Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information: Synthesis and Evaluation of Antiproliferative Microtubule-Destabilising Combretastatin A-4 Piperazine Conjugates. *Organic & Biomolecular Chemistry 2019.*

Supporting Information

Synthesis and Evaluation of Antiproliferative Microtubule-Destabilising Combretastatin A-4 Piperazine Conjugates

Niamh M. O'Boyle,^{1,2+} Gloria Ana,¹⁺ Patrick M. Kelly,¹ Seema M. Nathwani,² Sara Noorani,¹ Darren Fayne,² Sandra Bright,² Brendan Twamley,³ Daniela M. Zisterer,² and Mary J. Meegan¹ ¹School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152–160 Pearse Street, Dublin 2 D02 R590, Ireland ²School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152–160 Pearse Street, Dublin 2 D02 R590, Ireland ³School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

Contents

Experimental Procedure for Stability Study of Compounds 4I and 4n2
Experimental Characterisation for Acrylic Acids 3b – 3g3
Experimental Characterisation for Piperazine Conjugates 4b – 4l, 4n, 4o, 4r – 4v, 4y and 4z4
Experimental Characterisation for Piperazine Conjugates 5a – 5f10
Experimental Characterisation for Piperidine Conjugate 6a11
Experimental Characterisation for Piperazine Dimer 711
Figure S1. NMR data for compound 4m13
Figure S2. NMR data for compound 4q14
Figure S3. NMR data for compound 4x15
Figure S4. Representative Data from FACS Analysis of Vehicle-Treated and 4x-Treated MCF-7 Cells. 16
Figure S5. NMR NOE experimental data for acrylic acid 3a17
Table S1. Effect of reaction time on the isolated yields of 3a (microwave enhanced synthesis) ^a 22
Table S2. Effect of reaction temperature on the isolated yields of 3a (microwave enhanced synthesis) a 22
Table S3. Antiproliferative evaluation of compound 4m against the NCI-60 cell line panel23
Table S4. Antiproliferative evaluation of compound 4q against the NCI-60 cell line panel24
Table S5. Antiproliferative evaluation of compound 4x against the NCI-60 cell line panel25
Table S6. Antiproliferative evaluation of compound 6a against the NCI-60 cell line panel26
Table S7: Standard COMPARE analysis of compound 4m ^a 27

Experimental Procedure for Stability Study of Compounds 4I and 4n

Analytical high-performance liquid chromatography (HPLC) stability studies were performed using a Symmetry[®] column (C18, 5 μ m, 4.6 × 150 mm), a Waters 2487 Dual Wavelength Absorbance detector, a Waters 1525 binary HPLC pump and a Waters 717 plus Autosampler (Waters Corporation, Milford, MA, USA). Samples were detected at wavelength of 254 nm. All samples were analysed using acetonitrile (60%): water (40%) as the mobile phase over 10 min and a flow rate of 1 mL/min. Stock solutions were prepared by dissolving 5 mg of either compound **4I** and **4n** in 10 mL of mobile phase. Phosphate buffers at the desired pH values (4, 7.4 and 9) were prepared in accordance with the British Pharmacopoeia monographs 2015. Stock solution (30 μ L) was diluted with buffer of the appropriate pH (1 mL), shaken and injected immediately. Samples were withdrawn and analysed at time intervals of every 30 min for the first 3 hours and then every hour to 24 h.

Experimental Characterisation for Acrylic Acids 3b – 3g

(*E*)-3-(3-Fluoro-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (3b)¹ was synthesised from 3-fluoro-4-methoxybenzaldehyde and 3,4,5-trimethoxyphenylacetic acid by general methods IA and IB as fine yellow solid (IA: 0.47 g, 43%; IB: 0.71 g, 65%). MP: 203-205 °C. IR: v_{max} (KBr) cm⁻¹: 3448, 2998, 2942, 2626, 1667, 1616, 1516, 1506, 1414, 1278, 1257, 1129, 1024, 1003, 924, 818, 772; ¹H NMR (DMSO-*d*₆) δ 12.65 (br s, 1H), 7.67 (s, 1H), 7.09 (t, 1H, *J* =9 Hz), 7.00 (d, 1H, *J* =7 Hz), 6.83 (dd, 1H, *J* =2 Hz), 6.47 (s, 2H), 3.81 (s, 3H), 3.72 (s, 9H); ¹³C NMR (DMSO-*d*₆) δ 56.4, 60.6, 65.4, 106.9, 113.9, 117.3, 117.5, 127.8, 128.3, 132.3, 132.4, 148.3, 153.8, 168.7; HRMS (EI): Found 363.1144 (M+H)⁺, C₁₉H₂₀O₆F requires 363.1166.

(*E*)-3-(3-Hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (3c)² was synthesised from 3-hydroxy-4-methoxybenzaldehyde and 3,4,5-trimethoxyphenylacetic acid by general methods IA and IB as a fine yellow solid (IA: 0.55 g, 51%; 0.69 g, IB: 64%). MP: 237-239 °C. IR: v_{max} (KBr) cm⁻¹: 3423 (w), 2939, 1671, 1585, 1509, 1455, 1411, 1268, 1239, 1126; ¹H NMR (DMSO-*d₆*) δ 12.45 (br s, 1H), 8.98 (br s, 1H), 7.57(s, 1H), 6.81 (d, 1H, *J* = 8.5 Hz), 6.60 (d, 1H, *J* = 8.5 Hz), 6.53 (s, 1H), 6.44 (s, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 3.69 (s, 6H); ¹³C NMR (DMSO-*d₆*) δ 55.4, 55.9, 60.1, 106.6, 111.5, 117.2, 122.9, 127.0, 130.3, 132.2, 136.9, 139.1, 145.8, 148.9, 153.1, 168.61; HRMS (EI): Found 383.1103 (M+Na)⁺, C₁₉H₂₀O₇Na requires 383.1107.

(E)-3-(4-Methoxy-3-nitrophenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (3d) was synthesised from 3,4,5-trimethoxyphenylacetic acid and 4-methoxy-3-nitro-benzaldehyde by general method IB as a yellow solid (0.42 g, 36%). MP: 224 – 226 °C. IR: V_{max} (KBr) cm⁻¹: 3318-2994, 1661; ¹H NMR (DMSO-*d*₆) δ 3.65 (s, 6H) 3.67 (s, 3H) 3.85 (s, 3H) 6.45 (s, 2H) 7.22 (s, 1H) 7.38 (dd, *J* =9.12, 2.49 Hz, 1H) 7.51 (d, *J* =2.07 Hz, 1H) 7.68 (s, 1H); ¹³C NMR (DMSO-*d*₆) δ 56.1, 56.9, 60.1, 106.5, 114.3, 126.5, 119.0, 126.5, 126.8, 131.3, 136.1, 137.4, 138.7, 152.3, 153.4, 167.9; HRMS (EI): Identified 412.1024 (M + Na)⁺, C₁₉H₁₉NO₈Na, requires 412.0997.

(*E*)-3-(3-Methoxy-4-hydroxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (3e) was synthesised from 4-hydroxy-3-methoxybenzaldehyde and 3,4,5-trimethoxyphenylacetic acid by general method IB as fine yellow needles (0.89 g, 83%); MP: 237-239 °C. IR: v_{max} (KBr) cm⁻¹: 3423 (br), 2939, 1671, 1585, 1509, 1455, 1411, 1268, 1239, 1126; ¹H NMR (DMSO-*d*₆) δ 12.45 (br s, 1H), 8.98 (br s, 1H), 7.57(s, 1H),

¹ Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Lawrence, N. J.; McGrown, A. T., *J. Org. Chem.* **2001**, *66*, 8135. ² Cushman, M.; Nagarathnam, D.; Gopal, D.; He, H.; Lin, C. M.; Hamel, E., *J. Med. Chem.* **1992**, *35*, 2293-96.

