Table of contents

1. General
2. Instruments and methods
3. Experimental Section
3.1 Preparation of Intermediate 1
3.2 Preparation of Substrate E
3.3 General procedure for the S _N Ar reactionS5
4. References
5. ¹ H, ¹⁹ F and ¹³ C NMR spectra of synthesized compounds
6. High-performance liquid chromatography (HPLC) separations
7. UV-visible absorption spectra of compound 1 and non-fluorescent 5',7'-difluoro-
DHX-hemicyanine fused dyes
8. Absorption, excitation and emission spectra of selected 5',7'-difluoro-6'-amino-
DHX-hemicyanine fused dyes

Supporting Information

1. General

Chemicals, reagents and solvents were purchased from commercial vendors and used without further purification. Trifluoroacetic acid (TFA), dichloromethane (DCM), dimethylformamide (DMF), ethyl acetate (EtOAc), petroleum ether (b.p. 40-60 °C), acetonitrile (MeCN), dimethyl sulfoxide (DMSO), methanol (MeOH), ethanol (EtOH), and pyridine used in this work were reagent grade. Bovine serum albumin (BSA, heat shock fraction, pH 7, \geq 98%) was provided by Sigma-Aldrich. The HPLC-gradient grade CH₃CN used for HPLC-MS analyses was obtained from Carlo Erba. Formic acid (FA, puriss p.a., ACS reagent, reag. Ph. Eur., \geq 98%) was provided by Sigma-Aldrich. All aq. buffers used in this work (PBS and aq. mobile-phases for HPLC were prepared using water purified with a PURELAB Ultra system from ELGA (purified to 18.2 M\Omega.cm). Thin-layer chromatography (TLC) was carried on pre-coated glass plates with 0.2 mm silica gel and visualized under UV (254 nm) and/or potassium permanganate (KMnO₄) stain. Flash-column chromatography was performed using Silica gel 60 (200–400 mesh) with specified eluents.

2. Instruments and methods

¹H, ¹³C and ¹⁹F NMR spectra were recorded on Brüker Avance 400 MHz or 600 MHz spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) and residual non-deuterated solvent peaks were used as internal reference (proton δ 7.26 and carbon δ 77. 16 for CDCl₃ and proton δ 2.50 and carbon δ 39.5 for DMSO-*d*₆). ¹H NMR coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations were used in reporting multiplicities: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), ddd (doublet of doublet of doublets) and br (broad). High-resolution mass spectra (HRMS) were recorded on either a Q-ToF micro (Bruker Compass Data Analysis 4.0) spectrometer or a Thermo LTQ Orbitrap XL apparatus, both equipped with an ESI analytical source. HPLC-MS analyses were performed on a Thermo-Dionex Ultimate 3000 instrument (pump + autosampler at 20 °C + column oven at 25 °C) equipped with a diode array detector (Thermo-Dionex DAD 3000-RS) and a MSQ Plus single quadrupole mass spectrometer (low-resolution mass (LRMS) analyses through electrospray ionization (ESI) source).

3. Experimental Section

3.1 Preparation of Intermediate 1

Scheme S1 Synthetic route towards Intermediate 1

2-Hydroxyl-3,4,5-trifluoro-benzaldehyde 3. To 2,3,4-trifluorophenol **A** (148 mg, 1 mmol, 1 equiv.) in TFA (2 mL) was added hexamethylenetetramine **B** (350 mg, 2.5 mmol, 2.5 equiv.). The mixture was stirred at room temperature (r.t.) for ~10 min until observation of a clear solution. The resulting solution was refluxed at 100 °C for 13 h and cooled down to r.t. Deionized water (2 mL) and conc. H₂SO₄ (370 µL) were added and the mixture was further stirred at r.t. for 18 h. The reaction mixture was extracted with DCM (3 x 20 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash-column chromatography on silica gel (100% Petroleum ether) afforded 2-hydroxyl-3,4,5-trifluoro-benzaldehyde **3** as a white solid (117 mg, 66%). ¹H NMR (400.0 MHz, CDCl₃): $\delta = 11.05$ (s, 1H), 9.83 (s, 1H), 7.27 (m, 1H) ppm; ¹⁹F NMR (376.5 MHz, CDCl₃): $\delta = -144.4$ (dd, J = 9.0, 21.1 Hz, 1F), -145.2 (m, 1F), -155.3 (d, J = 18.3 Hz, 1F) ppm; ¹³C NMR (100.0 MHz, CDCl₃): $\delta = 194.7$, 148.2 (m), 145.7 (ddd, $J_{C-FC} = 12.3$ Hz, $J_{C-F} = 16.2$ Hz, ¹ $J_{C-F} = 262.0$ Hz), 144.4 (ddd, $J_{C-F} = 1.2$ Hz, $J_{C-F} = 10.8$ Hz, ¹ $J_{C-F} = 245.4$ Hz), 140.4 (ddd, $J_{C-FC} = 2.6$ Hz, $J_{C-F} = 11.8$ Hz, ¹ $J_{C-F} = 254.5$ Hz), 115.7 (m), 114.0 (ddd, $J_{C-F} = 1.9$ Hz, $J_{C-F} = 3.7$ Hz, $J_{C-F} = 18.1$ Hz) ppm; MS (EI+): m/z calcd for C₇H₃F₃O₂ [M]+ 176.0085, found 176.0000.

6-Bromocyclohex-1-ene-1-carbaldehyde 4. To a mixture of DMF (23.5 mL, 306 mmol, 3 equiv.) and CHCl₃ (100 mL) at 0 °C was added PBr₃ (24.2 mL, 255 mmol, 2.5 equiv.) portionwise under an atmosphere of N₂. After 1.5 h, cyclohexanone (10.5 mL, 102 mmol, 1 equiv.) was added and the mixture was stirred at r.t. overnight. The resulting solution was poured onto ice and then solid NaHCO₃ was slowly added until pH ~ 7. The aqueous layer was extracted with CH₂Cl₂ and the organic layer was washed with water. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The yellow mixture was purified by flash-column chromatography on silica gel (100% Petroleum ether) and 6-Bromocyclohex-1-ene-1-carbaldehyde **4** was obtained as a pale yellow liquid (13.6 g, 72%). ¹H NMR (400.0 MHz, CDCl₃): $\delta = 10.01$ (s, 1H), 2.74 (m, 2H), 2.26 (m, 2H), 1.75 (m, 2H), 1.68 (m, 2H). The spectral data matched with the reference.¹

5',6',7'-Trifluoro-2,3-dihydro-1H-xanthene-4-carbaldehyde 5. To 2-hydroxyl-3,4,5-trifluoro-benzaldehyde **3** (528 mg, 3 mmol, 1 equiv.) and Cs₂CO₃ (978 mg, 3 mmol, 1 equiv.) in DMF (15 mL) was added 6-bromocyclohex-1-ene-1-carbaldehyde **4** (2.26 g, 12 mmol, 4 equiv.) and the mixture was stirred at 25 °C for 56 h. The reaction mixture was filtered and concentrated *in vacuo*. Purification by flash-column chromatography on silica gel (10% EtOAc in petroleum ether) afforded 5,6,7-Trifluoro-2,3-dihydro-1H-xanthene-4-carbaldehyde **5** as a yellow solid (483 mg, 61%). ¹H NMR (400.0 MHz, CDCl₃): $\delta = 10.35$ (s, 1H), 6.78 (m, 1H), 6.53 (s, 1H), 2.59 (t, J = 5.8 Hz, 2H), 2.45 (t, J = 6.1 Hz, 2H), 1.73 (m, 2H) ppm; ¹⁹F NMR (376.5 MHz, CDCl₃): $\delta = -140.7$ (m, 1F), -155.2 (m, 1F), -155.8 (m, 1F) ppm; ¹³C NMR (100.0 MHz, CDCl₃): $\delta = 188.1$, 157.9, 146.9 (ddd, $J_{C-F} = 2.1$ Hz, $J_{C-F} = 11.1$ Hz, ¹ $J_{C-F} = 246.6$ Hz), 140.6 (ddd, $J_{C-F} = 12.1$ Hz, $J_{C-F} = 16.9$ Hz, ¹ $J_{C-F} = 254.2$ Hz), 139.8 (ddd, $J_{C-F} = 4.0$ Hz, $J_{C-F} = 12.5$ Hz, ¹ $J_{C-F} = 253.8$ Hz), 137.4 (m), 131.5 (d, $J_{C-F} = 2.9$ Hz), 123.6 (dd, $J_{C-F} = 5.7$ Hz), 117.1 (m), 115.2 (d, $J_{C-F} = 0.9$ Hz), 107.8 (dd, $J_{C-F} = 3.7$ Hz, $J_{C-F} = 19.6$ Hz), 30.1, 21.5, 20.0 ppm; HRMS (ESI+): m/z calcd for C₁₄H₉F₃O₂ [M + Na]⁺ 289.0447, found 289.0450.

