL12 10.78 PL13 10.78 P	PL2W 30.18447304 1 PL12W 0.79759723 1 PL13W 0.30184472 1 SFO2 400.1316005 1	F2 - Processing paramete: SI 32768 SF 100.6128184 1 WDW EM
	94.41 -								
	– 53'26 – 52'10	>		-					
	38.85 39.00 39.30								
	- 39.51 - 39.53 - 39.93								
	84.09 -								
	66.99 —								Ī
	79.56 –								
	97.901 –								
	- 145.59							_	
	70.661 -	2					-		
	00 331								I
									1

SK41A (13C-NMR, DMSO-d6)

	oata Parameten C. Boo 28	isition Param 2017033 2017033 12.2 spec spec 6555 6555 00M	24038.4(0.36675 1.365146 2028 2028 2028 2028 2030000000000000000	CHANNEL fl == 13 10.0 62.6765098 100.622829	CHANNEL f2 == Malt21 Malt21 0.0 -5.0 -5.0 10.7 10.7 10.7 0.301844730 0.301844770 0.301844730 0.301844730 0.3018447700 0.3018447700 0.3018447700 0.30184477000000000000000000000000000000000	cessing parame 3276 100.612817
)	Current I NAME EXPNO PROCNO	F2 - Acqu Date_ Time_ INSTRUM PROBHD PULPROG TD SOLVENT NS	SUS SUS AQ AQ DDE DDE D11 TD0 TD0	HUC1 NUC1 P1 PL1 PL1 PL1W SF01	======================================	F2 - Proc SI SF

_ -

----- 102.50

ELB060 (13C-NMR, DMSO-d6)

142.64	
18.841	
e0.231 ——	

SK16.2B (13C-NMR, DMSO-d6)

£9⁻76 ——

SE.001 -----

SK17 (13C-NMR, DMSO-d6)

77.421 99.94 12.941 22.141

Jata Parame S. Ka	uisition Pa. 2017	5 mm PABBO 29 6	24038 0.36 1.363	20 1 2.0000 0.03000	CHANNEL fl	1 62.6765 100.622	CHANNEL f2 wal		cessing par
Current I NAME EXPNO PROCNO	F2 - Acqu Date_ Time	INSTRUM PROBHD PULPROG TD SOLVENT NS	DS SWH FIDRES AQ	700 11 1100 1100		PL PL PLI PLIW SFOL	CPDPRG [2 NUC2 PCPD2	PL2 PL12 PL13 PL2W PL12W PL13W SFO2	F2 - Proc

78.41 -----

14.801 -----

19.46 -----

SK20.4 (13C-NMR, DMSO-d6)

152.24

40.35.04

	Current Data Parameters NAME Surur EXPNO 465 PDOCMO 1	Frocoso F2 - Acquisition Paramete Date 20170906 Time 21.50 Time 21.50 Time 21.50 Time 21.50 F80BHD 5 mm PABBO BB- PULFROG 55536 SolvENT 2000 NS SolvENT 2000 NS SolvENT 0.366798 H FIDRES 1.365798 H SWH 0.366798 H FIDRES 2050 U DE 1.363798 H FIDRES 2000000 U DE 20000000 S PO 0.000000 S PO 0.0000000 S PO 0.000000 S PO 0.0000000 S PO 0.000000 S PO 0.0000000 S PO 0.000000 S PO 0.0000000 S PO 0.000000 S PO 0.000000 S PO 0.000000 S PO 0.000000 S PO 0.000000 S PO 0.0000000 S PO 0.0000000000 S PO 0.0000000000 S PO 0.000000000000 S PO 0.00000000000000000000000000000000000	TDU TDU 1 ====== CHANNEL f1 ===== NUC1 13C 13C P1 13C P1 13C P1 13C P1 10.00 U P1 00.00 U 13C 13C P1 13C P1 100.6228298 M SF01 100.6228298 M	CPDPRG[2 CHANNEL f2 f2 f2 f3 f4 f4 f2 f6 f1 f6 f1 f1	F2 - Processing parameter SI 32768 SF 100.6128179 M WDW EM SSB 0
0	9.41 — — —				
1 3 3 4 1 4	7.45 8.95 1.04 0.05 1.04				Altiko, hu soo ka shi ka ka ka ka ka ka ka shu a shu an 19 hayan ya shi ya shu a shi ka ka shu a shu a shu a shu 19 hayan ya shu sa shi ka shu a shi ka shu a shu a shu
Ļ	6.62 ——				والمحادثة المحادثة
3	l`S6 ——				و من المواجعة على المراجعة على ال وقد المراجعة على الم
34	901 ——				a survey a survey of the surve
96	₩ ₩ ₩				
32 42 91 52 28	130 130 132 132 132				and the second
10 13 25 65	1231				بالمحمد المحمد معالم المحمد المحم محمد المحمد ا

AS-63 (13C-NMR, DMSO-d6)