6.81 (d, *J* = 7 Hz, 1H), 6.60 (d, *J* = 7 Hz, 1H), 6.53 (s, 1H), 6.44 (s, 2H), 3.73 (s, 3H), 3.71 (s, 3H), 3.69 (s, 6H); ¹³C NMR (DMSO-*d*₆) δ 168.6, 153.1, 148.9, 145.8, 139.1, 136.9, 132.2, 130.3, 127.0, 122.9, 117.2, 111.5, 106.7, 60.1, 55.9, 55.5; HRMS (EI): Found 383.1103 (M+Na)⁺, C₁₉H₂₀O₇Na requires 383.1107.

(*E*)-2-(4-Methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)acrylic acid (3f)³ was synthesised from 2-(4-methoxyphenyl)acetic acid and 3,4,5-trimethoxybenzaldehyde by general method IB as pale yellow crystals (0.63 g, 61%). MP: 206-208 °C. IR: v_{max} (KBr) cm⁻¹: 2967, 2939, 2838, 1676, 1612, 1577, 1500, 1274, 1271, 1119, 1002, 917, 843, 790, 746; ¹H NMR (CDCl₃) δ 3.56 - 3.61 (m, 6H) 3.81 - 3.85 (m, 6H) 6.38 (s, 2H) 6.94 - 6.99 (m, 2H) 7.19 - 7.24 (m, 2H) 7.83 (s, 1H); ¹³C NMR (CDCl₃) δ 55.3, 55.7, 60.9, 108.3, 114.3, 127.7, 129.6, 130.2, 131.2, 139.2, 142.2, 152.6, 159.4, 172.9; HRMS (EI): Found 343.1176 (M-H) C₁₉H₂₀O₆ requires 343.1181.

(*E*)-2-(3-Hydroxy-4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)acrylic acid (3g) was synthesised from 3-hydroxy-4-methoxyphenylacetic acid and 3-benzyloxy-4-methoxybenzaldehyde by general method IB as a pale yellow solid (0.17 g, 16%). MP: 204-207 °C. IR: v_{max} (ATR) cm⁻¹: 3395, 2939, 2838, 1681, 1603, 1578, 1504, 1459, 1418, 1333, 1266, 1182, 1119, 1015, 997, 909, 838, 759, 744, 659, 638. ¹H NMR (DMSO-*d*₆) δ 3.50 (s, 6H), 3.62 (s, 3H), 3.77 (s, 3H), 6.47 (s, 2H), 6.58 - 6.59 (m, 1H), 6.60 (d, *J* =2.1 Hz, 1H), 6.96 (d, *J* =8.3 Hz, 1H), 7.61 (s, 1H), 9.03 (br s, 1H), 12.50 (br s, 1H); ¹³C NMR (DMSO-*d*₆) δ 55.3, 55.8, 60.0, 108.0, 112.8, 116.7, 120.2, 129.0, 129.8, 132.2, 138.1, 138.6, 146.8, 147.2, 152.2, 168.5; HRMS (EI): Found 383.1110 (M+Na)⁺; C₁₉H₂₀NaO₇ requires 383.1107.

Experimental Characterisation for Piperazine Conjugates 4b – 4l, 4n, 4o, 4r – 4v, 4y and 4z

(*E*)-3-(3-Fluoro-4-methoxyphenyl)-1-piperazin-1-yl-2-(3,4,5-trimethoxyphenyl)propenone (4b) was prepared from **3b** and piperazine by general method II. The crude product was purified *via* flash chromatography on silica gel (eluent, ethyl acetate: DCM 1:2) to afford the product as a white solid. (0.19 g, 32%); MP: 79-80 °C. IR: v_{max} (KBr) cm⁻¹: 3058, 2836, 2934, 1598, 1580, 1439, 1412, 1276, 1236, 1126, 1006, 1150, 902, 931, 972; ¹H NMR (DMSO-*d*₆) δ 6.92 (s, 1H), 6.91 (s, 1H), 6.80 (t, *J* = 6.5 Hz, 1H), 6.58 (s, 1H), 6.53 (s, 2H), 3.87 (s, 6H), 3.73 (s, 6H), 3.71 (br s, 4H), 2.89 (br s, 4H); ¹³C NMR (DMSO-*d*₆) δ 169.5, 153.1, 152.5, 150.0, 147.1, 137.7, 135.5, 129.8, 128.6, 127.2, 125.6, 125.6, 116.3, 116.2, 112.2, 105.3, 60.5, 55.7, 55.6; HRMS (EI): Found 431.1995 (M+H)⁺, C₂₃H₂₈FN₂O₅ requires 431.1982.

tert-Butyl-(*E*)-4-(3-(4-methoxy-3-nitrophenyl)-2-(3,4,5-trimethoxyphenyl)acryloyl)piperazine-1carboxylate (4c) was prepared from 3d and Boc-piperazine by general method III. The crude product

³ Nguyen-Hai, N.; Ahn, B.-Z., Combretastatin-Chalcone Hybrids: Synthesis and Cytotoxicity. *Medicinal Chemistry* **2007**, *3* (4), 373-377.

was purified by column chromatography (eluent: ethyl acetate: hexane, 6:4) and used without further purification (0.68 g, 88%). IR: v_{max} (ATR) cm⁻¹: 3410, 2944, 1616, 1579, 1528, 1436, 1412, 1240, 1122, 1088, 1001, 908, 775. ¹H NMR (CDCl₃) δ 1.44 (s, 9H) 3.25 (br s, 2H) 3.44 (br s, 4H) 3.63 (br s, 2H) 3.71 (s, 6H) 3.86 (s, 3H) 3.91 (s, 3H) 6.51 (s, 2H) 6.58 (s, 1H) 6.88 (d, *J* =9.1 Hz, 1H) 7.27 (d, *J* =2.1 Hz, 1H) 7.68 (d, *J* =2.1 Hz, 1H); ¹³C NMR (CDCl₃) δ 171.1, 154.4, 153.8, 152.3, 139.2, 138.6, 138.0, 134.9, 129.7, 127.6, 126.6, 113.1, 105.7, 80.4, 61.0, 56.6, 56.3, 28.3; HRMS (EI): Found 580.2280 (M+Na)⁺ C₂₈H₃₅N₃O₉ requires 580.2271.

(*E*)-3-(4-Methoxy-3-nitrophenyl)-1-(piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4d) was prepared from 4c by general method IV as an yellow oil (0.16 g, 35%). IR: v_{max} (ATR) cm⁻¹: 3413, 2945, 1617, 1579, 1527, 1507, 1413, 1356, 1276, 1243, 1156, 1121, 836, 820, 775, 683; ¹H NMR (DMSO-*d*₆) δ 2.58 (br s, 2H), 2.64 (dd, *J* =3.7, 2.1 Hz, 2H), 3.42 - 3.47 (m, 4H), 3.63 (s, 6H), 3.66 (s, 3H), 3.86 (s, 3H), 6.53 (s, 2H), 6.59 (s, 1H), 7.23 (d, *J* =9.1 Hz, 1H), 7.38 (dd, *J* =9.1, 2.1 Hz, 1H), 7.65 (d, *J* =2.1 Hz, 1H); ¹³C NMR (DMSO-*d*₆) δ 43.4, 54.9, 55.9, 56.8, 60.1, 105.61, 114.01, 125.4, 127.6, 130.5, 134.9, 137.3, 137.6, 138.7, 151.3, 153.2, 168.2; HRMS (EI): Found 458.1938 (M+H)⁺; C₂₃H₂₇N₃O₇ requires 458.1927.