1,2,3,3-tetramethyl-3H-indol-1-ium iodide 6. To 2,3,3-trimethyl-3H-idole (32 mL, 200 mmol, 1 equiv.) in CH₃CN (200 mL) was added iodomethane (14 mL, 228 mmol, 2.28 equiv.) portion-wise and the solution was refluxed overnight. The precipitate was filtered and washed with Et₂O and dried *in vacuo* to afford 1,2,3,3-tetramethyl-3H-indol-1-ium iodide **6** as a light pink solid (56.5 g, 94%). ¹H NMR (400.0 MHz, DMSO-*d*₆): δ = 7.91 (m, 1H), 7.82 (m, 1H), 7.62 (m, 2H), 3.97 (s, 3H), 2.76 (s, 3H), 1.53 (s, 3H) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): δ = 196.5, 142.6, 142.1, 129.8, 129.3, 123.8, 115.6, 54.4, 35.1, 22.2, 14.5 ppm. The spectral data matched with the reference.²

5',6',7'-trifluoro DHX-hemicyanine fused dye precursor 1. To 5',6',7'-Trifluoro-2,3-dihydro-1H-xanthene-4-carbaldehyde **5** (265 mg, 0.99 mmol, 1 equiv.) in EtOH (2 mL) was added 1,2,3,3-tetramethyl-3H-indol-1-ium iodide **6** (300 mg, 0.99 mmol, 1 equiv.) and the solution was refluxed at 80 °C for 4 h. The reaction mixture was concentrated and the crude product was purified by flash-column chromatography on silica gel (1% MeOH in CH₂Cl₂) to afford compound **1** as a dark blue solid (483 mg, 88%). ¹H NMR (400.0 MHz, DMSO-*d*₆): δ = 8.50 (d, *J* = 15.6 Hz, 1H), 7.82 (m, 2H), 7.56 (m, 3H), 7.18 (s, 1H), 6.83 (d, *J* = 15.6 Hz, 1H), 4.01 (s, 3H), 2.70 (m, 4H),1.82 (m, 2H), 1.74 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): δ = -140.2 (m, 1F), -156.1 (m, 1F), -157.6 (d, *J*_{F-F} = 19.4 Hz, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): δ = 180.0, 156.0, 146.8 (dd, *J*_{C-F} = 10.2 Hz, ¹*J*_{C-F} = 244.2 Hz), 145.3, 143.1, 142.5, 140.6 (m), 140.4 (ddd, *J*_{C-F} = 11.9 Hz, *J*_{C-F} = 17.1 Hz, ¹*J*_{C-F} = 253.0 Hz), 138. 0 (m), 131.9, 129.4, 128.8, 127.2, 123.3, 118.5 (dd, *J*_{C-F} = 3.1 Hz, *J*_{C-F} = 9.2 Hz), 115.5, 114.8, 109.6 (d, *J*_{C-F} = 2.8 Hz), 109.4, 51.6, 34.1, 29.2, 27.1, 23.9, 20.1 ppm; HRMS (ESI+): m/z calcd for C₂₆H₂₃F₃NO⁺ [M]^{+°} 422.1763, found 422.1707; HPLC (system A): *t*_R = 4.8 min (purity >99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): *m*/z 422.2 [M]^{+°} (100), calcd for C₂₆H₂₃F₃NO⁺ 422.2; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 541$ nm (broad peak).

3.2. Preparation of Substrate E

Scheme S2 Synthesis of substrate E

To 1-(tert-Butyloxycarbonyl)piperazine C (3.7 g, 20 mmol, 1 equiv.) in CH₃CN (80 mL) were added 3-bromopropyne (1.9 mL, 22 mmol, 1.1 equiv.) and K₂CO₃ (4.1 g, 30 mmol, 1.5 equiv.) and the mixture was stirred at 60 °C for 2 h. After cooling down to r.t., the solvent was removed under reduced pressure. The residue was washed with water and extracted

in DCM. Purification by flash-column chromatography on silica gel (20% EtOAc in petroleum ether) afforded tert-butyl 4-(prop-2-yn-1-yl)piperazine-1-carboxylate **D**. The latter was dissolved in DCM (25 mL), TFA (25 mL) was added and the mixture was stirred at r.t. for 3 h. The reaction mixture was washed with sat. aqueous NaHCO₃ solution and extracted with EtOAc. After concentration *in vacuo*, 1-(prop-2-yn-1-yl)piperazine **E** was obtained as a yellow solid (1.2 g, 48%). ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 3.20$ (d, J = 2.2 Hz, 2H), 3.09 (t, J = 2.4 Hz, 1H), 2.71 (brs, 4H), 2.36 (brs, 4H) ppm. The spectrum matched with the corresponding reference.³

3.3 General procedure for the S_NAr reaction

General procedure for the synthesis of NIR DHX-hemicyanine fused dyes 8 and 2a-2u. To intermediate 1 (220 mg, 0.4 mmol, 1 equiv.) in pyridine (1 mL) was added the respective nucleophile (2 mmol, 5 equiv.) and the mixture was heated at 80 °C for 12 h in a sealed tube. After cooling down to r.t., the reaction mixture was concentrated in *vacuo* and directly purified by flash-column chromatography on silica gel (1% MeOH in CH₂Cl₂) to afford the corresponding blue products 2a-2u.

Nucleophiles (RXH)	Product	Yields
HN	8	61%
∕_N^_	2a	25%
∧ _N へ∕ ^{OH}	2b	34%
	2c	16%
NaN ₃	2d	44%
	2e	61%
HN	2f	65%
	2g	8%
↓ ₽ ₽	2h	45%

 Table 1 The product and corresponding nucleophiles

HN CO ₂ H	2i	35%
C ^H	2j	29%
HN	2k	76%
HN	21	81%
HN N ^{Boc}	2m	39%
HN	2n	35%
H ₂ N	20	43%
NH2	2р	45%
SH	2q	86%
SH	2r	71%
CI SH	2s	92%
SeH	2t	95%
	2u	66%

8: 61% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.54$ (d, J = 15.4 Hz, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.57 (dd, J = 7.3, 7.5 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.26 (m, 2H), 6.71 (d, J = 15.4 Hz, 1H), 3.95 (s, 3H), 3.73 (t, J = 4.2 Hz, 4H), 3.26 (brs, 4H), 2.70 (m, 4H), 1.82 (m, 2H), 1.74 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -124.3$ (m, 1F), -146.5 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 179.2$, 157.9, 153.3 (dd, $J_{C-F} = 5.9$ Hz, ¹ $J_{C-F} = 243.8$ Hz), 144.3 (dd, $J_{C-F} = 7.6$ Hz, ¹ $J_{C-F} = 247.9$ Hz), 145.2, 142.8, 142.6, 138.6 (dd, $J_{C-F} = 1.6$ Hz, $J_{C-F} = 10.1$ Hz), 130.3 (dd, $J_{C-F} = 9.0$ Hz, $J_{C-F} = 14.5$ Hz), 130.0, 129.7, 129.4, 128.3, 123.3, 117.0 (d, $J_{C-F} = 11.0$

Hz), 115.0, 114.3, 109.1 (dd, $J_{C-F} = 2.2$ Hz, $J_{C-F} = 24.3$ Hz), 107.6, 67.1, 51.4, 51.2, 33.7, 29.1, 27.4, 23.9, 20.2 ppm; HRMS (ESI+): m/z calcd for $C_{30}H_{31}F_2N_2O_2^+$ [M]^{+°} 489.2348, found 489.2343; HPLC (system A): $t_R = 4.8$ min (purity 100% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 489.2 [M]^{+°} (100), calcd for $C_{30}H_{31}F_2N_2O_2^+$ 489.2; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 602$ nm (broad peak).