Negative State	Current Data Parameters NAME Surver EXPNO 445 PROCNO 1	F2 - Acquisition Paramete Date_ 20170817 Time 19.18 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG 5 mm PABBO BB- PULPROG 5 mm PABBO 36536 SOLVENT 024 NS 1024	SWH 24038.461 H FIDRES 0.366798 H AQ 1.365798 H AQ 1.366798 H AQ 0.366798 H AQ 1.366798 H AQ 2050 u DW 20.800 u DE 10.00 u DI 2.00000000 s DI1 0.03000000 s ID0 1	===== CHANNEL fl ===== NUC1 13C P1 10.00 u P1 -2.70 d PL1W 62.67650986 W FF01 100.6228298 W	CFDDFRG[2 CHANNEL f2 maltz16 NUC2 NUC2 1H PCPD2 60.00 U 0 PL12 10.78 d 10.78 d PL13 30.18447304 M 15.00 d PL13 30.1984472 W 0.79759723 W PL13W 0.79759723 W 2502 d PL13W 0.30184472 W 0.30184672 W	F2 - Processing parameter SI 32768 SF 100.6128171 M WDW 5SB 0
	95'7L ——					
	60'6E 15'6E 22'6E 26'6E					
	90`09 ——					
						a distant set and set and set of the set of
	ZL'79					
	99'801 02'711 84'811 89'811					
(9p-OSMC	78.861 28.861 81.361					
AS-65 (13C-NMR, D	157.22 154.96 154.96 152.36					

	Current Data Parameters NAME T. Kasch EXPNO 132 PROCNO 1	F2 - Acquisition Parameters Date_ 2015111 Time 19.37 Time 19.37 Time 2015111 Time 19.37 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG spect PULPROG 5 mm PABBO BB- SWH 0.366798 Hz POS 0.366798 Hz POS 0.366798 Hz POS 0.366798 Hz POS 1.366798 Hz POS 0.366798 Hz POS 1.366798 Hz POS 1.366798 Hz POS 1.366798 Hz POS 1.366798 Hz POS 2.00000000 Sec POS	CHANNEL f1 13C NUC1 13C P1 10.00 use P1 -2.70 dB PLIW 62.67650986 WH SFO1 100.6228298 MH	========= CHANNEL f2 ===================================	F2 - Processing parameters SI 32768 SF 100.6128184 MH2 WDW 5SB 0
	25.03 —				معروفة معروفة المحرومة المحروفة المحروفة المحروفة المحروفة المحروفة المحروفة المحروفة المحروفة المحروفة المحروف
					ي المراجع العربي المراجع المراجع المراجع المراجع
	75.27 70.211 70.201				
ISO-d6)	130.50 19.051 133.18 133.18			_	
:I (13C-NMR, DN	78.521				بر الجمع المراجع
TK20C	74.241 765.47				

Current Data Parameters NAME EXPNO PROCNO 1	F2 - Acquisition Paramete Date20170307 Time20170307 Time20170307 INSTRUM space PROHUD 5 mm PABBO BB2059030 TUD PROB BB20536 SOLVENT 0.366798 H 4 DNSO NS 24038 461 4 DNSO 0.366798 H 4 DS 24038 461 4 DS 262 0 DNSO DNSO DNSO D10 0 0 D1 0.0000000 0 D1 0.03000000 0 D1 0.03000000 0 D1 0.03000000 0 D1 1 0.0000000 0 D1 1 0.0000000 0 D1 1 0.000000000000000000000000000000000	====== CHANNEL f1 ====== NUC1 13C 0 0 P1 -2.00 0 PL1 2.6765036 W PL1W 62.67650386 W SF01 100.6228238 M	CPDPRG[2 CHANNEL f2 maltz16 UUC2 UL 1H PCPD2 60.00 u 0 PL12 65.00 d 0 PL12 10.78 d 10.78 d PL13 30.18447304 W 0 PL12W 0.79759723 W 0.30184472 W PL12W 0.30184472 W 0.3018472 W PL12W 0.30184472 W 0.3018472 W	F2 - Processing parameter SI 32768 SF 100.6128164 M WDW EM 2SB 0 100.01
<u>۲</u> ۳.۵۲				
41.04 29.30 13.20 29.30 88.88				مراد در در با این از این مراد این از این مراد این مراد در این مراد این این مراد این مراد این مراد در این مراد م این مراد در با این مراد این مراد این مراد این مراد این مراد در این مراد این مراد این مراد این مراد این مراد این مراد در مراد این مراد
99.89 00.76 00.56				دوله محمد مدالي ومالية فعلى محملي وم موالية محمد مراجع المحمد المراجع محمد محمد محمد محمد محمد محمد محمد محم
95.46 10.401				A to any location of the second s
113.22				
00.051 00.051 00.051 00.051 00.051 00.051 00.051 00.051			<u>-</u>	
120.68				

ELB054 (13C-NMR, DMSO-d6)

£	BRUKER	Current Data Parameters NAME Surur EXPNO 369 PROCNO 1	F2 - Acquisition Paramete Date20170711 Time20170711 Time20170711 INSTRUM 201705 PROHD 5 mm PABBO BB- PULPROG 57936 SOLVENT 65536 55536536 65536 65536 44000 MS 24008 00 NS 24008 00 NS 24008 00 NS 24008 00 NS 24008 00 DE 10.0010 DE 10.0010 DE 10.0010 DE 10.00100 DE 10.00100000000000000000000000000000000	====== CHANNEL f1 ===== NUC1 13C P1 10.00 1 P1 22.70 6 PL1 62.67650986 1 PL1W 100.6228298 1 SF01 100.6228298 1	====== CHANNEL f2 ===== CPDPRG[2 waltz16 NUC2 00 01 PUC2 60.00 PL12 10.78 PL12 10.78 PL13 30.18447304 PL12W 0.79759723 1 PL13W 0.79759723 1 PL13W 0.79759723 1 PL13W 0.30184472 V PL13W 0.30184472 V	F2 - Processing parametel SI 32768 SF 100.6128193 N WDW EM
	985.41			-		
	29.652 ———					
	01238.85 105.85 105.85			-		
	43.642 - 43.642 - 40.136 - 40.136					
	259.932					
	926.401					
	868.411			-		
	425.121					
d6)	129.051					
, DMSO-	136.882					
AS-44 (13C-NMF	281.591 948.551 948.57 948.948					

