Supporting Information

Transition Metal-Free Functionalized Hydration of Alkynes: One-Pot Synthesis of fluorinated β -keto-imidates using Selectfluor

Arnab Ghosh,^a Rajeev Hegde,^a Vitthal B. Makane,^{b,c} Balasubramanian Sridhar,^d Haridas B. Rode,^{b,c} Siddappa A. Patil,^a and Ramesh B. Dateer^{*a}

^aCentre for Nano and Material Sciences, Jain Global Campus, JAIN (Deemed-to-be-University), Bangalore, Karnataka 562112, India

^bDepartment of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India

^c Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh- 201 002, India

^dCenter for X-ray crystallography Analytical Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007

Table of Contents

1.0 General Considerations	S2
2.0 Preparation of Starting Materials	S2
3.0 General Experimental Procedure of the Optimization Study	S3
4.0 Experimental Procedure	S4
4.1 Experimental procedure for three-component reaction	
4.2 Experimental procedure for one-pot synthesis of 3-imino-2-fluoro 1-ones	
5.0 Representative procedure of gram scale reaction	S5
6.0 Synthesis and Application of fluorinated $m eta$ -keto methylester 6	S5
6.1 Representative procedure of imine hydrolysis: Preparation of	
fluorinated β -keto methylester 6	
6.2 Application of fluorinated β -keto methylester 6	
7.0 Studies with EGFR Kinase: Schematic representation	S6
8.0 Spectroscopic data of newly obtained products	S6
9.0 References	S12
Appendix	S13
Spectral copies of ¹ H and ¹³ C NMR of compounds obtained in this study	
Crystallographic data	

1.0 General Considerations

Unless otherwise specified, all reactions were carried out in oven dried vials or reaction vessels with magnetic stirring under nitrogen atmosphere. Chloroform-d purchased from Cambridge Isotope Laboratories, Inc. was degassed and used as a solvent without additional purification for optimization and mechanistic studies. All other reagents were directly used as purchased without further purification unless otherwise stated. All experiments were monitored by analytical thin layer chromatography (TLC) on pre-coated silica gel 60 F254 plates. Visualization on TLC was achieved by the use of UV light (254 nm). Column chromatography was undertaken on silica gel (60-120 mesh) using a proper eluent. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak (CHCl₃ in CDCl₃: 7.26 ppm). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), doublet of doublets (ddd), doublet of triplets (dt), triplet (t), triplet of doublets (td), quartet (q), and multiplet (m). ${}^{13}C{}^{1}H$ NMR was recorded on Agilent Technologies DD2 (100 MHz) and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center of a triplet at 77.0 ppm of CDCl₃. ¹⁹F-NMR was recorded on Agilent Technologies DD2 (100 MHz). High resolution mass spectra were HRMS (ESI) data were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. Infrared (IR) spectra were recorded using FT-IR Spectrometer from Agient Co., Ltd. Frequencies are given in reciprocal centimeters (cm⁻¹) and only selected absorbance peaks are reported. X-ray data for the compound KA456 was collected on a Bruker D8 QUEST instrument with an IµS Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The compound **3a**'^[S1] and **4**^[S2] are reported and corresponding reference are cited 3-arylpropiolaldehyde and N-Arylhydroxylamine are prepared according to the literature procedure whereas all analytical and spectral data are given for newly synthesized products.

2.0 Preparation of starting materials

3-arylpropiolaldehyde $\mathbf{1}^{[S1]}$ and *N*-Arylhydroxylamine compounds $\mathbf{2}^{[S3]}$ were synthesized according to the reported procedures.

List of Aldehydes:

List of N-Arylhydroxylamine compounds:

3.0 General Experimental Procedure for Optimization Study (Table S1)

a) For Three-component Reaction:

The perfectly dried THF (2 ml) was added in to the oven dried 25 mL R.B.F containing compound **2a** (59.95 mg, 0.55 mmol), 4Å molecular sieves under nitrogen atmosphere. Then, THF (1 mL) solution of compound **1a** (65.00 mg, 0.5 mmol) followed by ROH (0–2 mmol) was added. The reaction mixture was stirred at 25 °C for 6 h, the solvent was evaporated by rotary evaporator and crude compound was purified by column chromatography (eluent: 2% EA/Hexane) to get the compound. The reaction was repeated twice and product is isolated to determine the yield (by average of two run).

b) For Four-component one-pot reaction (entries 10 and 11, Table S1):

The perfectly dried THF (2 ml) was added in to the oven dried a 25 mL R.B.F containing compound **2a** (59.95 mg, 0.55 mmol), 4Å molecular sieves under nitrogen atmosphere. Then, THF (1 mL) solution of compound **1a** (65.00 mg, 0.5 mmol) followed by MeOH (64.01 mg, 2 mmol) was added and reaction mixture was stirred at 25 °C (\sim 6 h). After the complete consumption of starting material (Indicated by TLC), Selectflour (212.33 mg, 0.6 mmol) was added the parent THF solution and continue starring at 50 °C for 12 h. The solvent was evaporated by rotary evaporator and crude compound was purified by column chromatography (eluent: 1.5% EA/Hexane) to get the compound. The reaction was repeated twice and product is isolated to determine the yield (by average of two run).