2a: 25% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.58$ (d, J = 15.3 Hz, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 7.57 (dd, J = 7.5, 7.7 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.26 (m, 2H), 6.70 (d, J = 15.3 Hz, 1H), 3.94 (s, 3H), 3.26 (q, J = 7.0 Hz, 4H), 2.70 (m, 4H), 1.82 (m, 2H), 1.74 (s, 6H), 1.05 (t, J = 7.0Hz, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -123.2$ (m, 1F), -145.0 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 178.7$, 157.5, 154.4 (dd, $J_{C-F} = 5.8$ Hz, ¹ $J_{C-F} = 244.3$ Hz), 145.4 (dd, $J_{C-F} = 9.2$ Hz, ¹ $J_{C-F} = 248.1$ Hz), 144.8, 142.3, 142.1, 138.0 (dd, $J_{C-F} = 1.3$ Hz, $J_{C-F} = 10.5$ Hz), 129.6, 129.4, 128.9 - 128.6 (m), 128.8, 127.7, 122.7, 116.8 (d, $J_{C-F} = 11.6$ Hz), 114.4, 113.7, 108.3 (dd, $J_{C-F} = 2.0$ Hz, $J_{C-F} = 24.5$ Hz), 106.9, 50.7, 46.4, 33.1, 28.6, 26.9, 23.4, 19.8, 13.2 ppm; HRMS (ESI+): m/z calcd for C₃₀H₃₃F₂N₂O⁺ [M]^{+°} 475.2555, found 475.2552; HPLC (system A): $t_{R} = 5.4$ min (purity 99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 474.9 [M]^{+°} (100), calcd for C₃₀H₃₃F₂N₂O⁺ 475.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 598$ nm (broad peak).

2b: 34% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.80$ (d, J = 15.2 Hz, 1H), 7.69 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.56 (dd, J = 7.1, 7.6 Hz, 1H), 7.50 (t, J = 7.3 Hz, 1H), 7.21 (s, 1H), 7.06 (dd, $J_{H-F}= 1.1$ Hz, $J_{H-F}= 11.6$ Hz, 1H), 6.66 (d, J = 15.2 Hz, 1H), 3.93 (s, 3H), 3.68 (t, J = 6.0 Hz, 2H), 3.42 (m, 4H), 2.76 (m, 4H), 1.94 (m, 2H), 1.83 (s, 6H), 1.14 (t, J = 7.1 Hz, 3H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -123.7$ (m, 1F), -145.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.8$, 160.5, 156.7 (dd, $J_{C-F} = 5.9$ Hz, ¹ $J_{C-F} = 245.3$ Hz), 147.6, 147.4 (dd, $J_{C-F} = 8.0$ Hz, ¹ $J_{C-F} = 248.2$ Hz), 143.8, 143.7, 140.1 (dd, $J_{C-F} = 2.1$ Hz, $J_{C-F} = 10.9$ Hz), 131.7 (t, $J_{C-F} = 2.9$ Hz), 131.5 (dd, $J_{C-F} = 10.1$ Hz, $J_{C-F} = 15.6$ Hz), 131.3, 130.4, 129.2, 123.9, 118.6 (d, $J_{C-F} = 11.3$ Hz), 116.4, 114.4, 109.4 (dd, $J_{C-F} = 3.1$ Hz, $J_{C-F} = 24.9$ Hz), 107.2, 61.4, 55.9 (t, $J_{C-F} = 3.3$ Hz), 52.5, 33.4, 30.4, 28.1, 25.1, 21.7, 14.0 ppm; HRMS (ESI+): m/z calcd for C₃₀H₃₃F₂N₂O₂⁺ [M]^{+°} 491.2505, found 491.2488; HPLC (system A): $t_R = 4.7$ min (purity >99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 491.0 [M]^{+°} (100), calcd for C₃₀H₃₃F₂N₂O₂⁺ 491.2; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 598$ nm (broad peak).

2c: 16% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.78$ (d, J = 15.1 Hz, 1H), 7.69 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.56 (dd, J = 7.4, 7.8 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.22 (s, 1H), 7.06 (dd, $J_{\text{H-F}} = 1.0$ Hz, $J_{\text{H-F}} = 11.6$ Hz, 1H), 6.66 (d, J = 15.2 Hz, 1H), 3.94 (s, 3H), 3.27 (t, J = 7.0 Hz, 4H), 2.75 (m, 4H), 1.94 (brs, 2H), 1.83 (s, 6H), 1.56 (m, 4H), 0.91 (t, J = 7.3 Hz, 6H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -123.8$ (m, 1F), -145.9 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.7$, 160.5, 156.5 (dd, $J_{\text{C-F}} = 6.0$ Hz, ¹ $J_{\text{C-F}} = 245.2$ Hz), 147.5, 147.1 (dd, $J_{\text{C-F}} = 7.9$ Hz, ¹ $J_{\text{C-F}} = 247.8$ Hz), 143.8, 143.7, 140.1 (dd, $J_{\text{C-F}} = 1.7$ Hz, $J_{\text{C-F}} = 10.6$ Hz), 131.8 (m), 131.8, 130.4, 129.1, 123.9, 118.2 (d, $J_{\text{C-F}} = 1.3$ Hz), 116.4, 114.5, 109.5 (d, $J_{\text{C-F}} = 24.6$ Hz), 107.2, 56.1 (t, $J_{\text{C-F}} = 3.3$ Hz), 52.4, 33.7, 30.4, 28.1, 25.1, 22.7, 21.6, 11.8 ppm; HRMS (ESI+): m/z calcd for C₃₂H₃₇F₂N₂O⁺ [M]^{+°} 503.2868, found 503.2868; HPLC (system A): $t_{\text{R}} = 5.7$ min (purity >99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 503.1 [M]^{+°} (100), calcd for C₃₂H₃₇F₂N₂O⁺ 503.3; UV-vis (recorded during the HPLC analysis): $\lambda_{\text{max}} = 615$ nm (broad peak).

2d: 44% yield; Dark green solid; ¹H NMR (600.0 MHz, DMSO-*d*₆): $\delta = 8.58$ (d, J = 14.9 Hz, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 7.53 (dd, J = 7.5, 7.9 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.41 (s, 1H), 7.26 (d, $J_{\text{H-F}} = 10.5$ Hz, 1H), 6.60 (brs, 2H), 6.54 (d, J = 15.0 Hz, 1H), 3.84 (s, 3H), 2.71 (t, J = 5.8 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H), 1.82 (m, 2H), 1.72 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -133.2$ (m, 1F), -157.4 (d, $J_{\text{F-F}} = 11.4$ Hz, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 177.0$, 159.4, 147.6 (dd, $J_{\text{C-F}} = 7.4$ Hz, ¹ $J_{\text{C-F}} = 239.5$ Hz), 144.0, 142.3, 141.7, 138.6 (d, $J_{\text{C-F}} = 8.0$ Hz), 137.1 (dd, $J_{\text{C-F}} = 8.7$ Hz, ¹ $J_{\text{C-F}} = 240.4$ Hz), 133.0, 130.4 (dd, $J_{\text{C-F}} = 12.7$ Hz, $J_{\text{C-F}} = 18.5$ Hz), 128.7, 126.7, 125.4, 122.6, 113.9, 112.9, 109.6 (d, $J_{\text{C-F}} = 10.2$ Hz), 107.8 (d, $J_{\text{C-F}} = 20.9$ Hz), 104.3, 50.0, 32.4, 28.2, 27.2, 23.4, 19.9 ppm; HRMS (ESI+): m/z calcd for C₂₆H₂₅F₂N₂O⁺ [M]^{+°} 419.1929, found 419.1916; HPLC (system A): $t_{\text{R}} = 4.6$ min (purity 99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 419.0 [M]^{+°} (100), calcd for C₂₆H₂₅F₂N₂O⁺ 419.2; UV-vis (recorded during the HPLC analysis): $\lambda_{\text{max}} = 620$ and 671 nm (broad peak).