Ethyl {6-[(3-methoxybenzyl)amino]-2-methylpyridin-3-yl}carbamate (11c)

159.22 159.22 151.12 151.12 151.12 151.12 152.65 122.65 112.26 112.97

06[.]401 -----

AS-52 (13C-NMR, DMSO-d6)

AS-57 (13C-NMR, D)	MSO-d6)	t (;			BRUKER
- 162.01 - 159.01 - 152.06 - 152.06 - 152.06	- 138.02 - 138.02 - 138.75 - 138.00	– 105.74 – 107.50 – 105.74	86.95 -	- 14.55 - 23.30 - 23.3	Z
\sim	> \}	>			Current Data Parameters NAME Surur EXPNO 460 PROCNO 1
					F2- Acquisition ParametersDate_20170906Time18.00Time18.00INSTRUMspectPULPROG5 mm PABBO BB-PULPROG200930SOLVENT000DS3000DSWH24038.461 Hz
					FIDRES 0.366798 Hz AQ 1.3631488 sec RG 20,800 us DW 20,800 us DE 20,800 us TE 20,800 us DE 20,000 use TE 2,0000000 sec D11 0.0300000 sec TD0 1
					======= CHANNEL f1 ====== NUC1 13C P1 10.00 use P1 62.67650986 WH PLIW 62.67650986 WH SF01 100.6228298 MH
					====== CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 60.00 us PL2 50.00 dB PL2 10.78 dB PL13 15.00 dB PL13 10.77 8 dB PL13 10.77 8 dB PL13 0.3018447304 w PL12W 0.30184472 w PL13W 0.30184472 w PL13W 0.30184472 w
			والمعادلة والمحادثة		F2 - Processing parameters SI 32768 SF 100.6128182 MH2 WDW EM SSB 0 100.47

AS-57 (13C-N

BRUKER	Z	Current Data Parameters NAME S. Dehmel EXPNO 137 PROCNO 1	F2 - Acquisition Parameter: Date	DS 24038.461 Hz SWH 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3631488 se RG 2050	DW 20.800 us DE 10.00 us TE 298.2 K D1 2.0000000 se D11 0.0300000 se TD0 1	======= CHANNEL fl ====== NUC1 13C Pl 10.00 us Pl 2.70 dB PL1 62.67650986 W SFO1 100.6228298 MH	======= CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 IH PCPD2 60.00 us PL2 500 dB PL2 500 dB PL2 10.78 dB PL2 10.78 dB PL2 0.030184472 W PL12W 0.30759723 WH PL12W 0.30759723 WH	F2 - Processing parameters SI 32768 SF 100.6128168 MH WDW 53B 0
	- 14 [.] 55						_	
	- 44.50 - 39.03 - 39.03 - 39.30 - 40.14 - 39.30 - 44.50							
	96.62 -							
	- 84.21							and a single contraction of the state of the
	-115.24 -115.03	>			_			
SO-d6)	- 132`08 - 132`02 - 132`08	>						
SD08 (13C-NMR, DM:	- 162.46 - 154.22 - 154.22 - 154.22							

SD08 (13C-NMR, DMSO-d6)

BRUKER	Z	Current Data Parameters NAME C. Bock EXPNO 144 PROCNO 1	F2 - Acquisition Parameters Date20160613 Time20160613 INSTRUMspect PILPROS209930 TD25536 SOLVENT05536 NS1024	DS 24038.44 FIDRES 24038.461 Hz FIDRES 0.366798 Hz AQ 1.3651488 sec RG 2050 use DW 20.800 use DF 20.800 use DF 299.2 K TE 299.2 K	TD0 U.U.SUUUUUU SEC	======= CHANNEL fl ======= 132 Fl 10.00 Use PL1 62.67650986 WH SFO1 100.6228298 MH	======= CHANNEL f2 ======= CPDPRG[2 waltz16 NUC2 60.00 us PCPD2 60.00 us PL2 10.78 dB PL12 10.79 dB PL12 30.184473 4 PL12W 0.79759723 W PL12W 0.79759723 W PL13W 0.30184472 W	F2 - Processing parameters SI 32768 SF 100.6128190 MH2 WDW 5SB 0 500 FM
	88.41-				-			a na tribulanta da atri
	- 38`82 - 39`09 - 39`30 - 39`21							
	- 39.53 - 40.14 - 59.93 - 52.53							
	28.62 -							יון קייני אלא איז איז איז איז איז איז איז איז איז אי
								المراجعة المراجع المراج والمراجع المراجع
	98.36							a na kitin da du anda
	108.511 12.801 -							
	68.411-	>						
	- 129.09 10.91 -	>						
DMSO-d6)	60.781 - 84.881 - 84.881 -	\geq						
13C-NMR,	- 124'20 - 124'65 - 28'76	\geq						
SD20C (91.291 -							المراجع مراجع المراجع المراجع مراجع المراجع الم