Table S1. Optimization of reaction condition^a

Entry	ROH (equiv)	Solvent	time	Compounds ^b
_			(<i>h</i>)	_
				3 (%) / 3a' (%) 5a (%)
1	ROH = none	Wet toluene	24	3a(0) / 3a'(67) —

2	MeOH (4)	Wet toluene	15	3a (41) / 3a' (26) —
3	MeOH (4)	toluene	15	3a (56) / 3a' (trace) —
4	MeOH (4)	THF	6	3a (91) / 3a' (trace) —
5	MeOH (4)	1,4-dioxane	16	3a (55) / 3a' (15) —
6	MeOH (4)	Dichloromethane	10	3a (31) / 3a' (10) —
7	MeOH (4)	Acetonitrile	10	Messy —
8	MeOH (3)	THF	10	3a (76) / 3a' (10) —
9	MeOH (2)	THF	18	3a (58) / 3a' (31) —
10 ^c	MeOH (4)	THF	6	3a (~95) / 3a'(trace) 81
10 ^c 11 ^c	MeOH (4) MeOH (3)	THF THF	6 10	3a (~95) / 3a'(trace) 81 3a (~81) / 3a'(14) 72
10 ^c 11 ^c 12 ^d	MeOH (4) MeOH (3) ROH = EtOH (4)	THF THF THF	6 10 10	3a (~95) / 3a'(trace) 81 3a (~81) / 3a'(14) 72 3b(58)/3a'(21) 5b(44)
$ \begin{array}{c} 10^c \\ 11^c \\ 12^d \\ 13 \end{array} $	MeOH (4) MeOH (3) ROH = EtOH (4) t-BuOH (4)	THF THF THF THF	6 10 10 15	3a (~95) / 3a'(trace) 81 3a (~81) / 3a'(14) 72 3b(58)/3a'(21) 5b(44) 3i (trace) / 3a'(38) —
$ \begin{array}{r} 10^{c} \\ 11^{c} \\ 12^{d} \\ 13 \\ 14 \end{array} $	MeOH (4) MeOH (3) ROH = EtOH (4) t-BuOH (4) n-BuOH (4)	THF THF THF THF THF	6 10 10 15 18	$\begin{array}{c ccccc} 3a (\sim\!95) / 3a'(trace) & 81 \\ \hline 3a (\sim\!81) / 3a'(14) & 72 \\ \hline 3b (58) / 3a'(21) & 5b (44) \\ \hline 3i (trace) / 3a'(38) & - \\ \hline 3ii (trace) / 3a'(41) & - \\ \end{array}$
$ \begin{array}{r} 10^c \\ 11^c \\ 12^d \\ 13 \\ 14 \\ 15 \\ \end{array} $	MeOH (4) MeOH (3) ROH = EtOH (4) t-BuOH (4) n-BuOH (4) i-PrOH (4)	THF THF THF THF THF THF	6 10 10 15 18 18	3a (~95) / 3a'(trace) 81 3a (~81) / 3a'(14) 72 3b(58)/3a'(21) 5b(44) 3i (trace) / 3a'(38) 3ii (trace) / 3a'(41) 3iii (5-10) / 3a'(21)
$ \begin{array}{c} 10^{c} \\ 11^{c} \\ 12^{d} \\ 13 \\ 14 \\ 15 \\ 16 \end{array} $	MeOH (4) MeOH (3) ROH = EtOH (4) t-BuOH (4) n-BuOH (4) i-PrOH (4) PhOH (4)	THF THF THF THF THF THF THF	6 10 10 15 18 18 18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (0.55 mmol), ROH (0–4 equiv), molecular sieves (4Å) in THF (3 mL) at 25 °C then (in case of entries 10 and 11) Selectfluor (1.2 equiv) at 50 °C. ^{*b*}yields are reported after purification form silica column (average of two run). ^{*c*} In these cases, **3a/3a'** are not isolated and their approx. TLC conversion is shown. ^{*d*}yields corresponds to Selectfluor addition to the purified **3b**.

4.0 Experimental Procedure

a) For three component synthesis of 3-amino-2- en 1-ones:

The perfectly dried THF (2 ml) was added in to the oven dried 25 mL R.B.F containing compound **2a** (59.95 mg, 0.55 mmol), 4Å molecular sieves under nitrogen atmosphere. Then, THF (1 mL) solution of compound (65.00 mg, 0.5 mmol) followed by MeOH (64.01 mg, 2 mmol) was added. The reaction mixture was stirred at 25 °C for 6 h, the solvent was evaporated by rotary evaporator and crude compound was purified by column chromatography (eluent: 2% EA/Hexane) to get the compound (*E*)-3-methoxy-1-phenyl-3-(phenylamino)prop-2-en-1-one (**3a**) (115.16 mg, 91%). as a yellowish solid and side product 3-oxo-*N*,3-diphenylpropanamide **3a**' as a off-white solid.