2e: 61% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.72$ (d, J = 14.9 Hz, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.52 (m, 2H), 7.43 (m, 1H), 7.27 (s, 1H), 7.02 (d, $J_{\text{H-F}} = 13.6$ Hz, 1H), 6.50 (d, J = 14.9 Hz, 1H), 3.84 (s, 3H), 3.74 (brs, 4H), 2.74 (m, 4H), 1.95 (m, 6H), 1.79 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -126.0$ (m, 1F), -153.1 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 179.3$, 162.0, 151.6 (dd, $J_{\text{C-F}} = 8.1$ Hz, ¹ $J_{\text{C-F}} = 243.5$ Hz), 146.6, 143.9, 143.4, 141.4 (d, $J_{\text{C-F}} = 11.0$ Hz), 141.3 (dd, $J_{\text{C-F}} = 9.4$ Hz, ¹ $J_{\text{C-F}} = 243.2$ Hz), 134.2, 131.9 (dd, $J_{\text{C-F}} = 8.3$ Hz, $J_{\text{C-F}} = 14.4$ Hz),

130.3, 128.4, 128.1, 123.8, 116.2, 113.7, 113.4 (d, $J_{C-F} = 11.3 \text{ Hz}$), 110.0 (d, $J_{C-F} = 25.3 \text{ Hz}$), 105.1, 53.1 (t, $J_{C-F} = 6.4 \text{ Hz}$), 51.9, 33.0, 30.9, 30.1, 28.4, 26.9, 21.8 ppm; HRMS (ESI+): m/z calcd for $C_{30}H_{31}F_2N_2O^+$ [M]^{+°} 473.2399, found 473.2386; HPLC (system A): $t_R = 5.5 \text{ min}$ (purity 98% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 473.2 [M]^{+°} (100), calcd for $C_{30}H_{31}F_2N_2O^+$ 473.2; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 647$ and 701 nm (broad peak).

2f: 10% yield; Dark blue solid; Purification using semi-preparative RP-HPLC; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.79$ (d, J = 15.0 Hz, 1H), 7.65 (d, J = 7.4 Hz, 1H), 7.59–7.48 (m, 2H), 7.48–7.43 (m, 1H), 7.26 (d, J = 1.6 Hz, 1H), 7.05 (dd, J = 13.0, 2.0 Hz, 1H), 6.55 (d, J = 15.0 Hz, 1H), 4.38 (m, J = 7.5 Hz, 1H), 4.00–3.90 (m, 1H), 3.86 (s, 3H), 3.65–3.42 (m, 3H), 2.75 (dt, J = 20.5, 6.4 Hz, 4H), 2.23–2.17 (m, J = 7.3, 3.9 Hz, 1H), 2.10–2.02 (m, 1H), 1.98–1.88 (m, J = 12.5, 4.9 Hz, 4H), 1.81 (d, J = 3.2 Hz, 6H); ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 179.8$, 161.5, 147.0, 143.7, 143.4, 133.3, 130.2, 129.0, 128.5, 123.6, 116.0, 115.1, 115.0, 113.8, 109.6, 109.4, 105.5, 64.7, 63.0, 54.2, 52.0, 32.8, 30.1, 29.5, 28.1, 26.0, 24.9, 21.6 pm; IR (film) $v_{max} = 3386$, 2925, 2861, 1686, 1636, 1600, 1565, 1536, 1503, 1459, 1402, 1366, 1307, 1292, 1270, 1237, 1202, 1171, 1114, 1065, 1043, 1020, 929, 837 cm⁻¹; HRMS (ESI+): *m/z* calcd for C₃₁H₃₃F₂N₂O₂⁺ [M]^{+°} 503.2505, found 503.2500; HPLC (system A): $t_{R} = 4.8$ min (purity 98% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): *m/z* 503.3 [M]^{+°} (100), calcd for C₃₁H₃₃F₂N₂O₂⁺ 503.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 637$ and 691 nm (broad peak).

2g: 65% yield; Dark green solid; ¹H NMR (400.0 MHz, CDCl₃): $\delta = 8.69$ (d, J = 15.1 Hz, 1H), 7.46 (m, 4H) 6.97 (s, 1H), 6.82 (m, 2H), 4.16 (s, 3H), 3.31 (brs, 4H), 2.90 (t, J = 6.0 Hz, 2H), 2.72 (t, J = 5.4 Hz, 2H), 1.96 (m, 2H), 1.81 (s, 6H), 1.72 (m, 4H), 1.66 (m, 2H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -125.1$ (d, $J_{H-F} = 6.4$ Hz, 1F), -147.1 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.7$, 160.7, 155.3 (dd, $J_{C-F} = 6.8$ Hz, ¹ $J_{C-F} = 245.0$ Hz), 147.5, 145.8 (dd, $J_{C-F} = 7.0$ Hz, ¹ $J_{C-F} = 247.2$ Hz), 143.8, 143.7, 140.4 (m), 133.6 (dd, $J_{C-F} = 9.1$ Hz, $J_{C-F} = 14.7$ Hz), 132.0, 130.8, 130.4, 129.1, 123.9, 117.6 (d, $J_{C-F} = 11.0$ Hz), 116.4, 114.4, 109.6 (dd, $J_{C-F} = 2.8$ Hz, $J_{C-F} = 24.4$ Hz), 106.9, 53.7 (t, $J_{C-F} = 3.8$ Hz), 52.4, 33.4, 30.3, 28.1, 27.9, 25.4, 25.1, 21.7 ppm; HRMS (ESI+): m/z calcd for C₃₁H₃₃F₂N₂O⁺ [M]^{+°} 487.2555, found 487.2524; HPLC (system A): $t_R = 5.5$ min (purity 100% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 487.2 [M]^{+°} (100), calcd for C₃₁H₃₃F₂N₂O⁺ 487.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 613$ nm (broad peak).

2h: 8% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.80$ (d, J = 15.2 Hz, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.57 (dd, J = 7.3, 7.9 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.19 (s, 1H), 7.06 (d, $J_{\text{H-F}} = 11.0$ Hz, 1H), 6.69 (d, J = 15.3 Hz, 1H), 3.95 (s, 3H), 3.42 (m, 1H), 3.26 (m, 1H), 3.08 (m, 1H), 2.76 (m, 4H), 1.94 (m, 2H), 1.84 (s, 7H), 1.70 (m, 3H), 1.56 (m, 2H), 1.04 (d, J = 6.3 Hz, 3H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -123.7$ (m, 1F), -145.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 181.1$, 160.0, 157.9 (d, ¹ $_{\text{JC-F}} = 245.2$ Hz), 148.7 (d, ¹ $_{\text{JC-F}} = 251.5$ Hz), 147.7, 143.9, 143.7, 139.8 (d, $J_{\text{C-F}} = 10.5$ Hz), 132.3 (dd, $J_{\text{C-F}} = 16.6$ Hz, $J_{\text{C-F}} = 27.1$ Hz), 132.1, 131.0, 130.4, 129.3, 120.1 (d, $J_{\text{C-F}} = 10.2$ Hz) 116.6, 114.7, 109.4 (d, $J_{\text{C-F}} = 25.3$ Hz), 107.9, 56.0, 52.6, 35.2, 30.9, 30.4, 28.1, 27.9, 25.1, 24.0, 21.6, 19.5 ppm; HRMS (ESI+): m/z calcd for C₃₂H₃₅F₂N₂O⁺ [M]^{+°} 501.2712, found 501.2707; HPLC (system A): $t_{\text{R}} = 5.6$ min (purity >99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 501.1 [M]^{+°} (100), calcd for C₃₂H₃₅F₂N₂O⁺ 501.3; UV-vis (recorded during the HPLC analysis): $\lambda_{\text{max}} = 589$ nm (broad peak).