(*E*)-1-(4-Acetylpiperazin-1-yl)-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)propenone (4e) was prepared from **3a** and 1-acetyl-piperazine by general method II. The material was purified *via* flash chromatography over silica gel (eluent, ethyl acetate: DCM, 1:1) to afford the product as a brown resin (0.075 g, 12%). IR: v_{max} (KBr) cm⁻¹: 3088, 2764, 2543, 1543, 9873, 974, 789, 876, 769. ¹H NMR (DMSO-*d*₆) δ 7.10 (s, 1H), 7.08 (s, 1H), 6.73 (s, 1H), 6.65 (s, 1H), 6.52 (s, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 3.69 (s, 6H), 3.57 (br s, 8H), 2.08 (s, 3H); ¹³C NMR (DMSO-*d*₆) δ 170.1, 168.7, 159.0, 153.0, 137.4, 134.0, 130.5, 130.3, 130.1, 126.8, 113.1, 105.3, 60.5, 55., 54.77,7 45.5, 40.8, 20.9; HRMS (EI): Found 477.2005 (M+Na)⁺, C₂₅H₃₀N₂NaO₆ requires 477.2002.

(E)-1-(4-Acetylpiperazin-1-yl)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)

propenone (4f) was prepared from **3c** and 1-acetylpiperazine by general method II. The material was purified *via* flash chromatography on silica gel (eluent ethyl acetate: DCM 1:2) to afford the product as a white solid (0.097 g, 15%); MP: 124-126 °C. IR: v_{max} (KBr) cm⁻¹: 3243, 2645, 2345, 2534, 1534, 1534, 1635, 1436, 1325, 1298, 1154, 1098, 987, 983, 876, 854. ¹H NMR (DMSO-*d*₆) δ 6.75 (s, 1H), 6.63 (s, 2H), 6.56 (s, 1H), 6.51 (s, 2H), 3.80 (s, 3H), 3.79 (s, 3H), 3.66 (s, 6H), 3.52-3.42 (m, 8H), 2.04 (s, 3H); ¹³C NMR (DMSO-*d*₆) δ 170.2, 168.8, 152.9, 146.5, 144.9, 137.4, 134.1, 130.2, 130.1, 127.4, 121.4, 115.2, 109.9, 105.3, 60.4, 55.3, 53.3, 45.5, 40.7, 20.7; HRMS (EI):. Found 493.1933 (M+Na)⁺, C₂₅H₃₀N₂NaO₇ requires 493.1951.

(*E*)-1-(4-Acetylpiperazin-1-yl)-3-(3-fluoro-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)propenone (4g) was prepared from **3b** and 1-acetylpiperazine by general method II. The material was purified *via* flash chromatography on silica gel to afford the product as a white solid (0.15 g, 23%); MP: 121-125°C. IR: v_{max} (KBr) cm⁻¹: 2843, 3452, 2456, 2334, 1987, 1894, 1745, 1876, 1745, 1454, 1004, 957, 876, 764, 734, 908, 648. ¹H NMR (DMSO-*d*₆) δ 6.93 (s, 1H), 6.90 (s, 1H), 6.81 (m, 1H), 6.62 (s, 1H), 6.54 (s, 2H), 3.88 (s, 3H), 3.87 (s, 3H), 3.71 (s, 6H), 3.61-3.48 (m, 8H), 2.11 (s, 3H); ¹³C NMR (DMSO-*d*₆) δ 169.7, 168.7, 153.1, 147.0, 137.7, 135.5, 129.7, 127.4, 127.3, 125.6, 116.4, 116.2, 112.2, 105.3, 60.5, 55.7, 55.6, 20.9; HRMS (EI):. Found 495.1910 (M+Na)⁺, C₂₅H₂₉N₂FNaO₆ requires 495.1907.

(*E*)-1-(4-Acetylpiperazin-1-yl)-3-(4-methoxy-3-nitrophenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1one (4h) was prepared from 3d and 1-acetylpiperazine by general method III. The crude material was purified using flash column chromatography (eluent, DCM: Ethyl-Acetate, 1:1) to yield a brown resin which was used without further purification (0.007 g, 1%); IR: v_{max} (KBr) cm⁻¹: 3388, 2969, 2845, 1736, 1614, 1579, 1528, 1453, 1412, 1280, 1237, 1169, 1122, 1005. ¹H NMR (CDCl₃) δ 1.12 (br s, 3H), 3.30 (br s, 3H), 3.38 (br s, 4H), 3.65 (s, 6H), 3.80 (s, 3H), 3.85 (s, 3H), 6.49 (s, 2H), 6.65 (s, 1H), 6.82 (d, *J* =8.7 Hz, 2H), 6.98 (d, *J* =9.1 Hz, 1H); ¹³C NMR (CDCl₃) δ 20.3, 55.7, 55.9, 56.2, 60.8, 80.4, 106.1, 125.6, 128.4, 129.9, 130.3, 133.1, 138.1, 138.9, 151.8, 153.5, 168.5, 169.9.

(E)-3-(4-Methoxyphenyl)-1-[4-((E)-3-phenylallyl)-piperazin-1-yl]-2-(3,4,5-trimethoxyphenyl)

propenone (4i) was prepared from **3a** and *trans*-1-cinnamylpiperazine by general method II. The material was purified *via* flash chromatography on silica gel (eluent, ethyl acetate: DCM 1:2) to afford the product as a brown resin (0.116 g, 16%); IR: v_{max} (KBr) cm⁻¹: 2934, 2744, 2211, 1568, 1464, 1644, 1159, 1063, 1032, 955, 944, 932, 902, 863, 841, 832, 799; ¹H NMR (DMSO-*d*₆) δ 7.33 (m, 2H), 7.31 (t, 2H), 7.27 (m, 1H), 7.13 (d, *J* = 8.5 Hz, 2H), 6.75 (d, *J* = 6.5 Hz, 2H), 6.52 (s, 1H), 6.56 (s, 2H) 6.54 (d, *J* = 6.5 Hz, 1H), 6.24 (m, 1H), 3.88 (s, 3H), 3.79 (s, 3H), 3.71 (s, 6H), 3.79-3.61 (m, 4H), 3.17 (d, 2H), 2.53-2.37 (m, 4H); ¹³C NMR (DMSO-*d*₆) δ 169.8, 158.9, 152.9, 137.3, 134.3, 130.4, 129.8, 128.2, 127.5, 127.0, 126.0, 113.1, 105.4, 60.5, 60.2, 55.6, 54.8, 53.3, 52.2; HRMS (EI): Found 529.2684 (M+H)⁺, C₃₂H₃₇N₂O₅ requires 529.2702.

(E)-3-(3-Fluoro-4-methoxyphenyl)-1-[4-((E)-3-phenylallyl)-piperazin-1-yl]-2-(3,4,5-

trimethoxyphenyl)propenone (4j) was prepared from **3b** and *trans*-1-cinnamylpiperazine by general method II. The material was purified by flash chromatography on silica gel (eluent, ethyl acetate: DCM 1:2) to afford the product as a brown solid (0.143 g, 19%); MP: 126-129 °C. IR: v_{max} (KBr) cm⁻¹: 3094, 2847, 1934, 1544, 1532, 1477, 1302, 1127, 1102, 1163, 1183, 944, 945, 857, 756, 621; ¹H NMR (DMSO*d*₆) δ 7.37 (m, 2H), 7.32 (t, 2H), 7.26 (m, 1H), 6.93 (d, *J* = 7 Hz, 1H), 6.90 (s, 1H), 6.80 (s, 1H), 6.58 (s,

1H), 6.54 (s, 2H), 6.55-6.52 (m, 1H), 6.62-6.22 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.72 (s, 6H), 3.81-3.60 (m, 4H), 3.20 (d, J = 5 Hz, 2H), 2.56-2.38 (m, 4H); ¹³C NMR (DMSO- d_6) δ 169.4, 153.0, 152.4, 146.9, 146.4, 137.6, 135.9, 129.9, 128.3, 128.1, 127.6, 127.3, 125.9, 125.5, 116.4, 116.2, 112.2, 105.3, 60.5, 60.3, 55.7, 53.3, 52.4; HRMS (EI): Found 546.2544 (M+H)⁺, C₃₂H₃₅FN₂O₅ requires 546.2530.