	Current Data Parameters NAME Surur EXPNO 776 PROCNO 1	F2 - Acquisition Paramet Date_ 20180727 Time 20180727 Time 20180727 Time 20180727 20111 Sect PROBHD 5 mm PABBO BB- PULPROG 50536 SolvENT 66000 05 441 MMG 6000 05 461 MMG 6000 05 1.3631488 AQ 0.366798 AQ 0.366798 AQ 0.366798 AQ 0.366798 AQ 0.366798 AQ 1.3631488 AQ 0.366798 AQ 1.3631488 AQ 2.000000000000000000000000000000000000	TD0 1 ====== CHANNEL f1 ==== NUC1 13C P1 13C PL1 62.67650986 SF01 100.62282986	===== CHANNEL f2 === CPDPRG[2 waltz16 1H NUC2 60.00 90.00 PL2 10.78 90.10.78 PL12 30.18447304 91.13 PL12W 0.79759723 91.136005 SF02 0.30184472 35702	F2 - Processing paramete SI 32768 SF 100.6128188 WDW EM
979.41 39.003 39.003 39.301 39.301 39.301 39.301	_				an each that a future of the second
SO 162.120 154.953 154.955 154.956 154.896 154.896 154.896 154.896 154.896 154.896 154.895 154.895 154.835 154.835 114.835					and the second
AS-99 (13C-NMR, DM					

	Current Data Parameters NAME C. Bock EXPNO 199 PROCNO 1	F2 - Acquisition Parameter Date 20161129 Time 20161129 Time 20161129 Time spect PROBHD 5 mm PABBO BB- PULPROG 5 mm PABBO BB- PULPROG 565536 SolvENT 24038.461 H SOLVENT 24038.461 H FIDRES 1.363488 se SolvENT 24038.461 H FIDRES 1.363488 se SolvENT 2000 000 co DB 20.800 u DE 2050 0 u DE 2000000 se D1 0.0300000 se	 ======= CHANNEL fl ====== NUC1 11 10.00 us PL1 2.67650986 Wl PL1W 62.67650986 Wl SF01 100.6228298 Ml	CPDPRG[2 CHANNEL f2 CPDPRG[2 waltz16 NUC2 6.00 u PCPD2 6.00 d PL2 -5.00 d PL2 10.78 d PL12 10.78 d PL13 30.18447304 W PL13W 0.30184472 W PL13W 0.30184472 W PL13W 0.30184472 W	F2 - Processing parametere SI 32768 SF 100.6128180 M WDW 5SB 0
13.64					{
06.81					
44,46 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 39,09 30,00 30,000 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,000 30,00000000					

83.58	
S1.701	
81.311 81.311	>
133.75 133.72 133.72	ン フ フ
148.94 148.28 142.40	\geq
762.61 82.081	

ELB040 (13C-NMR, DMSO-d6)

95.201
01.211 01.211
42.251 129.651
142.24

ـــــ 63[°] ک۲

VG GV I
69 [.] 871
160.28 162.70
MI 991

_
ତ
σ
~
S.
<u> </u>
2
Ē
Σ.
z
7
×
÷
÷
τ.
റ്
Ň
≥
$\overline{\mathbf{v}}$

	Current I NAME F2 - Acq1 F2 - Acq1 Date _ TTime _ TTime _ TTIME _ PULPROG F1D FROM PULPROG SOLVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUVENT SSUP SSUP SSUP SSUP SSUP SSUP SSUP SSU	Data Parameters K. Wurm 1 1 1 20170809 20170809 20170809 20170809 20170809 20170809 20170809 20170809 5 mm PABBO BE- 20170809 5 mm PABBO BE- 20170809 5 mm PABBO BE- 20170809 2017080 20000000 5 mm PABBO BE- 20170809 2017080 20000000 5 mm PABBO BE- 20170809 2017080 20000000 5 mm PABBO BE- 20170809 2017080 2017080 20000000 5 mm PABBO BE- 20170809 2017080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 201080 20000000 2000 2000 20000 2000 20000000 20000000 20000000 20000000 20000000 20000000 200000000	n U U U U U
_	TD0 PL1 PL1 PL1 PL1 SF01 SF01 SF01 CPDPRG[2 NUC2 CPDPRG[2 PL13 PL13 PL13 PL13 PL13 PL13 SF02	1 CHANNEL f1 ===================================	

С Ш

Z	Data Parameters K. Wurm 228 1	uisition Paramete: 20180105 20180105 spect 5 mm PABBO BB- 250930 56536 65536 0MSO 1024 4	24038.461 H 0.366798 H 1.3631488 S 2050 u 20.800 u 10.00 u 10.00 u 20.000080 2 K 0.03000000 S	CHANNEL fl ===== 13C 10.00 ul 62.67650986 W 100.6228298 M	CHANNEL f2 ===== waltz16 6000 u -5.000 u -5.000 d 10.78 di 10.78 di 10.78 di 10.78 di 0.30184472 W 0.30184472 W	cessing parameter: 32768 100.6128170 M EM 0
\smile	Current NAME EXPNO PROCNO	F2 - Acq Date_ Time INSTRUM PROBHD PROBHD PULPROG TD SOLVENT NS NS	SWH FIDRES AQ RG DW DE D1 D11 TD0 TD0	======================================	CPDPRG [2 CPDPRG [2 NUC2 PCPD2 PL12 PL13 PL13 PL13W PL12W PL13W PL13W SFO2	F2 - Pro SI SF WDW SSB SSB