b) For four-component one-pot synthesis of 3-imino-2-fluoro 1-ones:

The perfectly dried THF (2 ml) was added in to the oven dried a 25 mL R.B.F containing compound **2a** (59.95 mg, 0.55 mmol), 4Å molecular sieves under nitrogen atmosphere. Then, THF (1 mL) solution of compound 1a (65.00 mg, 0.5 mmol) followed by MeOH (64.01 mg, 2 mmol) was added and reaction mixture was stirred at 25 °C (\sim 6 h). After the complete consumption of starting material (Indicated by TLC), Selectfluor (212.33 mg, 0.6 mmol) was added the parent THF solution and continue starring at 50 °C for 12 h. The solvent was evaporated by rotary evaporator and crude compound was purified by column chromatography (eluent: 1.5% EA/Hexane) to get the compound. The reaction was repeated twice and product is isolated to determine the yield (by average of two run).

5.0 Representative procedure of gram scale reaction

To a flame dried 50 mL round bottom flask were added compound **2a** (0.92 g, 8.44 mmol)), 4Å molecular sieves and THF (10 mL) under nitrogen atmosphere. Then, THF (5 mL) solution of compound **1a** (1.0 g, 7.68 mmol) followed by MeOH (0.98 g, 30.72 mmol) was added and reaction mixture was stirred at 25 °C for around 7 h. After the complete consumption of starting material (Indicated by TLC), Selectfluor (3.26 g, 9.21 mmol) was added the parent THF solution and continue starring at 50 °C for 12 h. The solvent was evaporated by rotary evaporator and crude compound was purified by column chromatography (eluent: 1.5% EA/Hexane) to get the compound **5a** (1.62 g, 78 %) as a yellow solid.

6.0 Synthesis and Application of Fluorinated β -keto esters 6

6.1) Representative procedure of imine hydrolysis: Preparation of fluorinated β -keto methylester 6^[S4]

To a RBF with magnetic stir bar was added compound (**5a**) (35.4 mg, 0.1 mmol) followed by THF (10 mL). The mixture of 20% aq. solution of AcOH (2.0 mL) was then added and reaction mixture was further stirred under heating at 50 °C for 24 h. After the completion of the reaction, a pinch of MgSO₄ was added to adsorb the traces of water and reaction mass was filtered through cellite pad and washed with dichloromethane, filtrate was evaporated by rotary evaporator and crude compound is purified by column chromatography (eluent: 2% EA/Hexane) to get fluorinated β -keto methylester **6** (18.6 mg,79 %).

6.2) Application of fluorinated β -keto methylester 6: The application of analogous compound^[S4c] 7 (ethyl ester of 6) in organic synthesis is depicted in (Scheme 1). For example; Soltz *et al*.^[S5] reported iridium catalyzed asymmetric allylic alkylation of 7 leads to the highly functionalized fluoro-building block 8. Lu *et al*. reported, asymmetric Mannich reaction of 7 with a bifunctional thiourea catalyst furnish 9 ^[S6] Importantly, guanidine-catalyzed Michael addition of 7 gives access to 10 in good yield and selectivity.^[S7]

Scheme 1: Importance of 5 as a valuable precursor

7.0 Studies with EGFR Kinase: Schematic diagram

Figure 1: Interaction of **5k** with EGFR kinase. Compound **5k** was docked in EGFR kinase (PDB ID: 1M17)

8.0 Spectroscopic Data of Obtained Fluorinated Products:

(E)-3-methoxy-1-phenyl-3-(phenylamino)prop-2-en-1-one (3a)

Yellow solid; m.p. 131–132 °C; ¹H NMR (400 MHz, CDCl₃) δ 13.08 (s, 1H), 7.91 –7.89 (m, 2H), 7.74 –7.76 (m, 3H), 7.36 – 7.31 (m, 4H), 7.12 – 7.10 (m, 1H), 5. 58 (s, 1H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.5, 167.0, 141.4, 137.3, 131.8, 129.0, 128.2, 126.8, 124.2, 122.0, 121.9, 55.8; IR (cm¹): 3420 (bs), 3010, 1739, 1600, 1021;

HRMS (ESI) calcd. for C₁₆H₁₅NO₂ [M]⁺: 253.1103; found 253.1106

Methyl 2-fluoro-3-oxo-N,3-diphenylpropanimidate (5a)

Yellow solid; m.p. 141 – 143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 4.0 Hz, 1H), 7.44 (t, *J* = 4.0 Hz, 2H), 7.36 (t, *J* = 4.0 Hz, 2H), 7.14 (t, *J* = 4.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 5.97 (d, *J* = 32.0 Hz, 1H,) 3.83 (s, 3H); ¹⁹F NMR

(400 MHz, CDCl₃) δ -188.71 (d, J_{C-F} = 48.0 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 191.5 (d, J_{C-F} = 13.0 Hz), 155.0 (d, J_{C-F} = 12.0 Hz), 146.1, 134.1, 133.7, 129.3, 128.7, 128.6, 124.3, 121.2, 86.4 (d, J_{C-F} = 128.0 Hz, 54.4); IR (cm⁻¹): 1741, 1690, 1654, 1250, 1050; HRMS (ESI) calcd. for C₁₆H₁₄FNO₂ [M]⁺: 271.1009; found 271.1013.