(E)-1-(4-Cinnamylpiperazin-1-yl)-3-(4-methoxy-3-nitrophenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-

en-1-one (4k) was synthesised from 3d and *trans*-1-cinnamylpiperazine by general method II. The crude product was purified using flash chromatography over silica gel (eluent, DCM:EtOAc, 1:1, followed by 5% methanol in DCM:EtOAc, 1:1) to afford a dull yellow oil (0.30 g, 38%). ¹H NMR (CDCl₃) δ 7.67 (s, 1H), 7.34 (d, *J* = 7.3 Hz, 2H), 7.31 – 7.25 (m, 5H), 6.88 (d, *J* = 8.9 Hz, 1H), 6.62 (s, 1H), 6.55 (d, *J* = 9.1 Hz, 2H), 6.50 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.69 (s, 6H), 3.51 (s, 4H), 2.57-2.77 (br, 2H); ¹³C NMR (CDCl₃) δ 169.4, 153.7, 152.3, 139.7, 139.2, 138.4, 137.6, 136.0, 135.1, 129.8, 128.6, 128.2, 127.6, 127.5, 126.5, 120.5, 113.1, 106.1, 105.7, 61.0, 60.3, 56.6, 56.2. (NCH₂).

(*E*)-3-(4-Methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)propenone (4I) was prepared from **3a** and 1-phenylpiperazine by general method II. The material was purified *via* flash chromatography on silica gel (eluent, ethyl acetate: DCM, 1:1) to afford the product as a brown solid (0.195 g, 29%); MP: 126-129 °C. IR: v_{max} (KBr) cm⁻¹: 2833, 2432, 1704, 1873, 1789, 1647, 1528, 1384, 1267, 1301, 1145, 1038, 1022, 984, 604; ¹H NMR (DMSO-*d*₆) δ 7.34 (s, 2H), 7.22 (s, 2H), 7.04 (s, 2H), 6.93 (s, 2H), 6.83 (s, 1H), 6.63 (s, 1H), 6.50 (s, 2H), 3.90 (s, 6H), 3.87-3.82 (br s, 4H), 3.75 (s, 6H), 3.25-3.12 (m, 4H); ¹³C NMR (DMSO-*d*₆) δ 169.5, 153.1, 137.8, 129.8, 129.2, 127.5, 125.6, 116.4, 116.2, 112.2, 105.3, 60.6, 55.8, 33.4, 25.1; HRMS (EI): Found 511.2204 (M+Na)⁺, C₂₉H₃₂N₂NaO₅ requires 511.2209.

(E)-3-(3-Fluoro-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)

propenone (4n) was prepared from **3b** and 1-phenylpiperazine by general method II. The material was purified by flash chromatography over silica gel (eluent, ethyl acetate: DCM 1:2) to afford the product as a brown resin (0.216 g, 31%), MP 112-115 °C; IR: v_{max} (KBr) cm⁻¹: 2994, 2746, 2245, 1633, 1535, 1366, 1098, 1970, 1095, 948, 985, 901, 833, 823, 743, 618, 532; ¹H NMR (DMSO-*d*₆) δ 7.35 (s, 2H), 7.07 (s, 2H), 6.93 (s, 3H), 6.83 (s, 1H), 6.65 (s, 1H), 6.52 (s, 2H), 3.89 (s, 6H), 3.89-3.80 (m, 4H), 3.75 (s, 6H), 3.24-3.11 (m, 4H); ¹³C NMR (DMSO-*d*₆) δ 169.5, 153.1, 137.8, 129.8, 129.2, 127.5, 125.6, 116.4, 116.2, 112.2, 105.3, 60.6, 55.8, 33.4, 25.1; HRMS (EI):. Found 529.2109 (M+Na)⁺, C₂₉H₃₁FN₂NaO₅ requires 529.2115.

(E)-3-(4-Hydroxy-3-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-

trimethoxyphenyl)propenone (4o) was prepared from 3e and phenylpiperazine by general method II.

The material was purified by flash chromatography over silica gel (eluent, ethyl acetate: DCM 1:2) to afford the product as a brown solid (0.215 g, 31%), MP 79-98 °C; IR: v_{max} (KBr) cm⁻¹: 3003, 2740, 2345, 2232, 2045, 1747, 1522, 1642, 1587, 1548, 1427, 1254, 1234, 1087, 839, 756, 665; ¹H NMR (DMSO-*d₆*) δ 7.29 (s, 2H), 7.07 (s, 1H), 6.91 (s, 3H), 6.74 (s, 2H), 6.65 (s, 1H), 6.51 (s, 2H), 3.90 (s, 12H), 3.89-3.80 (m, 4H), 3.24-3.11 (m, 4H). ¹³C NMR (DMSO-*d₆*) δ 168.7, 153.0, 146.1, 145.6, 137.8, 133.3, 128.9, 127.3, 127.2, 123.3, 123.3, 105.5, 102.5, 60.5, 55.7, 55.4, 40.5, 33.4; HRMS (EI): Found 527.2161 (M+Na)⁺, C₂₉H₃₂N₂NaO₆ requires 527.2158.

(E)-1-(4-Benzylpiperazin-1-yl)-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

(4r) was prepared from **3a** and benzylpiperazine by general method III. The crude product was purified by flash column chromatography (eluent, ethyl acetate: DCM, 1:1), as a pale yellow solid (0.035 g, 5%). IR: v_{max} (KBr) cm⁻¹ 2999, 2919, 2835, 2849, 2765, 1628, 1578, 1507, 1411, 1430, 1175, 1029, 999, 887, 825, 699, 671, 554; ¹H NMR (CDCl₃) δ 2.25 (d, *J* =7.88 Hz, 2H), 2.44 (br s, 2H), 3.48 (s, 2H), 3.52 (br s, 2H), 3.66 (s, 6H), 3.74 (s, 3H), 3.83 (s, 3H), 6.50 (s, 2H), 6.59 (s, 1H), 6.68 - 6.72 (m, 2H), 7.07 (d, *J* =8.71 Hz, 2H), 7.22 - 7.30 (m, 5H); ¹³C NMR (CDCl₃) δ 54.2, 55.0, 59.9, 61.8, 104.9, 112.5, 126.3, 126.6, 127.3, 128.1, 128.7, 129.8, 130.0, 134.1, 136.7, 152.3, 158.2, 169.2; HRMS (EI): Found 503.2541 (M+H)⁺, C₃₀H₃₄N₂O₅ requires 503.2540.

(E)-1-(4-Benzylpiperazin-1-yl)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-

en-1-one (4s) was prepared from 3c and benzylpiperazine by general method III. The crude product was purified by flash column chromatography (eluent, ethyl acetate: DCM, 1:1) to afford a brown oil (0.20 g, 28%); IR: v_{max} (KBr) cm⁻¹: 3388, 2962, 2936, 1723, 1653, 1577, 1411, 1259, 1236, 1118, 1006, 802, 770; ¹H NMR (CDCl₃) δ 7.40 (s, 1H), 7.31 (ddd, *J* = 8.9, 6.7, 1.9 Hz, 2H), 6.65 (s, 1H), 6.54 (dd, *J* = 13.3, 5.5 Hz, 3H), 6.46 (s, 12H), 6.14 (t, *J* = 6.7 Hz, 2H), 3.85 (s, 3H), 3.83 (d, *J* = 2.8 Hz, 3H), 3.81 (s, 2H), 3.53 (s, 6H), 2.83 (s, 4H); ¹³C NMR (CDCl₃) δ 175.2, 153.5, 145.1, 139.5, 138.2, 130.9, 129.1, 128.7, 127.8, 120.7, 115.4, 110.2, 106.0, 63.7, 60.9, 56.2, 56.1, 55.8, 51.5; HRMS (EI): Found 519.2507 (M+H) ⁺; C₃₀H₃₄N₂O₆ requires 519.2495.