96.401
81.211
72.04 60.841 72.04 20.841 70.44 20.821 20.821 20.821 20.821 20.821 20.821 21.421
75.091
96.791

17.89-----

KW69 (13C-NMR, DMSO-d6)

a Parameters K. Wurm 126	tion Parametel 20170802 9.13 spect im PABBO BB- cgpg30 65536 5536 5236 1024	24038.461 H 0.366798 H 1.3631488 s 2050 u 20.800 u 10.00 u 20.080 u 20.080 u 20.080 u 20.080 u 20.00 u 29.2 K 29.0 u 29.0 u 29.0 u 29.0 u 29.0 u 200 u	ANNEL fl ===== 13C 10.00 u -2.70 d 62.67650986 W 100.6228298 M	ANNEL f2 ===== waltz16 1H 60.00 u -6.000 u -6.00 d 10.78 dl 10.78 dl 30.18447304 W 0.79759723 W 0.79759723 W	sing parameter: 32768 100.6126579 M EM 1 00 H
Current Dat NAME EXPNO PROCNO	F2 - Acquis Date_ Time_ INSTRUM FNOBHD 5 PULPROG TD SOLVENT	SWS FIDRES AQ DW DE DI D1 D11 TD0	====== CJ NUC1 P1 PL1 PL1 PL1W SF01	======== Cl CFDPRG[2 NUC2 PCPD2 PL12 PL13 PL13 PL12W PL12W PL12W PL13W PL13W	F2 - Proce: SI SF WDW SSB CR TR

وأخار كالمراكدة والمتكري الأرا

بمعردة فللأمضاط

and the second second

كالمحارك كالهم كملاك ك

للمطرقهما

وكمحفد مناه لحزائل كرفانا فسفطنا كمنو

769.631 -----769.661 -----

KW49/1 (13C-NMR, D2O+DMSO-d6)

_

Ę

KW48 (13C-NMR, DMSO-d6)

Current Data Par NAME EXPNO PROCNO	F2 - Acquisition Date 21 Time 21 INSTRUM PULFNOG 5 mm PAI PULFNOG 5 mm PAI PULFNOG 5 mm PAI PULFNOG 5 mm PAI 24 SWH 224 SWH 24 FIDRES 0 FIDRES 0 FIDRES 1 C4 FIDRES 1.	D1 2.00 D11 0.03 TD0	====== CHANNEL NUC1 P1 P1 P11 62.67 SF01 100.6	====== CHANNEL 1 CPDPRG[2 ww NUC2 PCPD2 PCPD2 PL22 PL12 PL12 30.18 PL12 0.795 PL13W 0.795 PL13W 0.30.18 PL13W 0.301 PL13W 0.30	Attained F2 - Processing pa SI SF 100.61
					a sure of the second
	Current Data Pa NAME EXPNO FROCNO	Current Data Parks	Current Data Para Para Para Para Para Para Para P	Current Data Para Para Para Para Para Para Para P	Current Data Ra Control Data Ra EXONO EXO

		re coor		MH MH	Maxadada Maxadada	ers MH HZ
ZUKER	Jata Parameters K. Wurn 2 1	uisition Parame 20170508 12.32 3pect 5 mm PABBO BB- 29p930 65536 65536 0MSC 3000	24038.461 0.366798 1.3631488 2050 2050 2050 10.00 10.00 20.0000000 0.030000000	CHANNEL fl === 13C 10.00 -2.70 62.67650986 100.6228298	CHANNEL f2 === 11 16 60.01 -5.00 10.78 10.78 30.18447304 0.79759723 0.30184472 0.30184472	cessing paramet 32768 100.6128174 EM 0 1.000
	Current NAME EXPNO PROCNO	F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	SWH FIDRES AQ DW DW TE D11 D11 TD0	NUC1 PL PL1 PL1W SF01	CPDPRG[2 CPDPRG[2 NUC2 PCPD2 PL12 PL13 PL13 PL13 PL13W PL13W PL13W PL13W	F2 - Pro SI - SE WDW SSB LB

_ _

~ 106.50 115.21 115.20 114.98 115.21 84.941 25.921 27.924 27.9444 27.9444 27.9444 27.9444 27.9444 27.9444 27.9444 27.9444 2 es.091 -162.88 165.13

KW08 (13C-NMR, DMSO-d6)

Data Parame	guisition Pa 2017 1 5 5 7 7 6 6 6 7 7 6	24038 1.363 1.363 2000	0.0300 0.0300 = CHANNEL f1	62.6765 100.622 = CHANNEL f2	30.1841 1 30.1841 0.7975 0.3018	cessing par 100.612
Current NAME EXPNO PROCNO	F2 - Acc Date_ Time_ INSTRUM PROBHD PULPROG TD SOLVENT NS	DS SWH FIDRES AQ RG DW DE TE TE	TD0 TD0 NUC1 P1 P1	PLIW SFO1 ======= CPDPRG[2	NUC2 PCPD2 PL12 PL12 PL13 PL13 PL12W PL12W PL13W SF02	F2 - Pro SI WDW GDN

فمغاديه كألكرك

فواللسانية بالاختصارية مأمول كالمراجعة أتلهم وساعري فخناني معاراتهم

متعفقه بنزرر ألمان منفقى والعدم أغام الألم أمام كرزائني والش وأشع م السكر من المركز بقرع في ولم يعام