¹H-NOE spectral data of 5a.

Structure of 5a	Irradiation	Intensity Increase (%)
. Н ^{3,}	OMe (δ 3.83)	H ¹ (δ 6.02 ~ 5.94, 0.0 %), H ² H ² ' (δ 7.37 ~ 7.34, 0.0 %), H ³ H ³ ' (δ 7.13 ~ 6.95, 0.0 %)
$H^{2} H^{4}$	H^1 (δ 6.02 ~ 5.94)	H ² H ² (δ 7.37 ~ 7.34, 0.0 %), OMe (δ 3.83, 0.0 %)
F H ⁴	$H^2 H^{2'}(\delta 7.37 \sim 7.34)$	OMe (δ 3.83, 0.0 %), H ¹ (δ 6.02 ~ 5.94, 0.0 %), H ³ H ³ (δ 7.12 ~ 6.05 1.20 %)
		$\frac{11}{10} \frac{11}{(0.7.15 \times 0.95, 1.59.76)} = 0.0000000000000000000000000000000000$
	H ³ H ³ (ð 7.13 ~ 6.95)	$ H^2 H^2 (\delta 7.37 \sim 7.34, 1.13\%)$

Ethyl 2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanimidate (5b)

Red semi solid; m.p. 159 - 160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 - 7.76 (d, J = 8.0 Hz, 2H), 7.61 - 7.57 (t, J = 8 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.13 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 4.0 Hz, 2H), 6.95 (d, J = 48.0 Hz, 1H), 4.25(q, J = 8.0 Hz, 2H), 1.23 (t, J = 8.0 Hz, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 191.6 (d, J = 20.0 Hz), 154.5 (d, J = 18.0 Hz), 146.2, 134.0, 133.8, 129.3, 128.6, 128.53, 128.5, 124.2, 121.2, 86.5(d, J = 191.0 Hz), 63.0, 13.7; IR (cm⁻¹): 1774, 1677, 1626, 1170, 1151, 1062, 988; HRMS (ESI) calcd for C₂₄H₂₁FNO₅ [M]⁺: 285.1165; found [M+H]⁺: 286.1231.

Methyl 3-(4-chlorophenyl)-2-fluoro-3-oxo-N-phenylpropanimidate (5c)

Yellow solid; m.p. 148 – 149 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 7.33 (d, *J* = 8.0 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8 Hz, 2H), 5.99 – 5.87 (d, J = 48 Hz, 1H), 3.83 (s, 3H); ¹⁹F NMR (400 MHz, CDCl₃) δ -188.21 (d, $J_{C-F} = 48.0$ Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 190.7 (d, J = 20 Hz), 154.7 (d, J = 18 Hz), 145.9, 140.7, 132.0, 130.2, 130.1, 129.3, 129.0, 124.4, 121.1, 87.5 (d, J = 192 Hz), 54.4; IR (cm⁻¹): 1749, 1693, 1659, 1150, 1108, 801; HRMS (ESI) calcd. for C₁₆H₁₃ClFNO₂ [M]⁺: 305.0619; found [M+H]⁺: 306.0688.

Methyl 2-fluoro-3-(4-fluorophenyl)-3-oxo-N-phenylpropanimidate (5d)

Pale yellow semi solid; m.p. 150 – 163 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 8 Hz, 2H), 7.15 – 7.09 (m, 3H), 6.94 (d, *J* = 8 Hz, 2H), 5.93 (d, *J* = 48 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.3 (d, *J*_{C-F} = 21 Hz), 166.2 (d, *J*_{C-F} = 256 Hz), 154.8 (d, *J*_{C-F} = 18 Hz), 146.0, 131.6 (d,

 $J_{C-F} = 4.0 \text{ Hz}$), 131.5 (d, $J_{C-F} = 5.0 \text{ Hz}$), 129.3, 124.3, 121.1, 116.0, 115.8, 86.6 (d, J = 192 Hz), 54.4; IR (cm⁻¹): 1769, 1673, 1629, 1180, 1128, 1008; HRMS (ESI) calcd. for C₁₆H₁₃F₂NO₂ [M]⁺: 289.0914.