(E)-1-(4-Benzylpiperazin-1-yl)-3-(3-fluoro-4-methoxy-phenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-

en-1-one (4t) was synthesised from **3b** and 1-benzylpiperazine using general method II. The crude product was purified using flash column chromatography over silica gel (eluent, ethyl acetate: DCM 1:2) to afford a yellow oil (0.16 g, 22%). ¹H NMR (CDCl₃) δ 7.35 (d, *J* = 7.6 Hz, 3H,), 7.29 (d, *J* = 12.0 Hz, 2H), 6.94 – 6.88 (m, 2H), 6.80 (t, *J* = 8.7 Hz, 1H), 6.57 (s, 1H), 6.53 (s, 2H), 3.88 (d, *J* = 10.9 Hz, 6H), 3.72 (s, 6H), 3.56 (s, 2H); ¹³C NMR (CDCl₃) δ 169.8, 153.5, 150.9, 147.4, 138.1, 136.4, 130.4, 129.3, 129.2,

128.7, 128.4, 128.2, 128.2, 125.9, 116.7, 112.7, 105.9, 62.7, 61.0, 56.2, 52.6; ¹⁹F-NMR (376 MHz, CDCl₃) δ -135.38; LRMS (ESI): Found 521.3399 (M+H)⁺; C₃₀H₃₄FN₂O₅ requires 521.2446.

(E)-1-(4-Benzylpiperazin-1-yl)-3-(4-methoxy-3-nitrophenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-

1-one (4u) was prepared from **3d** and benzylpiperazine by general method III. The crude product was purified via flash column chromatography (eluent ethyl acetate: DCM 1:1) to afford a yellow resin (0.23 g, 31%); IR: v_{max} (KBr) cm⁻¹: 2938, 2829, 1615, 1578, 1528, 1452, 1350, 1279, 1264, 1236, 1122, 999, 813, 734, 699, 667, 614. ¹H NMR (CDCl₃) δ 2.24 (br s, 2H), 2.43 (br s, 2H), 3.47 (br s, 2H), 3.66 (s, 6H), 3.82 (s, 3H), 3.87 (s, 3H), 6.46 (s, 2H), 6.53 (s, 1H), 6.84 (d, *J* =9.1 Hz, 1H), 7.22 (s, 2H), 7.24 (d, *J* =2.1 Hz, 2H), 7.26 (s, 3H), 7.64 (d, *J* =2.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 169.2, 153.6, 152.2, 139.2, 138.4, 135.8, 134.9, 129.8, 129.2, 128.3, 127.0, 126.5, 113.0, 109.4, 105.7, 62.6, 61.0, 56.5, 56.2; HRMS (EI): Found 548.2375 (M-H)⁺ C₃₀H₃₃ N₃O₇ requires 548.2397.

(*E*)-3-(3-Amino-4-methoxyphenyl)-1-(4-benzylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4v): was prepared from 4u by general method V and was obtained as a yellow oil (0.063 g, 32%); IR: v_{max} (KBr) cm⁻¹: 3426, 3355, 3304, 3301, 2938, 2834, 1662, 1580, 1505, 1411, 1233, 1122, 998, 910, 726, 699; ¹H NMR (CDCl₃) δ 7.29 (d, *J* = 5.8 Hz, 5H), 6.60 (d, *J* = 2.3 Hz, 1H), 6.58 (s, 1H), 6.53 (s, 2H), 6.51 (s, 2H), 3.84 (s, 3H), 3.79 (s, 3H), 3.68 (s, 6H), 3.49 (s, 2H), 2.37 (d, *J* = 48.6 Hz, 8H); ¹³C NMR (CDCl₃) δ 170.4, 153.2, 147.1, 137.7, 135.6, 134.6, 131.1, 130.2, 129.1, 128.3, 127.3, 120.4, 115.5, 109.8, 106.0, 62.7, 60.9, 56.1, 56.0, 55.7, 55.4; HRMS (EI): Found 518.2650 (M+H)⁺; C₃₀H₃₆N₃O₅ requires 518.2649.

tert-Butyl-(E)-4-(3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acryloyl)-1,4-diazepane-1-

carboxylate (4y) was prepared from **3c** and BOC-homopiperazine by general method III. The crude product was purified by column chromatography (eluent, dichloromethane: ethyl acetate, 1:1) as a yellow solid and used without further purification (0.33 g, 44%); ¹H NMR (CDCl₃) δ 7.09 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.6 Hz, 2H), 6.58 (s, 1H), 6.55 (s, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 3.68 (s, 6H), 3.59 – 3.20 (m, 8H), 1.99 – 1.83 (m, 2H), 1.43 (s, 9H); ¹³C NMR (CDCl₃) δ 171.5, 159.2, 155.0, 153.3, 137.9, 130.8, 129.3, 127.5, 113.5, 105.9, 79.7, 60.9, 56.1, 55.2, 48.0, 46.8, 45.0, 28.7, 28.4; HRMS (EI): Found 527.1686 (M+H)⁺, C₂₉H₃₈N₂O₇ requires 527.2757.

(*E*)-1-(1,4-Diazepan-1-yl)-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (4z) was prepared from 4y by general method IV as a clear oil (0.168 g, 38%); IR: v_{max} (KBr) cm⁻¹: 3430, 2993, 2939, 2835, 1604, 1577, 1506, 1452, 1414, 1122, 1022, 1008, 920, 904, 845, 832, 799; ¹H NMR (CDCl₃) δ 7.09 (d, *J* = 8.8 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 2H), 6.63 (s, 1H), 6.55 (s, 2H), 3.84 (s, 3H), 3.75 (s, 3H), 3.68 (s, 6H), 3.61 (s, 2H), 3.11 (s, 2H), 2.91 (d, *J* = 4.1 Hz, 3H), 2.77 (s, 2H), 1.87 (d, *J* = 4.9 Hz, 2H); ¹³C

NMR (CDCl₃) δ 171.6, 159.3, 153.4, 137.9, 130.9, 129.8, 127.5, 126.7, 113.5, 105.9, 60.9, 56.1, 55.2, 47.6, 45.8, 28.6.; LRMS (EI): Found 427.24 (M+H)⁺; C₂₄H₃₁N₂O₅ requires 427.22.

Experimental Characterisation for Piperazine Conjugates 5a - 5f

tert-Butyl (*E*)-4-(2-(4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)acryloyl)piperazine-1-carboxylate (5a) was prepared from 3f and BOC-piperazine by general method III. The crude product was purified *via* flash column chromatography (eluet, ethylacetate:DCM, 1:1) as a yellow oil (0.29 g, 41%). ¹H NMR (CDCl₃) δ 1.42 (s, 9H), 3.20 (br s, 2H), 3.37 (br s, 2H), 3.48 (br s, 2H), 3.59 (s, 6H), 3.77 (s, 3H), 3.79 (s, 3H), 6.36 (s, 2H), 6.56 (s, 1H), 6.83 (d, *J* =8.7 Hz, 2H), 7.24 - 7.28 (m, 2H). ¹³C NMR (CDCl₃) δ 28.3, 55.3, 55.8, 60.9, 80.3, 106.6, 114.2, 127.6, 129.7, 130.2, 130.6, 136.2, 137.7, 152.7, 154.5, 159.3, 170.5. HRMS (EI): Found 513.2618 (M+H) ⁺ C₂₈H₃₆N₂O₇ requires 513.2602.