فريض ومخافا المعام ومشمع تشار كركرك

--=

AS-89 (13C-NMR, DMSO-d6)

~ 92'12 ~ 101'65

78.101 -

-102.13 75.301 -72.211--112.33

-114.85 -112.45 -112.45

~ 158.97 ~ 158.05

~ 135.65 ~ 135.61 ~ 137.19

97.041-58.041 152.86 - 122'83

- 160.95 - 159.75 - 160.95

~163.26 ~162.14

Y

11

117

BRUKER Current Data Parameters	NAME K. Wurm Expno 119 Procno 1	F2 - Acquisition Parameter Date_ 20170728 Time 13.19 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG 299930 TD 65536 SoLVENT DMSO	DS SWH FIDRES 24038.461 H2 FIDRES 0.365461 H2 AQ 1.3631679 H2 0.3631488 82 1.3631488 82 1.3631488 82 0.360 01 2050 01 DW 20.800 01 DF 20.800 01 DF 299.2 M5 D1 2.0000000 56	TD1 0.000000 0 1 ======= CHANNEL f1 ======= NUC1 13C P1 10.00 us PLI 62.67650986 M PLIW 52010 01 100.6228298 M	===== CHANNEL f2 ==== === === === === === === = = = = = =	F2 - Processing parameters SI 32768 SF 100.6128190 ME WDW 5SB 0
20.50 23.33 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 23.30 20 20 20 20 20 20 20 20 20 20 20 20 20	-					

_ .

89.56 ——

27	80	۱ -		_
07 07	.81 .81	↓ - ↓ -	>	>
71 85 89 78 78 78	53 58 53 33 33 39	- - - - -		
20 29 68	57 67 67	↓ - ↓ - ↓ -	>	
92 82	29 09	↓ - ↓ -		

KW53 (13C-NMR, DMSO-d6)

	Current Data Parameter: NAME K. Wurr EXPNO 18 PROCNO	F2 - Acquisition Parame Date_ 20170912 Time 2.0 INSTRUM 5 mm PABBO BB PULPROG 20023	SOLVENT 0000 SOLVENT 0000 NS 2000 SMH 2463 FTDRFS 0.366700	AC No. 2013/24/24/24/24/24/24/24/24/24/24/24/24/24/	D1 2,0000000 D11 0,03000000 TD0	====== CHANNEL fl === 130 P1 10.00 P1 -2.70 PL1 62.6762988 SFO1 100.6228298	======= CHANNEL f2 === CFDPRG[2 valtz1 NUC2 60.01 PCP2 60.01 PL2 15.00 PL12 15.00 PL13 30.1844730. PL12W 0.7975972. PL12W 0.7975972. PL13W 0.30184473 PL13W 0.30184473 PL13W 0.30184473	F2 - Processing paramet S1 3276 SF 100.612817
237.54 239.591 239.501 239.501 239.501 2401 250.052 250.552		_						

Data Parameters K. Wurm 221 1	<pre>puisition Paramet 20171023 9.05 9.05 9.05 9.05 9.05 0.2099930 0.366798 1.3631488 1.3631488 1.3631488 1.3631488</pre>	2,00000000 0,03000000 1	<pre>= CHANNEL f1 ==== 13C 10.00 -2.70 62.67650986 100.6228298</pre>	<pre>= CHANNEL f2 ===== waltz16 1H 60.00 -5.000 -5.000 10.78 15.00 30.18447304 0.79759723 0.30184472 400.1316005</pre>	Cessing paramete 32768 100.6128177
Current NAME EXPNO PROCNO	F2 - Acc Date_ Time PROBHD PULPROG PULPROG SOLVENT NS SOLVENT NS SWH FIDRES AQ RG RG	TE D1 TD0 TD0	EFFI NUC1 PL PL1 PL1W SFO1	======================================	F2 - Pro SI SF WDM

_

182.781 -----

123

200 200 200 200 200 200 200 200 200 200	Current Data Para NAME EXPNO PROCNO	F2 - Acquisition F Date_ 20 Time 15 mm PABF PULPROG 5 mm PABF PULPROG 5 mm PABF TD 240 SUVENT NS NS SWH 240 FIDE 240 0.0.03 DE 70 DE 70 D1 2.00 D1 0.03	====== CHANNEL NUC1 P1 P1 62.67	CHANNEL CPDFRG[2 WW CPDFRG[2 WW NUC2 PL2 PL12 PL12 PL12 PL12W 0.30.18 PL12W 0.30.18 PL12W 0.30.18 PL13W 0.30.18 PL13W 0.30.18	atarpharan arant "Propagataran propagataran provide F2 - Processing past SI 100.6:
WR, DMSO-d6) 135.031 135.036 135.0459 135.0459 135.0450 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.04100 135.041000 135.041000 135.04000 135.04000 135.04000 135.04000 135.04000 135.04000 135.040000 135.040000 135.040000 135.040000 135.0400000000000000000000000000000000000				الم	وكخفالة وتحقق ومحترج والأطالة الماستهاط والمعرين الكامر وتتحاط وخلائهما وسأحاط والمتعاوية وحاريها ومتحارك والمراكل مرتقيها ومختط