2i: 45% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.52$ (d, J = 15.3 Hz, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.56 (dd, J = 7.1, 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.27 (s, 1H), 7.22 (m, 1H), 6.68 (d, J = 15.3 Hz, 1H), 3.94 (s, 3H), 3.26 (d, J = 10.8 Hz, 2H), 2.64 (m, 6H), 1.78 (m, 12H), 0.86 (d, J = 6.5 Hz, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -124.2$ (m, 1F), -146.9 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 178.4$, 157.6, 152.7 (dd, $J_{C-F} = 6.1$ Hz, ¹ $J_{C-F} = 243.4$ Hz), 144.5, 143.6 (dd, $J_{C-F} = 7.5$ Hz, ¹ $J_{C-F} = 247.1$ Hz), 142.2, 142.1, 138.1 (dd, $J_{C-F} = 1.5$ Hz, $J_{C-F} = 10.2$ Hz), 130.7 (dd, $J_{C-F} = 9.4$ Hz, $J_{C-F} = 14.7$ Hz), 129.6, 129.0, 128.8, 127.6, 122.7, 115.7 (d, $J_{C-F} = 11.3$ Hz), 114.4, 113.7, 108.4 (dd, $J_{C-F} = 1.7$ Hz, $J_{C-F} = 24.3$ Hz), 106.7, 58.0, 50.6, 41.3, 33.1, 31.4, 28.5, 26.9, 23.5, 19.7, 18.9 ppm; HRMS (ESI+): m/z calcd for C₃₃H₃₇F₂N₂O⁺ [M]^{+°} 515.2868, found 515.2853; HPLC (system A): $t_R = 5.9$ min (purity 98% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 514.9 [M]^{+°} (100), calcd for C₃₃H₃₇F₂N₂O⁺ 515.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 515$ nm (broad peak).

2j: 35% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.80$ (d, J = 15.3 Hz, 1H), 7.69 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.56 (dd, J = 7.2, 8.0 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.20 (s, 1H), 7.06 (d, $J_{\text{H-F}} = 11.6$ Hz, 1H), 6.65 (d, J = 15.2 Hz, 1H), 3.92 (s, 3H), 3.51 (d, J = 12.6 Hz, 2H), 3.25 (t, J = 11.7 Hz, 2H), 2.76 (m, 4H), 2.54 (m, 1H), 2.03 (m, 2H), 1.94 (m, 2H), 1.85 (m, 8H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -125.4$ (m, 1F), -147.6 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.8$, 178.7, 160.6, 155.3 (dd, $J_{\text{C-F}} = 6.1$ Hz, $^{1}J_{\text{C-F}} = 244.7$ Hz), 147.6, 146.0 (dd,

 $J_{C-F} = 7.6 \text{ Hz}, {}^{1}J_{C-F} = 247.4 \text{ Hz}), 143.8, 143.7, 140.2 (dd, <math>J_{C-F} = 2.2 \text{ Hz}, J_{C-F} = 10.7 \text{ Hz}), 133.0 (dd, <math>J_{C-F} = 9.5 \text{ Hz}, J_{C-F} = 14.9 \text{ Hz}), 131.8, 131.1, 130.4, 129.2, 123.9, 118.0 (d, <math>J_{C-F} = 11.4 \text{ Hz}), 116.4, 114.4, 109.6 (dd, <math>J_{C-F} = 2.0 \text{ Hz}, J_{C-F} = 24.5 \text{ Hz}), 107.1, 52.5, 52.1 (t, <math>J_{C-F} = 3.6 \text{ Hz}), 42.0, 33.4, 30.4, 30.3, 28.1, 25.1, 21.7 \text{ ppm}; \text{HRMS (ESI+): m/z calcd for } C_{32}H_{33}F_2N_2O_3^+ [M]^{+\circ} 531.2454, \text{ found } 531.2461; \text{HPLC (system A): } t_R = 4.8 \text{ min (purity >99\% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): } m/z 530.8 [M]^{+\circ} (100), calcd for C_{32}H_{33}F_2N_2O_3^+ 531.3; UV-vis (recorded during the HPLC analysis): <math>\lambda_{max} = 608 \text{ nm}$ (broad peak).

2k: 29% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.79$ (d, J = 15.1 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H), 7.60 (d, J = 7.5 Hz, 1H), 7.55 (ddd, J = 1.2, 7.3, 7.9 Hz, 1H), 7.48 (dt, J = 1.2, 7.2 Hz, 1H), 7.23 (s, 1H), 7.05 (dd, $J_{H-F} = 1.7$ Hz, $J_{H-F} = 12.3$ Hz, 1H), 6.62 (d, J = 15.1 Hz, 1H), 3.91 (s, 3H), 3.51 (t, J = 5.6 Hz, 4H), 2.76 (m, 4H), 1.94 (m, 2H), 1.83 (m, 10H), 1.74 (m, 4H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -125.3$ (t, $J_{H-F} = 9.0$ Hz, 1F), -146.5 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.4$, 161.0, 154.9 (d, ${}^{1}J_{C-F} = 242.7$ Hz), 147.4, 145.3 (d, ${}^{1}J_{C-F} = 246.5$ Hz), 143.8, 143.7, 140.6 (m), 134.4 (dd, $J_{C-F} = 9.9$ Hz, $J_{C-F} = 15.0$ Hz), 132.4, 130.4, 130.2, 128.9, 123.9, 116.6 (d, $J_{C-F} = 11.1$ Hz), 116.3, 114.2, 109.7 (d, $J_{C-F} = 25.3$ Hz), 106.6, 55.1 (t, $J_{C-F} = 4.1$ Hz), 52.3, 33.4, 31.0, 30.3, 28.8, 28.2, 25.1, 21.7 ppm; HRMS (ESI+): m/z calcd for C₃₂H₃₅F₂N₂O⁺ [M]^{+°} 501.2712, found 501.2713; HPLC (system A): $t_R = 5.7$ min (purity 98% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 501.1 [M]^{+°} (100), calcd for C₃₂H₃₅F₂N₂O⁺ 501.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 598$ nm (broad peak).

21: 76% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.77$ (d, J = 15.4 Hz, 1H), 7.70 (d, J = 7.2 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.57 (dd, J = 7.2, 7.6 Hz, 1H), 7.51 (dd, J = 7.3, 7.2 Hz, 1H), 7.17 (s, 1H), 7.12 (d, $J_{\text{H-F}} = 10.6$ Hz, 1H), 6.71 (d, J = 15.3 Hz, 1H), 3.95 (s, 3H), 3.63 (brs, 4H), 3.42 (brs, 4H), 2.96 (s, 3H), 2.76 (m, 4H), 1.94 (m, 2H), 1.82 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -125.9$ (m, 1F), -146.5 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 179.7$, 158.2, 153.8 (dd, $J_{\text{C-F}} = 5.2$ Hz, ¹ $J_{\text{C-F}} = 245.3$ Hz), 146.2, 144.9 (m), 142.4, 142.2, 138.4 (dd, $J_{\text{C-F}} = 2.3$ Hz, $J_{\text{C-F}} = 10.7$ Hz), 130.7, 129.1, 128.9, 128.6 (dd, $J_{\text{C-F}} = 10.5$ Hz, $J_{\text{C-F}} = 15.5$ Hz), 127.9, 122.4, 118.2 (d, $J_{\text{C-F}} = 10.9$ Hz), 115.1, 113.2, 108.3 (dd, $J_{\text{C-F}} = 3.0$ Hz, $J_{\text{C-F}} = 24.3$ Hz), 106.5, 54.0, 51.1, 48.1, 42.8, 32.2, 28.9, 26.5, 23.5, 20.0 ppm; MS (ESI+): m/z calcd for C₃₁H₃₄F₂N₃O⁺ [M]^{+°} 502.2670, found 502.2658; HPLC (system A): $t_R = 3.6$ min (purity >99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 272.3 [2M + H + CH₃CN]²⁺ (100) and 502.1 [M]^{+°} (45), calcd for C₃₁H₃₄F₂N₃O⁺ 502.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 591$ nm (broad peak).