(*E*)-2-(4-Methoxyphenyl)-1-(piperazin-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (5b) was prepared from 5a by general method IV as a brown oil (0.29 g, 70%). IR: v_{max} (KBr) cm⁻¹: 3368, 2935, 2835, 2470, 2248, 1692, 1614, 1598, 1579, 1504, 1459, 1234, 1122, 1003, 905, 798, 760, 694. ¹H NMR (CDCl₃) δ 2.79 (br s, 4H), 3.26 (br s, 4H), 3.61 (s, 6H), 3.79 (s, 3H), 3.81 (s, 3H), 6.38 (s, 2H), 6.57 (s, 1H), 6.83 - 6.88 (m, 2H), 7.24 - 7.29 (m, 2H); ¹³C NMR (CDCl₃) δ 53.4, 55.3, 55.7, 60.8, 106.6, 114.1, 127.7, 129.3, 130.2, 130.7, 136.3, 137.6, 152.7, 159.4, 170.4; HRMS (EI): Found 413.2090 (M+H)⁺ C₂₃H₂₈N₂O₅ requires 413.2077.

(E)-2-(4-Methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one

(5c) was prepared from 3f and benzylpiperazine by general method III. The product 6d was obtained as white crystals (0.296 g, 44%) by flash column chromatography (eluent, ethyl acetate: DCM, 1:1); IR: v_{max} (KBr) cm⁻¹: 3013, 2969,2993, 2843, 2819, 1614, 1604, 1597, 1453, 1244, 1126, 996, 834, 766. ¹H NMR (CDCl₃) δ 2.97 (br s, 2H), 3.13 (br s, 2H), 3.60 (s, 6H), 3.70 (br s, 2H), 3.77 (s, 3H), 3.80 (s, 3H), 6.38 (s, 2H), 6.59 (s, 1H), 6.81 - 6.90 (m, 5H), 7.23 (s, 1H), 7.27 (br s, 1H), 7.28 (d, *J* =8.7 Hz, 2H); ¹³C NMR (CDCl₃) δ 55.3, 55.8, 60.9, 106.6, 114.2, 116.6, 120.5, 127.8, 129.2, 129.6, 130.3, 136.3, 137.7, 150.9, 152.7, 159.4, 170.4; HRMS (EI): Found 489.2412 (M+H)⁺ C₂₉H₃₂N₂O₅ requires 489.22390.

(*E*)-2-(3-Hydroxy-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-2en-1-one (5d) was prepared from 3g and phenylpiperazine by general method III. The crude product was purified *via* flash column chromatography (eluent: ethyl acetate/DCM 1:1) as a yellow oil (0.153 g, 22%). IR: ν_{max} (ATR) cm⁻¹: 3115, 2937, 2840, 1619, 1583, 1528, 1503, 1461, 1332, 1275, 1263, 1235, 1120, 1014, 1087, 1065, 905, 818, 760, 730, 661; ¹H NMR (CDCl₃) δ 7.77 (s, 1H), 7.25 (s, 1H), 6.94 (d, *J*

= 2.1 Hz, 1H), 6.90 (s, 1H), 6.88 (s, 2H), 6.85 (d, J = 2.1 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 6.58 (s, 1H), 6.40 (s, 2H), 3.86 (s, 3H), 3.81 (s, 3H), 3.62 (s, 6H), 3.07 (d, J = 52.1 Hz, 4H). ¹³C NMR (CDCl₃) δ 170.2, 152.7, 146.4, 146.0, 145.7, 141.9, 139.2, 130.5, 129.2, 128.7, 128.6, 121.5, 121.0, 116.1, 115.0, 110.8, 106.7, 60.8, 55.8, 55.6, 49.5; HRMS (EI): found 505.2360 (M+H)⁺; C₂₉H₃₃N₂O₆ requires 505.2339.

tert-Butyl-(E)-4-(2-(4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)acryloyl)-1,4-diazepane-1-

carboxylate (5e) was prepared from **3f** and BOC-homopiperazine by general method III. The crude product was purified *via* flash column chromatography (eluent, ethyl acetate,DCM 1:1) as an off white solid (0.48 g, 66%). MP: 96-100 °C. **IR:** v_{max} (ATR) cm⁻¹: 2944, 1677, 1611, 1578, 1526, 1504, 1412, 1350, 1237, 1115, 1009, 922, 877, 851, 827, 763, 554. ¹H NMR (CDCl₃) δ 1.41 - 1.49 (m, 9 H), 1.92 (br s, 2H), 3.24 - 3.34 (m, 2H), 3.47 - 3.60 (m, 4H), 3.62 (s, 6H), 3.80 (s, 3H), 3.82 (s, 3H), 6.36 - 6.43 (m, 2H), 6.55 (br s, 1H), 6.85 (d, *J* =8.3 Hz, 2H), 7.31 (d, *J* =7.9 Hz, 2H). ¹³C NMR (CDCl₃) δ 171.5, 159.4, 152.7, 137.6, 130.77, 130.2, 128.9, 124.8, 114.1, 106.6, 79.7, 60.8, 55.8, 55.2, 49.9, 47.9, 46.7, 44.9, 28.4, 26.5; HRMS (EI): Found 549.2559 (M+Na)⁺; C₂₉H₃₈N₂NaO₇ requires 549.2557.

(*E*)-1-(1,4-Diazepan-1-yl)-2-(4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (5f) was prepared from 5e by general method IV as a yellow oil (0.269 g, 63%). IR: v_{max} (ATR) cm⁻¹: 3413, 2937, 2836, 1603, 1579, 1506, 1417, 1328, 1371, 1288, 1240, 1174, 1120, 1002, 836, 771, 728; ¹H NMR (CDCl₃) δ 1.56 (br s, 1H), 1.82 (br s, 1H), 2.62 (br s, 2H), 2.75 (br s, 1H), 2.80 (br s, 1H), 3.48 - 3.54 (m, 2H), 3.56 (s, 6H), 3.64 (t, *J* =5.4 Hz, 2H), 3.74 (s, 3H), 3.76 (s, 3H), 6.33 (s, 2H), 6.52 (s, 1H), 6.79 (d, *J* =8.7 Hz, 2H), 7.21 - 7.28 (m, 2H); ¹³C NMR (CDCl₃) δ 44.7, 47.7, 55.2, 55.7, 60.7, 106.4, 114.0, 127.5, 128.5, 130.1, 130.7, 137.0, 137.2, 152.6, 159.2, 171.4; HRMS (EI): Found 427.2217 (M+H)⁺: C₂₄H₃₁N₂O₅ requires 427.2234.

Experimental Characterisation for Piperidine Conjugate 6a

(*E*)-3-(4-Methoxyphenyl)-1-(piperidin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (6a) was prepared from 3a by general method III. The crude product was purified *via* flash column chromatography (eluent: DCM-ethyl acetate, 1:1). (0.126 g, 38%, yellow oil.). IR: v_{max} (ATR) cm⁻¹: 2996, 2935, 2854, 2838, 1619, 1577, 1604, 1506, 1410, 1234, 1025, 1004, 996, 827, 852, 802, 716, 704. ¹H NMR (CDCl₃) δ 1.40 (br s, 2H), 1.64 (br s, 4H), 3.53 (br s, 2H), 3.56 - 3.68 (m, 2H), 3.71 (s, 6H), 3.77 (s, 3H), 3.87 (s, 3H), 6.57 (s, 2H), 6.59 (s, 1H), 6.71 - 6.77 (m, 2 H), 7.11 (m, *J* = 8.7 Hz, 2H). ¹³C NMR (CDCl₃) δ 24.6 (3xCH₂), 55.2, 56.1, 60.9, 105.9, 113.5, 127.9, 128.8, 130.8, 131.25, 135.7, 137.7, 153.3, 159.2, 170.2. HRMS (EI): Found 412.2121 (M+H)⁺; C₂₄H₃₀NO₅ requires 412.2124.