والمركزة المركزة المركز المركزة المركزة

- 146.195 -- 144.269 ELB093 (13C-NN 166.063

ELB101 (13C-NMR, DMSO-d6)		S
163.40 163.67 160.83 150.74 160.85 160.85 160.85 160.85 160.85 160.95 160.95 112.85 11	45.81 39.30 39.30 39.30 39.30 39.30 38.35 88.35	
		Current Data Parameters NAME C. Bock EXPNO 404 PROCNO 1
		F2 - Acquisition Parameter: Date 20180115 Time 15.22 TinsTRUM 20180115 F000000 15.22 FN00000 5 mm PABBO BB- PULPROG 209930 PULPROG 209336 PULPROG 25536 FDN DMSO SWH 24038.461 Hz NS 800 SWH 24038.461 Hz SWH 24038.461 Hz MS 800 SWH 24038.460 us SWH 2365798 Hz AQ 1.36531488 se SWH 20500 us DS 1.36531488 se CONDOU us 2000 us DE 1.0.00 us DI 0.03000000 se D1 0.03000000 se
		======= CHANNEL fl ====== NUC1 13C Pl 10.00 Us PLI 62.67650986 W FLIW 5F01 100.6228298 MH
		====== CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 60.00 us PCPD2 60.00 us PCPD2 10.78 dB PL12 10.78 dA PL13 30.1844730 dB PL12W 0.79759723 W PL13W 0.30184472 W PL13W 0.1316005 MH
	المعاولين المعاولين عند المعاولين المعاولين المعاولين المعاولين المعاولين المعاولين المعاولين المعاولين المعاو المعاولين المعاولين ال	F2 - Processing parameters SI 33768 SF 100.6128175 MH: WDW EM EM SSB 0 1.00 Hz

E2.51	VV Current Data Parameters NAME Surur EXPNO 624 PROCNO 1	F2 - Acquisition Parameters Date_ 20180116 Time 14.49 INSTRUM spect INSTRUM spect PULPROG Sum PABBO BB- PULPROG Scopg30 FUD 65536 SOLVENT 1024 DS 4038.461 MS 1024 SMH 0.356398 SMH 0.356398 SOLVENT 1024 DS 4038.461 MS 1.3653488 SCOPRO 0.356398 DS 0.356398 SCOPRO 0.356398 DM 24038.461 DNS 0.356398 PULPRES 1.3653488 SCOPRO 0.356398 PUL 0.356398 PUL 0.356300 PUL 0.366394 PUL 2.00000000 PUL 0.03000000 PUL 0.03000000	====== CHANNEL f1 ====== NUC1 13C P1 10.00 use P1 -2.70 dB PLIW 62.67650986 W SFO1 100.6228298 MH	====== CHANNEL f2 ====== CPDPRG[2 waltz16 NUC2 60.00 us PL2 50.00 dB PL12 10.78 dB PL13 15.00 dB PL13 15.00 dB PL13 0.3018447304 W PL12W 0.30184472 W PL13W 0.30184472 W PL13W 0.30184472 W	A tube of the second se
38:88 33:00 39:21 39:21 39:25 39:15 39:33					and the second
40'14 43'23 46'01 26'60					and the second secon
S1.99					الم مع مدار المع من المالية مع من المالية و المراجع المالية مع من المالية مع من المالية و مع من مع من المالية مع من المالية مع من المالية و مع من مع من المالية مع من المالية و مع من مع من المالية مع من المالية و مع من من مع من المالية مع من المالية و مع من من مع من المالية و مع من
					in the second
103.02 115.36 114.43	117				a se la stad da la cali da la cana apresidada en la cali da la cana
128.85 128.85	>		-		
132'93 (9) 96'281	>				الغام المحاطية المحاط
4 S -96 (13 C-NMF 154:90 161:99 161:99					adala adalar da adalar da adalar Adalar da adalar da a

		ULITELIC DALA FAIMELELS NAME EXPNO PROCNO 1	F2 - Acquisition Parameters Date_ 20171016 Time 8.55 INSTRUM spect DECED	PULPROG JANK FALLO PULPROG 2999330 TD SOLVENT 0536 SOLVENT 1024 DS 024 DS	SWH Z41036.461 Hz RIDRES 0.366798 Hz AQ 1.3631488 sec RG 2050 B DW 20.800 use	DE TE 298.7 K TE 298.7 K D1 2.0000000 sec D11 0.0300000 sec TD0 1	======= CHANNEL f1 ====== NUC1 13C 13C P1 -2.70 dB PL1 62.67650986 WHz FF1W 100.6228298 MHz	====== CHANNEL f2 ===== CPDPRG[2 waltz16 NUC2 010 use PCPD2 60.00 use PL2 -5.00 dB PL12 10.78 dB PL13 30.18447304 W PL12W 0.7975973 W	PL13W 0.30184472 W SFO2 400.1316005 MHz F2 - Processing parameters ST 100.6128186 MHz WDW 0 5128186 MHz SSB 0
	25,54 25,54 25,54 25,54 26,32								
	23, 20 23, 20 29, 20 29, 20 29, 20 29, 20 29, 20 20 20 20 20 20 20 20 20 20 20 20 20 2	}							alation of the second secon
	— 62 ⁻ 25	_					_		مريد و المريد و المر و المريد و ال
	9†`⊆6 — 89`50 L —	_					-		a and the second se
	08'221	7							الم
R, DMSO-d6)		2						-	the second s
AS-67 (13C-NM	- 125.43 	>							