Methyl 3-(2,4-difluorophenyl)-2-fluoro-3-oxo-N-phenylpropanimidate (5e)

Pale yellow solid; m.p. 146 – 148 °C; ¹H NMR (400 MHz, CDCl₃) 7.89(q, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0Hz, 2H), 7.11(t, J = 8.0 Hz, 1H), 7.02 – 6.97 (m, 1H), 6.90 ~ 6.82(m, 3H), 5.85 (d, J = 48 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.3 (d, J =21Hz), 166.9 (dd, $J_{C-F} = 158.0$ and 13.0Hz), 172.3 (dd, $J_{C-F} = 256$

and 12 Hz), 154.1 (d, $J_{C-F} = 18$ Hz), 146.9, 133.2, 132.8 (d, $J_{C-F} = 9.0$ Hz), 129.0, 124.1, 121.1, 112.7(d, $J_{C-F} = 21.0$ Hz), 104.6 (t, $J_{C-F} = 21$ Hz), 88.5(d, $J_{C-F} = 18.0$ Hz), 54.3, 29.6 (grease); IR (cm⁻¹): 1769, 1673, 1629, 1180, 1128, 1008; HRMS (ESI) calcd. for C₁₆H₁₂F₃NO₂ [M]⁺: 307.0820; found [M+H]⁺: 308.0890.

Methyl 2-fluoro-3-(4-nitrophenyl)-3-oxo-N-phenylpropanimidate (5f)

Yellow solid; m.p. 182–184 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.0 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 5.93 (d, *J* = 48.0 Hz, 1H), 3.84 (s, 3H); ¹⁹F NMR (400 MHz, CDCl₃) δ -187.60 (d, *J*_{C-F} = 48.0 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 191.4 (d, *J*_{C-F} =

22.0 Hz), 154.1 (d, $J_{C-F} = 18.0$ Hz), 150.6, 145.7, 138.4, 130.0 (d, $J_{C-F} = 4.0$ Hz), 129.4, 124.5, 123.7, 121.1, 86.9 (d, $J_{C-F} = 194.0$ Hz), 54.5, 29.6 (grease); IR (cm⁻¹) 1769, 1673, 1629, 1573, 1383, 1128, 1008; HRMS (ESI) calcd. for C₁₆H₁₄N₂O₄ [M]⁺:298.0954.

Methyl 2-fluoro-3-(2-fluorophenyl)-3-oxo-*N*-phenylpropanimidate + methyl 2-fluoro-3-(2-fluorophenyl)-3-oxopropanoate (5g +5g')

Brown oil; Characterization data of **5e**: ¹H NMR (400 MHz, CDCl₃) δ :7.84 ~ 7.80 (m, 1H), 7.59 ~ 7.51(m, 1H), 7.33 ~ 7.23 (m, 3H), 7.13 ~ 7.08 (m, 2H), 6.91 (d, *J* = 4.0 Hz, 2H), 5.89 (dd, *J* = 48.0 and *J* = 4Hz, 1H), 3.79 (s, 3H), 3.20 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 189.8 (d, $J_{C-F} = 22$ Hz), 161.8 (d, $J_{C-F} = 254.0$ H), 153.3 (d, $J_{C-F} = 18.0$ Hz), 146.4, 136.6 (d, $J_{C-F} = 9.0$ Hz), 135.4, (d, $J_{C-F} = 9.0$ Hz), 130.7, 129.0, 124.0,121.1, 116.0 (d, $J_{C-F} = 23$ Hz) 87.7 (dd, $J_{C-F} = 48.0$ and 8.0 Hz), 54.3; Characterization data of **5f**': ¹H NMR (600 MHz, CDCl₃) major peaks: δ 7.96 ~ 7.92 (m, 1H), 7.73 ~ 7.61 (m, 2H), 5.95 (d, J = 48.0 Hz, 1H), 3.93 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) major peaks δ 167.6, 161.6 (d, $J_{C-F} = 257$ Hz), 136.6, (d, $J_{C-F} = 9.0$ Hz), 128.8 (d, $J_{C-F} = 6.0$ Hz), 116.8 (d, $J_{C-F} = 22$ Hz) 53.8. IR (cm⁻¹): 1760, 1653, 1623, 1130, 1121, 1022; HRMS (ESI) calcd. for C₁₆H₁₃F₂NO₂ [M]⁺: 289.0914; found [M+H]⁺:290.0984.

Methyl 2-fluoro-3-(4-methoxyphenyl)-3-oxo-N-phenylpropanimidate (5h)

Yellow oil (82.5 mg; 55% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.12 (t, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 4 Hz, 2H), 6.89 (d, *J* = 8 Hz, 2H), 5.94 (d, *J*_{C-F} = 48 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.4 (d, *J*_{C-F} = 20.0 Hz), 158.9, 150.3 (d, *J*_{C-F} =

19.0 Hz), 140.8, 125.8 (d, J_{C-F} = 4.0 Hz), 123.9, 121.2, 118.9, 115.8, 108.6, 80.9 (d, J_{C-F} = 253.0 Hz), 50.2, 49.0; IR (cm⁻¹): 3456 (bs), 1770, 1683, 1630, 1187, 1178, 1009, 989; HRMS (ESI) calcd for C₁₇H₁₆FNO₃ [M]⁺ :301.1114; found [M+H]⁺ 302.1183.