Experimental Characterisation for Piperazine Dimer 7

(2E,2'E)-1,1'-(Piperazine-1,4-diyl)bis(3-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-1-

one) (7) was prepared from **3a** by general method III. The crude product was purified *via* flash column chromatography (eluent: DCM/ethyl acetate 1:1) to afford a pale yellow solid (0.397 g, 39%); IR: v_{max} (ATR) cm⁻¹: 3002, 2833, 1607, 1576, 1509, 1459, 1428, 1293, 1239, 1177, 1121, 1032, 996, 920, 862, 823, 800, 726, 554; ¹H NMR (CDCl₃) δ 7.07 (d, *J* = 8.7 Hz, 4H), 6.71 (d, *J* = 8.8 Hz, 4H), 6.61 (s, 2H), 6.50 (s, 4H), 3.84 (s, 6H), 3.75 (s, 6H), 3.68 (s, 12H), 3.62 – 3.39 (m, 8H); ¹³C NMR (CDCl₃) δ 170.6, 159.5, 153.5, 137.9, 134.4, 130.9, 130.5, 127.3, 113.6, 105.9, 60.9, 56.7, 55.2; HRMS (EI): Found 739.3235 (M+H)⁺; C₄₂H₄₇N₂O₁₀ requires 739.3231.

Figure S1. NMR data for compound 4m.

Figure S2. NMR data for compound 4q.

(E)-3-(3-Amino-4-methoxyphenyl)-1-(4-phenylpiperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-

Figure S3. NMR data for compound 4x

(E)-3-(3-Amino-4-methoxyphenyl)-1-(4-(p-tolyl)piperazin-1-yl)-2-(3,4,5-trimethoxyphenyl)prop-2-en-

Figure S4. Representative Data from FACS Analysis of Vehicle-Treated and 4x-Treated MCF-7 Cells

Effects of 4x on the cell cycle distribution of MCF-7 cells. MCF-7 cells were treated with either vehicle control (ethanol) or compound 4x (1 μ M) for 24, 48 hr or 72 hr. Cells were then fixed, stained with PI, and analysed by flow cytometry with CellQuest software.

Figure S5. NMR NOE experimental data for acrylic acid 3a

¹H NMR (DMSO- d_6) δ 12.48 (br s, 1H), 7.69 (s, 1H), 7.07 (d, 2H, *J* =9 Hz), 6.82 (d, 2H, *J* =9 Hz), 6.46 (s, 2H), 3.72 (s, 6H), 3.69 (s, 6H)

Protons irradiated in nOe experiments:

nOe experiment 1: Irradiation of Ha at 6.45 ppm; some enhancement of Hc and Hb, little effect on Hd

nOe experiment 2: Irradiation of Hd at 6.8 ppm; slight effect on Ha and Hb

nOe experiment 3: Irradiation of Hc at 7.08 ppm; enhancement of Ha and Hb

nOe experiment 4: Irradiation of Hb at 7.7 ppm; enhancement of Hc, no effect on Ha or Hd

Time (min)	Yield (mg)	Yield %
1	50	4.7
5	200	19
10	320	30
30	378	36
60	467	44
90	440	41
120	420	39
180	0	0

Table S1. Effect of reaction time on the isolated yields of 3a (microwave enhanced synthesis)^{*a*}

^aTemperature for all reactions was 100 °C. The yield for the conventional reflux (reflux temperature, 240 min) was 40%.

Table S2. Effect of reaction temperature on the isolated yields of 3a (microwave enhancedsynthesis) a

Temp (°C)	Yield (mg)	Yield %
100	378	36
110	454	43
120	460	43
130	285	27
140	0	0
150	0	0
200	0	0

^aTime for all reactions was 30 min. The yield for the conventional reflux (reflux temperature, 240 min) was 40%.

Leukemia		Non-Small Cell		Colon Cancer		CNS Cancer	
		Lung Can	ung Cancer				
Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)
CCRF-CEM	3.55E-7	A549/ATCC	7.64E-7	COLO 205	3.89E-6	SF-268	5.43E-7
HL-60(TB)	2.39E-7	EKVX	6.31E-7	HCC-2998	4.99E-7	SF-295	8.08E-7
K-562	2.96E-7	HOP-62	5.50E-7	HCT-116	3.70E-7	SF-539	2.05E-7
MOLT-4	3.68E-7	HOP-92	2.20E-5	HCT-15	3.41E-7	SNB-19	4.81E-7
RPMI-8226	3.74E-7	NCI-H226	6.09E-5	HT29	5.00E-6	SNB-75	2.93E-7
SR	3.81E-7	NCI-H23	9.38E-7	KM12	4.14E-7	U251	4.45E-7
Melanoma	r	NCI-H322M	7.65E-7	SW-620	4.69E-7	Prostate C	lancer
Cell line	GI50 (M)	NCI-H460	3.74E-7	Renal Car	ncer	Cell line	GI50 (M)
LOX IMVI	3.98E-7	NCI-H522	1.28E-7	Cell line	GI50 (M)	PC-3	5.80E-7
MALME- 3M	2.47E-5	Ovarian C	ancer	786-0	4.10E-6	DU-145	4.51E-7
M14	3.15E-7	Cell line	GI 50 (M)	A498	2.11E-7	Breast Ca	ncer
MDA-MB- 435	1.50E-7	IGROV1	5.19E-7	ACHN	4.57E-7	Cell line	GI50 (M)
SK-MEL-2	3.87E-7	OVCAR-3	3.22E-7	CAKI-1	nt	MCF7	3.07E-7
SK-MEL-28	6.71E-7	OVCAR-4	2.70E-6	RXF 393	nt	MDA-MB- 231/ATCC	3.78E-7
SK-MEL-5	3.61E-7	OVCAR-5	6.78E-7	SN12C	5.63E-7	HS 578T	7.12E-7
UACC-257	3.07E-5	OVCAR-8	4.19E-7	TK-10	2.34E-5	BT-549	3.91E-7
UACC-62	3.32E-7	NCI/ADR- RES	6.76E-7	UO-31	1.00E-6	T-47D	5.13E-5
		SK-OV-3	5.86E-7			MDA-MB- 468	5.75E-7

 Table S3. Antiproliferative evaluation of compound 4m against the NCI-60 cell line panel