2m: 81% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.78$ (d, J = 15.3 Hz, 1H), 7.69 (d, J = 7.4 Hz, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.56 (ddd, J = 0.9, 7.4, 8.0 Hz, 1H), 7.50 (dt, J = 0.7, 7.4 Hz, 1H), 7.17 (s, 1H), 7.10 (dd, $J_{\text{H-F}} = 1.8$ Hz, $J_{\text{H-F}} = 11.6$ Hz, 1H), 6.68 (d, J = 15.3 Hz, 1H), 3.94 (s, 3H), 3.55 (t, J = 4.4 Hz, 4H), 3.12 (brs, 4H), 2.98 (m, 2H), 2.76 (m, 4H), 1.94 (m, 2H), 1.82 (s, 6H), 1.31 (t, J = 7.3 Hz, 3H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -125.7$ (m, 1F), -146.9 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO- d_6): $\delta = 179.2$, 157.8, 153.3 (dd, $J_{\text{C-F}} = 4.6$ Hz, ¹ $J_{\text{C-F}} = 243.7$ Hz), 144.4 (dd, $J_{\text{C-F}} = 7.6$ Hz, ¹ $J_{\text{C-F}} = 247.7$ Hz), 145.2, 142.8, 142.6, 138.6 (m), 130.1, 129.9 (m), 129.6, 129.4, 128.3, 123.3, 117.1 (d, $J_{\text{C-F}} = 12.1$ Hz), 115.0, 114.3, 109.1 (d, $J_{\text{C-F}} = 24.6$ Hz), 107.7, 52.6, 51.9, 51.2, 49.9, 33.7, 29.1, 27.4, 23.9, 20.2, 11.2 ppm; MS (ESI+): m/z calcd for C₃₂H₃₆F₂N₃O⁺ [M]^{+°} 516.2826, found 516.2890; HPLC (system A): $t_{\text{R}} = 3.7$ min (purity >99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 279.3 [2M + H + CH₃CN]²⁺ (100) and 516.1 [M]^{+°} (30), calcd for C₃₂H₃₆F₂N₃O⁺ 516.3; UV-vis (recorded during the HPLC analysis): $\lambda_{\text{max}} = 592$ nm (broad peak).

2n: 39% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.56$ (d, J = 15.2 Hz, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.57 (dd, J = 7.5, 7.6 Hz, 1H), 7.50 (dd, J = 7.3, 7.4 Hz, 1H), 7.26 (m, 2H), 6.71 (d, J = 15.4 Hz, 1H), 3.94 (s, 3H), 3.47 (brs, 4H), 3.21 (brs, 4H), 2.70 (m, 4H), 1.82 (m, 2H), 1.75 (s, 6H), 1.43 (s, 9H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -124.1$ (m, 1F), -146.0 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 178.7$, 157.3, 153.7, 152.7 (d, $^{1}J_{C-F} = 244.3$ Hz), 144.8, 143.9 (d, $^{1}J_{C-F} = 247.8$ Hz), 142.3, 142.0, 138.0 (d, $J_{C-F} = 10.0$ Hz), 129.9 - 129.8 (m), 129.6, 129.0, 128.8, 127.7, 122.6, 116.6 (d, $J_{C-F} = 11.2$ Hz), 114.5, 113.7, 108.5 (d, $J_{C-F} = 23.7$ Hz), 107.1, 79.0, 50.6, 50.4, 33.1, 28.9, 28.5, 28.0, 26.9, 23.4, 19.7 ppm; HRMS (ESI+): m/z calcd for C₃₅H₄₀F₂N₃O₃⁺ [M]^{+°} 588.3032, found 588.3021; HPLC (system A): $t_R = 5.4$ min (purity 97% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 588.3 [M]^{+°} (100), calcd for C₃₅H₄₀F₂N₃O₃⁺ 588.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 602$ nm (broad peak).

20: 35% yield; Dark green solid; ¹H NMR (600.0 MHz, DMSO-*d*₆): $\delta = 8.56$ (d, J = 14.9 Hz, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.57 (dd, J = 7.6, 7.8 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.25 (m, 2H), 6.70 (d, J = 15.3 Hz, 1H), 3.94 (s, 3H), 3.38 (brs, 2H), 3.30 (brs, 4H), 3.21 (brs, 1H), 2.71 (brs, 2H), 2.68 (brs, 2H), 2.61 (brs, 4H), 1.82 (m, 2H), 1.75 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -124.2$ (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.75 (s, 6H) ppm; ¹³C NMR (100.0 MHz, 2H), 1.75 (s, 6H) ppm; ¹³C NMR (100.0 MHz, 2H), 1.75 (s, 6H) ppm; ¹³C NMR (100.0 MHz, 2H), 1.75 (s, 6H) ppm; ¹³C NMR (100.0 MHz, 2H), 1.75 (s, 6H) ppm; ¹³C NMR (100.0 MHz, 2H), 1.75 (s, 6H) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, 2H), 1.82 (s, 1F), -146.3 (s, 1F) ppm; ¹³C NMR (s, 1F)

DMSO-*d*₆): $\delta = 178.7$, 157.5, 152.7 (d, ¹*J*_{C-F} = 243.7 Hz), 144.7, 143.7 (dd, *J*_{C-F} = 7.8 Hz, ¹*J*_{C-F} = 247.0 Hz), 142.2, 142.0, 138.0 (d, *J*_{C-F} = 9.2 Hz), 130.0 (dd, *J*_{C-F} = 8.4 Hz, *J*_{C-F} = 11.3 Hz), 129.3 (br), 128.8, 127.6, 122.6, 116.2 (d, *J*_{C-F} = 11.0 Hz), 114.4, 113.6, 108.5 (d, *J*_{C-F} = 24.5 Hz), 106.9, 78.9, 75.9, 51.5, 50.6, 50.3, 46.1, 33.0, 28.5, 26.9, 23.4, 19.7 ppm; HRMS (ESI+): m/z calcd for C₃₃H₃₄F₂N₃O⁺ [M]^{+°} 526.2664, found 526.2644; HPLC (system A): *t*_R = 3.9 min (purity 99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): *m/z* 284.3 [2M + H + CH₃CN]^{+°} (100) and 526.0 [M]^{+°} (55), calcd for C₃₃H₃₄F₂N₃O⁺ 526.3; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 591$ nm (broad peak).

2p: 43% yield; Dark green solid; ¹H NMR (600.0 MHz, CDCl₃): $\delta = 8.67$ (d, J = 15.3 Hz, 1H), 7.52 (m, 1H), 7.44 (m, 3H), 7.00 (m, 3H), 6.92 (d, $J_{\text{H-F}} = 10.0$ Hz,1H), 6.89 (m, 2H), 6.84 (d, J = 14.9 Hz, 1H), 5.89 (brs, 1H), 4.15 (s, 3H), 3.83 (s, 3H), 2.91 (t, J = 6.1 Hz, 2H), 2.74 (t, J = 5.7 Hz, 2H), 1.96 (m, 2H), 1.74 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -128.0$ (m, 1F), -147.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.1$, 161.1, 157.2, 152.4 (dd, $J_{\text{C-F}} = 6.5$ Hz, ${}^{1}J_{\text{C-F}} = 244.1$ Hz), 147.1, 143.6, 143.5, 140.5 (dd, $J_{\text{C-F}} = 2.0$ Hz, $J_{\text{C-F}} = 9.2$ Hz), 136.4, 132.9, 130.2, 129.6, 128.7, 126.9 (dd, $J_{\text{C-F}} = 10.1$ Hz, $J_{\text{C-F}} = 16.5$ Hz), 123.7, 121.9, 116.1, 115.4 (d, $J_{\text{C-F}} = 10.3$ Hz), 115.1, 113.9, 109.2 (dd, $J_{\text{C-F}} = 2.5$ Hz, $J_{\text{C-F}} = 22.7$ Hz), 106.0, 56.0, 52.1, 32.9, 30.1, 27.9, 25.0, 21.6 ppm; HRMS (ESI+): m/z calcd for C₃₃H₃₁F₂N₂O₂⁺ [M]^{+°} 525.2348, found 525.2348; HPLC (system A): $t_{\text{R}} = 5.1$ min (purity 99% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 525.0 [M]^{+°} (100), calcd for C₃₃H₃₁F₂N₂O₂⁺ 525.2; UV-vis (recorded during the HPLC analysis): $\lambda_{\text{max}} = 626$ nm (broad peak).