Methyl 2-fluoro-3-oxo-N-phenyl-3-(p-tolyl)propanimidate (5i)

Yellow semi solid; mp 185–194 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 6.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 5.96 (d, *J* = 44.0 Hz, 1H), 3.82 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8 (d, *J*_{C-F} = 20.0 Hz), 155.2 (d,

 $J_{C-F} = 17.0$ Hz), 146.1, 145.2, 131.2, 129.3, 129.2, 128.7, 128.6, 124.2, 121.2, 86.3 (d, $J_{C-F} = 191.0$ Hz), 54.3, 29.7 (grease), 21.7; IR (cm⁻¹) 1769, 1673, 1629, 1180, 1128, 1008; HRMS (ESI) calcd. for C₁₇H₁₇FNO₂ [M]⁺: 285.1165.

Methyl 2-fluoro-3-(naphthalen-1-yl)-3-oxo-N-phenylpropanimidate (5j)

Yellow solid; m. p. 140 - 143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.88 (d, J =8.0 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.48 (d, J = 4.0 Hz, 1H), 7.44 – 7.40 (t, J = 8.0 Hz, 1H), 7.35 – 7.33 (m, 2H), 7.13 (t, J = 8.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 2H), 6.14 – 6.02 (d, J = 48.0 Hz,

1H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.5 (d, J_{C-F} = 21.0 Hz), 154.9 (d, J_{C-F} = 18.0 Hz), 146.2, 133.8, 133.7, 131.4, 129.3, 128.5, 128.4, 128.0, 127.9, 126.8, 125.2, 124.2, 124.0, 121.1 86.1 (d, J_{C-F} = 194.0 Hz), 54.3; IR (cm⁻¹): 1760, 1683, 1639, 1605, 1122, 1121, 1012, 991; HRMS (ESI) calcd. for C₂₀H₁₆FNO₂ [M]⁺: 364.1161.

Methyl 2-fluoro-3-oxo-N-phenyl-3-(thiophen-2-yl)propanimidate (5k)

Yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.83 (m, 1H), 7.74 (d, *J* = 4.0 Hz, 1H), 7.35 – 7.30 (m, 2H), 7.16 – 7.09 (m, 2H), 6.98 – 6.94 (m, 2H), 5.80 (d, *J* = 48.0 Hz, 1H), 3.87 (s, 3H). ¹⁹F NMR (400 MHz, CDCl₃) δ -194.02 (d, *J*_{C-F} = 4.0 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (100 MHz, CDCl₃) δ 185.2 (d, *J*=23.0 Hz),

155.4 (d, J = 18. Hz), 146.2, 140.0, 135.8, 134.7 (d, J =9.0 Hz), 132.5, 129.4, 128.6, 124.3, 121.4, 87.0 (d, J = 194.0 Hz), 54.5, 29.7 (grease); HRMS (ESI-MS): calcd. C₁₄H₁₃NO₂SF [M]⁺: 278.0651 found: 278.0652.

Methyl N-(4-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropanimidate (5l)

Yellow semi solid; m. p. 180–191 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 2.0 Hz, 2H), 7.62 – 7.58 (m, 1H), 7.44 (t, J = 8.0 Hz, 3H), 7.31 – 7.25 (m, 2H), 6.88 (d, J = 2.0 Hz, 2H), 5.99 (d, $J_{C-F} = 48.0$ Hz, 1H), 3.82 (s 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.5 (d, $J_{C-F} = 21.0$ Hz), 155.3 (d, $J_{C-F} = 19.0$ Hz),

144.6,134.1, 133.7, 129.6, 129.3, 128.8, 128.7, 122.4, 86.7 (d, $J_{C-F} = 193.0 \text{ Hz}$), 54.5; IR (cm⁻¹): 1781, 1673, 1633, 1132, 1121, 1003, 981; HRMS (ESI) calcd. for C₂₆H₁₃ClFNO₂ [M]⁺: 305.0619 found [M+H]⁺: 306.0688.

Methyl N-(3-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropanimidate (5m)

Yellow solid; m.p.181 – 182°C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.62 – 7.58 (m, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.27 – 7.23 (m, 1H), 7.11 – 7.08 (m, 1H), 6.93 (t, J = 4.0Hz, 1H), 6.82 (d, J = 8.0 Hz, 1H), 5.96 (d, J = 48.0 Hz, 1H), (s, 1H), 3.82 (s, 3H); ¹⁹F NMR (400 MHz, CDCl₃) δ -194.02 (d, $J_{C-F} = 4.0$ Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 191.5 (d, J = 21.0 Hz), 155.40 (d, $J_{C-F} = 18.0$ Hz), 147.3, 134.8, 134.2, 130.2, 128.7, 124.3, 121.4, 119.3, 86.7 (d, $J_{C-F} = 193.0$ Hz), 54.5; IR (cm⁻¹): 1779, 1671, 1630, 1189, 1123, 1011, 989,779; HRMS ((ESI) calcd for C₂₆H₁₃ClFNO₂ [M]⁺: 305.0619 found [M+H]⁺: 306.0691.

methyl N-(4-bromophenyl)-2-fluoro-3-oxo-3-phenylpropanimidate (5n)

Brown solid; m.p.176 – 179 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.44 -7.42 (m, 4H), 6.81 (d, *J* = 8.0 Hz, 2H), 5.92 (d, *J* = 48.0 Hz, 1H), 3.81 (s, 3H); ¹⁹F NMR (400 MHz, CDCl₃) δ -188.10 (d, *J*_{C-F} = 52.0 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 191.5 (d, *J* = 20.0 Hz), 155.3

(d, J = 20.0 Hz), 145.1, 134.2, 133.6, 132.2, 128.7, 122.9, 117.3, 86.6 (d, J = 190.0 Hz), 54.5; IR (cm⁻¹): 1770, 1671, 1629, 1180, 1111, 1012, 632; HRMS (ESI) calcd for C ₁₆H₁₃BrFNO₂ [M]+ : 349.0114, found [(M+2)+H]⁺: 352.0168.