Leukemia		Non-Small Cell		Colon Cancer		CNS Cancer	
			g Cancer				
Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)
CCRF-CEM	3.01E-7	A549/ATCC	6.80E-7	COLO 205	3.62E-7	SF-268	7.11E-7
HL-60(TB)	2.41E-7	EKVX	5.61E-7	HCC-2998	5.56E-7	SF-295	3.42E-7
K-562	3.16E-7	HOP-62	4.29E-7	HCT-116	3.56E-7	SF-539	2.23E-7
MOLT-4	5.24E-7	HOP-92	3.53E-6	HCT-15	3.88E-7	SNB-19	4.44E-7
RPMI-8226	5.24E-7	NCI-H226	3.20E-6	HT29	3.66E-7	SNB-75	2.20E-7
SR	4.09E-7	NCI-H23	2.18E-6	KM12	4.23E-7	U251	3.61E-7
Melanoma	t	NCI-H322M	5.76E-7	SW-620	4.01E-7	Prostate C	'ancer
Cell line	GI 50 (M)	NCI-H460	3.64E-7	Renal Car	ncer	Cell line	GI50 (M)
LOX IMVI	6.96E-7	NCI-H522	2.42E-7	Cell line	GI50 (M)	PC-3	4.14E-7
MALME- 3M	1.22E-5	Ovarian C	ancer	786-0	7.66E-7	DU-145	5.31E-7
M14	2.54E-7	Cell line	GI50 (M)	A498	1.42E-7	Breast Ca	ncer
MDA-MB- 435	1.38E-7	IGROV1	6.97E-7	ACHN	6.12E-7	Cell line	GI50 (M)
SK-MEL-2	7.25E-7	OVCAR-3	3.66E-7	CAKI-1	nt	MCF7	3.26E-7
SK-MEL-28	1.47E-6	OVCAR-4	3.05E-6	RXF 393	2.72E-7	MDA-MB- 231/ATCC	4.11E-7
SK-MEL-5	3.86E-7	OVCAR-5	5.69E-7	SN12C	6.43E-7	HS 578T	3.57E-7
UACC-257	3.65E-6	OVCAR-8	3.75E-7	TK-10	7.21E-5	BT-549	5.30E-7
UACC-62	2.72E-7	NCI/ADR- RES	6.23E-7	UO-31	8.11E-7	T-47D	nt
		SK-OV-3	4.72E-7			MDA-MB- 468	2.51E-7

Table S4. Antiproliferative evaluation of compound 4q against the NCI-60 cell line panel

Leukemia		Non-Smal	l Cell	Colon Cancer		CNS Cancer	
			ung Cancer				
Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)
CCRF-CEM	4.27E-7	A549/ATCC	4.55E-7	COLO 205	2.89E-7	SF-268	4.39E-7
HL-60(TB)	2.36E-7	EKVX	5.93E-7	HCC-2998	4.03E-7	SF-295	3.17E-7
K-562	2.34E-7	HOP-62	4.53E-7	HCT-116	1.93E-7	SF-539	1.80E-7
MOLT-4	4.73E-7	HOP-92	4.40E-7	HCT-15	3.52E-7	SNB-19	4.26E-7
RPMI-8226	3.31E-7	NCI-H226	3.52E-7	HT29	3.08E-7	SNB-75	1.44E-6
SR	2.88E-7	NCI-H23	4.39E-7	KM12	3.14E-7	U251	3.94E-7
Melanoma	t	NCI-H322M	6.14E-7	SW-620	4.57E-7	Prostate C	'ancer
Cell line	GI 50 (M)	NCI-H460	3.63E-7	Renal Car	ncer	Cell line	GI50 (M)
LOX IMVI	2.11E-7	NCI-H522	9.60E-8	Cell line	GI50 (M)	PC-3	4.32E-7
MALME- 3M	6.15E-7	Ovarian C	ancer	786-0	2.98E-7	DU-145	3.08E-7
M14	2.33E-7	Cell line	GI50 (M)	A498	1.46E-7	Breast Ca	ncer
MDA-MB- 435	1.41E-7	IGROV1	2.99E-7	ACHN	1.80E-7	Cell line	GI50 (M)
SK-MEL-2	6.40E-7	OVCAR-3	2.80E-7	CAKI-1	9.35E-7	MCF7	2.20E-7
SK-MEL-28	5.40E-7	OVCAR-4	1.05E-5	RXF 393	3.52E-7	MDA-MB- 231/ATCC	3.78E-7
SK-MEL-5	2.68E-7	OVCAR-5	8.47E-7	SN12C	4.50E-7	HS 578T	3.80E-7
UACC-257	> 1.00E-4	OVCAR-8	4.81E-7	TK-10	6.55E-7	BT-549	1.80E-7
UACC-62	2.46E-7	NCI/ADR- RES	2.92E-7	UO-31	7.01E-7	T-47D	nt
		SK-OV-3	2.88E-7			MDA-MB- 468	2.55E-7

Table S5. Antiproliferative evaluation of compound 4x against the NCI-60 cell line panel

Leukemia		Non-Small Cell		Colon Cancer		CNS Cancer	
		Lung Can	ung Cancer				
Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)	Cell line	GI50 (M)
CCRF-CEM	1.17E-6	A549/ATCC	1.50E-6	COLO 205	6.64E-7	SF-268	1.79E-6
HL-60(TB)	4.41E-7	EKVX	3.40E-6	HCC-2998	2.82E-6	SF-295	4.22E-7
K-562	4.52E-7	HOP-62	9.11E-7	HCT-116	3.79E-7	SF-539	4.98E-7
MOLT-4	2.06E-6	HOP-92	1.24E-5	HCT-15	5.79E-7	SNB-19	9.46E-7
RPMI-8226	4.13E-6	NCI-H226	3.40E-6	HT29	4.12E-7	SNB-75	4.83E-7
SR	5.93E-7	NCI-H23	3.88E-6	KM12	4.82E-7	U251	1.48E-6
Melanoma	t	NCI-H322M	2.80E-6	SW-620	5.06E-7	Prostate C	lancer
Cell line	GI 50 (M)	NCI-H460	4.97E-7	Renal Car	ncer	Cell line	GI50 (M)
LOX IMVI	1.04E-6	NCI-H522	1.70E-6	Cell line	GI50 (M)	PC-3	5.27E-7
MALME- 3M	nt	Ovarian C	ancer	786-0	4.04E-7	DU-145	1.50E-6
M14	4.78E-7	Cell line	GI 50 (M)	A498	6.82E-7	Breast Ca	ncer
MDA-MB- 435	2.57E-7	IGROV1	6.99E-7	ACHN	7.13E-7	Cell line	GI50 (M)
SK-MEL-2	9.67E-7	OVCAR-3	3.25E-7	CAKI-1	4.92E-7	MCF7	4.54E-7
SK-MEL-28	8.89E-6	OVCAR-4	1.80E-5	RXF 393	1.91E-6	MDA-MB- 231/ATCC	4.54E-6
SK-MEL-5	7.53E-7	OVCAR-5	5.26E-6	SN12C	4.52E-6	HS 578T	9.66E-7
UACC-257	> 1.00E-4	OVCAR-8	6.12E-6	TK-10	> 1.00E-4	BT-549	4.17E-7
UACC-62	4.40E-7	NCI/ADR- RES	1.15E-6	UO-31	4.76E-6	T-47D	nt
		SK-OV-3	9.39E-7			MDA-MB- 468	4.98E-7

Table S6. Antiproliferative evaluation of	f compound 6a	a against the	NCI-60 cell line panel
---	---------------	---------------	------------------------

Rank	Compound	r
	Based on GI ₅₀ mean graph	
1	Methotrexate	0.464
2	Paclitaxel (Taxol)	0.458
3	Vincristine sulfate	0.445
4	Maytansine	0.44
5	Tiazofurin	0.434
	Based on TGI mean graph	
1	Vinblastine sulphate	0.73
2	Maytansine	0.696
3	Paclitaxel (Taxol)	0.674
4	Rhizoxin	0.673
5	Vincristine sulfate	0.669
Rank	Compound	r
	Based on LC ₅₀ mean graph	
1	Thioguanine	0.951
2	Morpholino-ADR	0.842
3	Vinblastine sulfate	0.811
4	Mitramycin	0.811
5	Bispyridocarbazolium DMS	0.80

Table S7: Standard COMPARE analysis of compound 4m^a

^aThe target set was the standard agent database and the target set endpoints were selected to be equal to the seed end points. Standard COMPARE analysis was performed. Correlation values (r) are Pearson correlation coefficients. [National Cancer Institute biological testing branch; National Cancer Institute; Bethesda, MD; **2019.** <u>https://dtp.Nci.Nih.Gov/branches/btb/hfa.Html</u> (accessed 10th January 2019)].