Ş	BRUKER	Current Data Parameters NAME Surur EXPNO 528 PROCNO 1	F2 - Acquisition Paramet(Date_ 20171114 Time 12.13 INSTRUM 20171114 Time 20171114 INSTRUM spect PROBHD 5 mm PABBO BB- PULPROG 59930 PULPROG 59536 SOLVENT 1024 MS 24038.461 DAS 1024 NS 24038.461 SWH 0.366798 SWH 0.366798 A 0.366798 A 0.366798 DMS 102.40 DMS 1.3631488 RG 0.366798 DM 0.366798 DM 0.366798 DM 0.366798 DM 0.3600000 DE 10.001 DE 2.00000000 DI 0.03000000 DI 0.03000000	====== CHANNEL fl ===== NUC1 13C P1 1000 P1 22.000 P11 62.67650986 1 SFOL 100.6228298 1	===== CPDPRG[2 waltz16 UUC22 00 1H PCPD2 60.00 -5.00 PL22 10.78 -5.00 PL12 10.775 10.775 PL13 30.18447234 15.00 PL12W 0.797597234 12.13447234 PL13W 0.301844722 20.1316005 PL13W 0.301844723 20.1316005	F2 - Processing paramete! S1 32768 SF 100.6128173 1 WDW 5SB 0
	806.23.908		-			
	788.88 28.001					
	612.6E 226.6E 9E1.0F				نه، محاطبه فی اعظام محدث اور اینام اینان محدث این محاطبه عمار با حاطبان محدود را و محدث را و محدث و را محاطبان اینام چامین و عدوم محاطبا محدث محدود و عدوم اینام اینام محدث اینام محدث و حاطبان محدود محدث و و محدث و اینام مح ا	
	806.86					
	990./11~					
	117.240					
(9)	126.278					
AR, DMSO-d	847.961					
13C-N	297.531 ——					
AS-75 (964.531					
						Г

	Current Data Parameters NAME C. Bock EXPNO	PROCNO 1 F2 - Acquisition Parametel Date 20180329 Time 9.48 TNSTRUM 20180329 Time 20180329 PULPROG 5 mm PABBO BB- PULPROG 2 gpg30 FD 3 gpg30 FD 1500 FD 0.365798 FD 0.365798 PM 0.365798 PM 0.366798 FD 0.366798 PM 0.366798 PM 0.366798 PM 0.366798 PM 2.0500 PM 2.0600000 PE 2.00000000 PI 0.03000000 PI 0.03000000	====== CHANNEL fl ====== NUC1 13C P1 9.80 u. P1 -2.00 di PL1 53.34635925 W PL1W 53.34635925 W	====== CHANNEL f2 ===== CPDPRG[2 waltz16 NCC2 11 PCPD2 60.00 u PL2 11.28 di PL12 11.28 di PL12 0.71085939 W PL13W 0.71085924 W PL13W 0.71085924 W PL13W 0.30184472 W PL13W 0.30184472 W PL2 400.1316005 M PL2 100.6128181 Mi SF 100.6128181 Mi SSB 0
	08.81 —— 84.E1 ——			
	28.54 23.55 23.55 23.55 23.55 23.55 23.55 23.55 25.55			
	52 [.] 79 ——			
	90.86 ——			
	98.411 39.411 98.411			
R, DMSO-d6)	137.25		-	
ELB095Uk (13C-NM	162.11 154.42 154.42			

AS-95 (13C-NMR, DMSO-d6)

	e D	S H S S H Z S S S S S S S S S S S S S S S S S S S	MH de us	HEARDER H	AH MH
Data Parameters Surur 671 1	uisition Paramet 20180219 20180219 20127 20127 5 mm PABBO BB- 55536 55536 55536 55536	24038.461 0.366798 1.361450 20580 20580 10.00 10.00 20.0300000 0.03000000 1	CHANNEL fl ==== 13C 10.00 -2.70 62.67650986 100.6228298	CHANNEL f2 === waltz16 60.00 -5.00 10.78 10.78 30.18447304 0.79759723 0.30184472 0.30184472	cessing parameto 32768 100.6128182 EM
Current NAME EXPNO PROCNO	72 - Acq Date_ Time_ INSTRUM PROBHD PROBHD PULPROG FD FD SOLVENT	AC DURES AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC A	NUC1 P1 PL1 PL1 F1W SF01	======================================	F2 - Pro SI SF NDW SSB

AS-103 (13C-NMR, DMSO-d6)

Ľ

Data Parameters Surur 830 1	uisition Paramete 20181023 10.47 spect spect 2909 BB- 2909 2536 0 55536 DMSO 2500 2500	24038.461 0.366798 1.3631488 2050 20.800 10.00 2.0000000 0.03000000 1	CHANNEL f1 ==== 13C 10.00 -2.70 62.67659986 100.6228298	CHANNEL f2 ==== waltz16 60.00 -5.00 -5.00 10.78 10.78 30.1847304 0.79759723 0.79759723 0.30184472 0.30184472 0.30184472	cessing paramete: 32768 100.6128175 1
Current NAME EXPNO PROCNO	F2 - Acc Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS	SWH FIDRES AQ RG DW DD DT D11 TD0 TD0	NUC1 P1 PL1 PL1W SF01	======================================	F2 - Pro SI SF

AS-120 (13C-NMR, DMSO-d6)

418.89	
669.66	
922-201	
662.411	
246.761	
160.452	
899.891	