2q: 45% yield; Dark green solid; ¹H NMR (400.0 MHz, CD₃OD): $\delta = 8.74$ (d, J = 15.2 Hz, 1H), 7.68 (dd, J = 8.1, 8.5 Hz, 2H), 7.56 (d, J = 7.9 Hz, 2H), 7.50 (m, 2H), 7.40 (m, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.19 (m, 4H), 6.98 (d, $J_{H-F} = 8.0$ Hz, 1H), 6.60 (d, J = 15.1 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 2H), 2.77 (t, J = 5.8 Hz, 2H), 2.71 (t, J = 5.9 Hz, 2H), 1.94 (m, 2H), 1.73 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, CD₃OD): $\delta = -126.7$ (m, 1F), -144.9 (s, 1F) ppm; ¹³C NMR (100.0 MHz, CD₃OD): $\delta = 180.5$, 160.8, 153.4 (dd, $J_{C-F} = 5.7$ Hz, $^{1}J_{C-F} = 244.5$ Hz), 147.4, 145.7, 144.8 (d, $J_{C-F} = 6.2$ Hz), 144.2, 143.7, 143.1, 143.0, 140.4 (d, $J_{C-F} = 9.9$ Hz), 137.3, 130.5, 130.3, 129.0, 128.0, 127.0, 126.0, 125.3 (dd, $J_{C-F} = 11.0$ Hz, $J_{C-F} = 16.9$ Hz), 123.9, 121.1, 120.0, 118.1, 117.1 (d, $J_{C-F} = 10.3$ Hz), 116.3, 115.7, 114.2, 109.5 (d, $J_{C-F} = 22.8$ Hz), 106.7, 52.3, 37.8, 33.2, 30.3, 28.0, 25.0, 21.7 ppm; HRMS (ESI+): m/z calcd for C₃₉H₃₃F₂N₂O⁺ [M]^{+°} 583.2555 found 583.2541.

2r: 86% yield; Dark green solid; ¹H NMR (600.0 MHz, CD₃OD): $\delta = 8.72$ (d, J = 15.5 Hz, 1H), 7.72 (d, J = 7.2 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.59 (dt, J = 1.0, 7.6 Hz, 1H), 7.54 (dt, J = 0.7, 7.5 Hz, 1H), 7.20 (m, 1H), 7.15 (s, 1H), 7.13 (d, J = 11.7 Hz, 2H), 7.05 (dd, $J_{\text{H-F}} = 1.4$, 9.1 Hz, 1H), 6.76 (d, J = 15.4 Hz, 1H), 3.96 (s, 3H), 2.77 (t, J = 5.7 Hz, 2H), 2.73 (t, J = 6.0 Hz, 2H), 2.47 (s, 6H), 1.94 (m, 2H), 1.79 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO- d_6): $\delta = -112.7$ (d, $J_{\text{H-F}} = 9.1$ Hz, 1F), -131.3 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO- d_6): $\delta = 179.4$, 156.8 (dd, $J_{\text{C-F}} = 3.6$ Hz, $^1J_{\text{C-F}} = 244.0$ Hz), 156.1, 148.1 (dd, $J_{\text{C-F}} = 6.5$ Hz, $^1J_{\text{C-F}} = 248.0$ Hz), 145.0, 142.6, 142.1, 142.0, 137.0 (dd, $J_{\text{C-F}} = 2.5$ Hz, $J_{\text{C-F}} = 11.9$ Hz), 132.5, 129.6, 129.3, 129.0, 128.6, 128.2, 127.5, 122.8, 122.6 (dd, $J_{\text{C-F}} = 1.6$ Hz, $J_{\text{C-F}} = 10.8$ Hz), 115.0, 114.2, 113.7 (dd, $J_{\text{C-F}} = 17.4$ Hz, $J_{\text{C-F}} = 23.3$ Hz), 108.6, 108.5 (m), 51.0, 33.5, 28.8, 26.7, 23.4, 21.3, 19.7 ppm; HRMS (ESI+): m/z calcd for C₃₄H₃₂F₂NOS⁺ [M]^{+°} 540.2167, found 540.2158.

2s: 71% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.51$ (d, J = 15.5 Hz, 1H), 7.88 (d, J = 8.5 Hz, 2H), 7.82 (m, 2H), 7.77 (dd, J = 8.1, 8.5 Hz, 2H), 7.58 (t, J = 7.3 Hz, 1H), 7.46 (m, 3H), 7.42 (d, J = 8.5 Hz, 1H), 7.36 (dd, $J_{H-F} = 1.8$ Hz, $J_{H-F} = 8.7$ Hz, 1H), 7.25 (s, 1H), 6.82 (d, J = 15.6 Hz, 1H), 3.99 (s, 3H), 2.70 (m, 4H), 1.83 (m, 2H), 1.69 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -110.6$ (m, 1F), -128.4 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 179.5$, 157.6 (dd, $J_{C-F} = 2.4$ Hz, ${}^{1}J_{C-F} = 244.4$ Hz), 155.7, 149.4 (dd, $J_{C-F} = 4.7$ Hz, ${}^{1}J_{C-F} = 248.5$ Hz), 144.9, 142.6, 142.0, 137.2 (dd, $J_{C-F} = 2.6$ Hz, $J_{C-F} = 12.1$ Hz), 133.4, 133.2, 131.6, 131.3, 129.2, 128.9, 128.3, 127.7, 127.1, 127.0, 126.4, 126.2, 125.7, 124.8 (dd, $J_{C-F} = 2.2$ Hz, $J_{C-F} = 11.1$ Hz), 122.7, 115.2, 114.3, 110.1 (dd, $J_{C-F} = 18.6$ Hz, $J_{C-F} = 24.8$ Hz), 108.9, 108.6 (m), 51.0, 33.6, 28.8, 26.6, 23.3, 19.6 ppm; HRMS (ESI+): m/z calcd for C₃₆H₃₀F₂NOS⁺ [M]^{+°} 562.2011, found 562.1994.

2t: 92% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.50$ (d, J = 15.6 Hz, 1H), 7.84 (d, J = 7.1 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.60 (m, 3H), 7.54 (dd, J = 7.3, 7.4 Hz, 1H), 7.47 (dd, J = 7.7, 8.5 Hz, 1H), 7.30 (d, $J_{\text{H-F}} = 9.0$ Hz, 1H), 7.19 (s, 1H), 6.82 (d, J = 15.6 Hz, 1H), 3.98 (s, 3H), 2.71 (m, 4H), 1.82 (m, 2H), 1.73 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -112.4$ (d, $J_{\text{H-F}} = 9.3$ Hz, 1F), -130.2 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 179.5$, 156.5 (dd, $J_{\text{C-F}} = 2.5$ Hz, ¹ $J_{\text{C-F}} = 244.9$ Hz), 155.9, 148.2 (dd, $J_{\text{C-F}} = 5.3$ Hz, ¹ $J_{\text{C-F}} = 249.2$ Hz), 145.0, 142.6, 142.1, 138.9, 137.0 (dd, $J_{\text{C-F}} = 2.0$ Hz, $J_{\text{C-F}} = 10.8$ Hz), 133.0, 131.9, 129.4, 128.9, 128.8, 128.3, 127.1, 123.4 (dd, $J_{\text{C-F}} = 2.4.7$ Hz), 51.1, 33.5, 28.8, 26.6, 23.4, 19.6 ppm; HRMS (ESI+): m/z calcd for C₃₂H₂₆Cl₂F₂NOS⁺ [M]^{+°} 580.1075, found 580.1072.

2u: 95% yield; Dark green solid; ¹H NMR (400.0 MHz, DMSO-*d*₆): $\delta = 8.52$ (d, J = 15.5 Hz, 1H), 7.81 (dd, J = 6.1, 6.8 Hz, 2H), 7.58 (dd, J = 7.3, 7.8 Hz, 1H), 7.53 (dd, J = 7.2, 7.4 Hz, 1H), 7.40 (m, 3H), 7.30 (m, 3H), 7.25 (s, 1H), 6.83 (d, J = 15.6 Hz, 1H), 4.00 (s, 3H), 2.70 (m, 4H), 1.82 (brs, 2H), 1.72 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -105.1$ (d, $J_{H-F} = 7.8$ Hz, 1F), -122.6 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 179.5$, 157.4 (dd, $J_{C-F} = 4.3$ Hz, ¹ $J_{C-F} = 241.5$ Hz), 155.9, 149.2 (dd, $J_{C-F} = 6.6$ Hz, ¹ $J_{C-F} = 245.5$ Hz), 144.9, 142.6, 142.0, 136.8 (dd, $J_{C-F} = 2.9$ Hz, $J_{C-F} = 13.1$ Hz), 133.1, 130.7, 129.7, 129.6, 128.9, 128.3, 127.5, 127.3, 124.8 (dd, $J_{C-F} = 2.2$ Hz, $J_{C-F} = 10.9$ Hz), 122.8, 115.1, 114.3, 108.8, 108.4 (dd, $J_{C-F} = 2.9$ Hz, $J_{C-F} = 27.3$ Hz), 106.8 (dd, $J_{C-F} = 23.01$ Hz, $J_{C-F} = 29.5$ Hz), 51.0, 33.5, 28.8, 26.7, 23.3, 19.6 ppm; HRMS (ESI+): m/z calcd for C₃₂H₂₈F₂NOSe⁺ [M]^{+°} 560.1301, found 560.1290; HPLC (system A): $t_R = 5.3$ min (purity 97% at 600 nm); LRMS (ESI+, recorded during RP-HPLC analysis): m/z 558.1 (60) and 560.1 (100) [M]^{+°} (two major Se isotopes), calcd for C₃₂H₂₈F₂NOSe⁺ 560.1; UV-vis (recorded during the HPLC analysis): $\lambda_{max} = 553$ nm (broad peak).