Methyl 2-fluoro-3-oxo-3-phenyl-N-(o-tolyl)propanimidate (50)

Yellow semi solid; m.p. 145 – 158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.60 – 7.58 (m, 1H), 7.43 (t, *J* = 6.0 Hz, 2H), 7.25 – 7.16 (m, 2H), 7.08 – 7.04 (m, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 5.97 (d, *J* = 48.0 Hz, 1H), 3.85 (s, 3H), 2.17 (s, 3H); ¹⁹F NMR (400 MHz, CDCl₃) δ -189.32 (d, *J*_{C-F} = 52.0 Hz, 1F); ¹³C NMR (100

MHz, CDCl₃) δ 191.7(d, J_{C-F} = 21.0 Hz), 154.2 (d, J_{C-F} = 18.0 Hz), 144.5, 134.1, 130.6, 129.7, 128.7, 128.6, 128.5, 126.7, 124.5, 120.3, 87.4 (d, J_{C-F} = 192.0 Hz), 54.3, 17.9; IR (cm⁻¹): 1770, 1671, 1629, 1180, 1111, 1012, 999; HRMS (ESI) calcd. for C₁₇H₁₇FNO₂ [M]⁺: 285.1165; found [M+H]⁺: 286.1231.

Methyl 2-fluoro-3-oxo-3-phenyl-N-(m-tolyl)propanimidate (5p)

Red semi solid; m.p. 189 – 190° °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.0 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H) 6.74 (d, J = 4.0 Hz, 1H), 6.05(d, J = 48.0 Hz, 1H), 3.80 (s, 3H), 2.34 (s, 3H); ¹⁹F NMR (400 MHz, CDCl₃) δ -188.88 (d, J_{C-F} = 52.0 Hz, 1F); ¹³C NMR (100 MHz, CDCl₃) δ 191.5 (d,

 $J_{C-F} = 20.0$ Hz), 155.0, 146.0, 139.2, 134.0, 133.8, 129.1, 128.6, 125.0, 121.8, 118.1, 86.4 (d, $J_{C-F} = 192.0$ Hz), 54.3, 29.7 9 (grease), 21.4; IR (cm⁻¹): 1761, 1671, 1639, 1190, 1181, 1072,

989; HRMS (ESI) calcd. for C₁₇H₁₇FNO₂ [M]⁺: 285.1165; found [M+H]⁺: 286.1230.

Methyl 2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanimidate (5q)

Red semi solid; m.p. 159 – 160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 6.00 (d, J = 48.0 Hz, 1H), 3.80 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.6 (d, J = 20.0 Hz), 155.1(d, J = 18.0

Hz), 143.5, 134.0, 133.8, 133.6, 129.9, 128.6, 128.6, 128.5, 121.0, 86.3 (d, J = 192.0 Hz), 54.3, 20.8; IR (cm⁻¹): 1770, 1671, 1629, 1180, 1111, 1012, 999; HRMS (ESI) calcd for C₁₇H₁₇FNO₂ [M]⁺: 285.1165.

Methyl 2-fluoro-3-oxo-3-phenylpropanoate (6)

White solid; m.p.159 – 160 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.03 (d, J = 8.0 Hz, 2H), 7.64 (t, J = 8.0 Hz, 1H), 7.51 (t, J = 6.0 Hz, 2H), 5.95 – 5.83 (d, J = 12.0 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 189.3(d, J = 20.0 Hz), 165.3 (d, J = 24.0 Hz), 134.5,

133.3, 129.51, 129.5, 128.8, 90.0 (d, J = 197.0 Hz), 29.7 (grease), 53.2; IR (cm⁻¹): 1790, 1691, 1690, 1189, 1191, 1092, 979; HRMS (ESI) m/z calcd for C₁₀H₉FO₃Na [M]⁺: 219.0433; found [M+1]⁺: 219.0428.

9. References

- [S1] a) R. K. Kawade, C. -C. Tseng; R. -S. Liu, *Chem. Eur. J.* 2014, 20, 13927; b) C. K. Hazra, M. Oestreich, *Org. Lett.*, 2012, 14, 4010.
- [S2] a) Y. -F. Chen, J. Chen, L. –J. Lin, G. J. Chuang J. Org. Chem. 2017, 82, 11626; b) C.-H Chen, Y.-C. Tsai, R.-S. Liu Angew. Chem. Int. Ed. 2013, 52, 4599.
- [S3] S. Ghorpade, R. -S. Liu Angew Chem Int Ed 2014, 53, 12885.
- [S4] a) T. C. Johnson, M. R. Chin, T. Han, J. P. Shen, T. Rana, D. Siegel, *J. Am. Chem. Soc.* 2016, 138, 6068; b) T. C. Johnson,; Chin, M. R.; D. Siegel, *J. Org. Chem.* 2017, 82, 4640; c) S. H. Kanga and D. Y. Kim, *Adv. Synth. Catal.* 2010, 352, 2783.
- [S5] W. -B. Liu, C. M. Reeves, B. M. Stoltz, J. Am. Chem. Soc. 2013, 135, 17298.
- [S6] X. Han, J. Kwiatkowski, F. Xue, K. -W. Huang, Y. Lu, Angew. Chem. Int. Ed. 2009, 48, 7604.

[S7] H. Xue, D. Jiang, H. Jiang, C. W. Kee, H. Hirao, T. Nishimura, M. W. Wong, C. –H. Tan, J. Org. Chem. 2015, 80, 5745.

Appendix

Spectral Copies of ¹H, ¹³C and ¹⁹F NMR of Compounds

Obtained in This Study

Methyl 2-fluoro-3-oxo-N,3-diphenylpropanimidate (5a)

AG-11-1D-NOE-5_92 AG-11-1D-NOE-5_92 Selective band center: 5.92 (ppm); width: 10.0 (Hz)

Ethyl 2-fluoro-3-oxo-N,3-diphenylpropanimidate (5b)

Methyl 3-(4-chlorophenyl)-2-fluoro-3-oxo-N-phenylpropanimidate (5c)

Methyl 2-fluoro-3-(4-fluorophenyl)-3-oxo-N-phenylpropanimidate (5d)

Methyl 3-(2,4-difluorophenyl)-2-fluoro-3-oxo-N-phenylpropanimidate (5e)

Methyl 2-fluoro-3-(4-nitrophenyl)-3-oxo-N-phenylpropanimidate (5f)

Methyl 2-fluoro-3-(2-fluorophenyl)-3-oxo-*N*-phenylpropanimidate + methyl 2-fluoro-3-(2-fluorophenyl)-3-oxopropanoate (5g + 5g')

Methyl 2-fluoro-3-(4-methoxyphenyl)-3-oxo-N-phenylpropanimidate (5h)

Methyl 2-fluoro-3-oxo-N-phenyl-3-(p-tolyl)propanimidate (5i)

Methyl 2-fluoro-3-(naphthalen-1-yl)-3-oxo-N-phenylpropanimidate (5j)

Methyl 2-fluoro-3-oxo-N-phenyl-3-(thiophen-2-yl)propanimidate (5k)

Methyl N-(4-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropanimidate (5l)

Methyl N-(3-chlorophenyl)-2-fluoro-3-oxo-3-phenylpropanimidate (5m)

Methyl N-(4-bromophenyl)-2-fluoro-3-oxo-3-phenylpropanimidate (5n)

Methyl 2-fluoro-3-oxo-3-phenyl-N-(o-tolyl)propanimidate (50)

Methyl 2-fluoro-3-oxo-3-phenyl-N-(m-tolyl)propanimidate (5p)

Methyl 2-fluoro-3-oxo-3-phenyl-N-(p-tolyl)propanimidate (5q)

3,3-Bis(methyloxycarbonyl)-2-phenyl-7-(4-toluensulfonylamide)-1- acetylindoline (6)

Crystallographic Data

Figure S2. Crystal XRD image of 30 (dimer: CCDC1865939)

X-ray data for the compound **30** was collected on a Bruker D8 QUEST instrument with an I μ S Mo microsource ($\lambda = 0.7107$ A) and a PHOTON-100 detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs^{[1].} The structure was solved using intrinsic phasing method^[2] and further refined with the SHELXL^[2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. The N-bound H atoms were located in difference Fourier maps, and their positions and isotropic displacement parameters were refined All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.97 Å, and U_{iso}(H) = 1.5U_{eq}(C) for methyl H or 1.2U_{eq}(C) for other H atoms].

Crystal Data for 3o: $C_{17}H_{17}NO_2$ (*M*=267.33 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 7.21212(9) Å, b = 15.4816(2) Å, c = 26.0416(3) Å, V = 2907.68(7) Å³, Z = 8, T = 294.15 K, μ (Mo K α) = 0.080 mm⁻¹, *Dcalc* = 1.2213 g/cm³,

38527 reflections measured ($5.26^{\circ} \le 2\Theta \le 61.2^{\circ}$), 8955 unique ($R_{int} = 0.0911$, $R_{sigma} = 0.0892$) which were used in all calculations. The final R_1 was 0.0765 (I>2 σ (I)) and wR_2 was 0.1416 (all data).

CCDC 1865939 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015) Acta Crystallography C71: 3-8.

Figure Captions

Fig. S2. A view of **30**, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary radii.