2v: 66% yield; Dark green solid; ¹H NMR (400.0 MHz, CDCl₃): $\delta = 8.35$ (d, J = 15.5 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.73 (s, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.52 (m, 2H), 7.46 (m, 2H), 7.39 (m, 2H), 7.32 (dt, J = 1.0, 7.5 Hz, 1H), 7.04 (d, J = 15.4 Hz, 1H), 6.87 (m, 2H), 4.25 (s, 3H), 3.88 (s, 2H), 2.95 (t, J = 6.0 Hz, 2H), 2.72 (t, J = 5.7 Hz, 2H), 1.94 (m, 2H), 1.76 (s, 6H) ppm; ¹⁹F NMR (376.5 MHz, DMSO-*d*₆): $\delta = -105.1$ (s, 1F), -122.7 (s, 1F) ppm; ¹³C NMR (100.0 MHz, DMSO-*d*₆): $\delta = 179.3, 157.3$ (dd, $J_{C-F} = 3.8$ Hz, ¹ $J_{C-F} = 241.8$ Hz), 155.8, 149.0 (dd, $J_{C-F} = 6.3$ Hz, ¹ $J_{C-F} = 245.7$ Hz), 144.8, 144.4, 142.8, 142.5, 142.0, 140.8, 140.0, 136.7 (dd, $J_{C-F} = 2.5$ Hz, $J_{C-F} = 12.9$ Hz), 132.8, 130.0, 128.9, 128.2, 128.1, 127.3, 127.2, 126.8, 125.0, 124.4 (d, $J_{C-F} = 10.8$ Hz), 122.7, 120.9, 120.1, 115.0, 114.2, 108.7, 108.3 (d, $J_{C-F} = 27.5$ Hz), 107.3 (dd, $J_{C-F} = 22.9$ Hz, $J_{C-F} = 29.5$ Hz), 50.9, 36.3, 33.6, 28.7, 26.7, 23.3, 19.5 ppm; HRMS (ESI+): m/z calcd for C₃₉H₃₂F₂NOSe⁺ [M]⁺⁶ 648.1615, found 648.1643.

4. References

- 1. X. Zou, L. Yang, X. Liu, H. Sun, H. Lu, Adv. Synth. Catal. 2015, 357, 3040 3046.
- 2. M. J. H. Ong, R. Srinivasan, A. Romieu, J. A. Richard, Org. Lett. 2016, 18, 5122-5125.
- 3. N. B. Yapici, S. Mandalapu, L. Bi, Bioorg. Med. Chem. Lett. 2015, 25, 3476-3480.

5. ¹H, ¹⁹F and ¹³C NMR spectra of synthesized compounds

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S37

S44

S56

6. High-performance liquid chromatography (HPLC) separations

The following chromatographic system was used for the analytical experiments: <u>System A</u>: RP-HPLC (Phenomenex Kinetex C₁₈ column, 2.6 μ m, 2.1 × 50 mm) with CH₃CN (+ 0.1% FA) and 0.1% aq. formic acid (aq. FA, pH 2.5) as eluents [5% CH₃CN (0.1 min) followed by linear gradient from 5% to 100% CH₃CN (5 min), then 100% CH₃CN (4 min)] at a flow rate of 0.5 mL/min. UV-visible detection was achieved at 220, 260, 600 and 700 nm (+ diode array detection in the range 220-800 nm). Low resolution ESI-MS detection in the positive mode (full scan, 100-1500 a.m.u., data type: centroid, needle voltage: 3.0 kV, probe temperature: 350 °C, cone voltage: 75 V and scan time: 1 s).

RP-HPLC elution profile of 1 (system A, detection at 600 nm)

RP-HPLC elution profile of 2m (system A, detection at 600 nm)

RP-HPLC elution profile of 2i (system A, detection at 600 nm)

RP-HPLC elution profile of 2n (system A, detection at 600 nm)

RP-HPLC elution profile of 2d (system A, detection at 600 nm)

RP-HPLC elution profile of 2g (system A, detection at 600 nm)

RP-HPLC elution profile of 2k (system A, detection at 600 nm)

Chror	natogram							
250-	250_ 3 2018_AR_DHX-hemicyanine #86 [manually integrated] RS15-QC UV_VIS_3 WVL:600 nm							
200- 200- 150- 50- 0	200 0 2018_AR_DHX-hemicyanine #86 [manually integrated] RS15-QC UV_VIS_3 WVL:600 nm							
-50 -			, , , , ,					
0.0	2.0	4.0	6.0	8.0	10.0	0 12	.0 13.1	
Integr	ration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		4.3	0.025	0.436	0.13	0.21	n.a.	
2		4.6	0.036	0.534	0.19	0.26	n.a.	
3		4.7	18.696	204.097	99.67	99.53	n.a.	
Total:			18.757	205.066	100.00	100.00		

RP-HPLC elution profile of **2p** (system A, detection at 600 nm)

RP-HPLC elution profile of 2*c* (*system A, detection at 600 nm*)

Chror	Chromatogram							
250-	250_ 2018_AR_DHX-hemicyanine #90 [manually integrated] RS22-QC UV_VIS_3 WVL:600 nm							
200 200 150 50	200 150 0 0 0 0 0 0 0 0 0							
-50 1								
0.0	2.0	4.0	6.0	8.0	10.0	0 12	.0 13.1	
Integ	ration Results							
No.	Peak Name	Retention Time	Area	Height	Relative Area	Relative Height	Amount	
		min	mAU*min	mAU	%	%	n.a.	
1		4.3	0.012	0.242	0.06	0.10	n.a.	
2		4.5	0.138	2.437	0.65	1.05	n.a.	
3		4.8	21.206	230.417	99.30	98.85	n.a.	
Total:			21.356	233.097	100.00	100.00		

RP-HPLC elution profile of 2f (system A, detection at 600 nm)

7. UV-visible absorption spectra of compound 1 and non-fluorescent 5',7'difluoro-DHX-hemicyanine fused dyes

Compound 1

Compound 2q

Compound 2v

8. Absorption, excitation and emission spectra of selected 5',7'-difluoro-6'-

amino-DHX-hemicyanine fused dyes

<u>Please note</u>: All emission spectra are corrected until 850 nm, which explains the artefact observed at this wavelength. Molar extinction coefficients were determined by recording UV-vis spectra using solutions of the fluorophores in the 10^{-6} - 10^{-5} M range. More diluted solutions in the range 10^{-7} - 10^{-6} M were used for the fluorescence Ex/Em spectra required to determine their quantum yields (QY).

Compound 2a

Compound 2d

CHCl₃ (left) & EtOH (right), 25 °C, excitation at 615 nm, emission at 760 nm.

Compound 2e

EtOH, 25 °C, excitation at 615 nm, emission at 760 nm.

Compound 2g

CHCl₃ (top left), EtOH (top right) & PBS + 5% BSA (bottom), 25 °C, excitation at 615 nm, emission at 800 nm (for Ex spectra in CHCl₃ & EtOH), emission at 760 nm (for Ex spectrum in PBS + 5% BSA).

Compound 2k

CHCl₃ (top left), EtOH (top right) & PBS + 5% BSA (bottom), 25 °C, excitation at 615 nm, emission at 800 nm (for Ex spectra in CHCl₃ & EtOH), emission at 760 nm (for Ex spectrum in PBS + 5% BSA).

Compound 8

