Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Oxidative Sulfonamidomethylation of Imidazopyridines Utilizing Methanol as the Main C1 Source

Xue-Mei Zhao, En-Ling Huang, Yu-Shen Zhu, Jing Li, Bing Song,* Xinju Zhu,* and Xin-Qi Hao

College of Chemistry and Molecular Engineering, School of Life Sciences, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China bingsong@zzu.edu.cn (B.S.); zhuxinju@zzu.edu.cn (X.Z)

Table of contents

Experimental Section	S1
1.1 Optimization of reaction conditions	
1.2 Control experiments and mechanistic studies	S5
1.3 X-ray crystal structure of 3a	S11
NMR Spectra	S13

Experimental Section

1.1 Optimization of reaction conditions

N N Ph	+ H ₂ N−S−Ph U O Catalyst, DTBP CH ₃ OH, 100 °C, 12 h	N N SO ₂ Ph
1a	2a	⁻ N 3a H
Entry	Catalyst	$\operatorname{Yield}^{b}[\%]$
1	CuCl	18
2	CuBr	Trace
3	CuI	Trace
4	Cu ₂ O	Trace
5	[(MeCN) ₄ Cu] PF ₆	N.R.
6	[(MeCN) ₄ Cu] BF ₄	N.R.
7	$CuCl_2$ · $2H_2O$	Trace
8	Cu(OAc) ₂	Trace
9	$Cu(NO_3)_2 \cdot 3H_2O$	Trace
10	$Cu_2(OH)_2CO_3$	Trace
11	CuO	Trace
12	Cu(OTf) ₂	Trace
13	FeCl ₂	N.R.
14	NiCl ₂	N.R.
15	NiBr ₂	N.R.
16	Ni(OT _f) ₂	N.R.
17	-	N.R.
18^c	CuCl	19
19^d	CuCl	26
20^{e}	CuCl	24

 Table S1. Optimization of catalysts^a

^{*a*}Reaction conditions:**1a** (0.1 mmol), **2a** (0.2 mmol), catalyst (15 mol %), DTBP (2 equiv), CH₃OH (2 mL), under air, 100 °C, 12 h. ^{*b*}Isolated yields. ^{*c*}CuCl (0.3 equiv). ^{*d*}CuCl (0.5 equiv). ^{*e*}CuCl (1 equiv).

Table S2. Optimization of bases^{*a*}

1	K ₂ CO ₃	10
2	Na ₂ CO ₃	10
3	Cs ₂ CO ₃	9
4	Li ₂ CO ₃	Trace
5	KHCO ₃	25
6	NaO'Bu	33
7	KO'Bu	28
8	DABCO	29
9	DBU	19

^{*a*}Reaction conditions:**1a** (0.1 mmol), **2a** (0.2 mmol), CuCl (0.5 equiv), DTBP (2 equiv), base (1 equiv), CH₃OH (2 mL), under air, 100 $^{\circ}$ C, 12 h. ^{*b*}Isolated yields.

 Table S3. Optimization of solvents^a

N N N	+ H ₂ N-S-Ph CuCl, DTBP, NaO ^t Bu O Solvent, 100 °C, 12 h	N N SO ₂ Ph
1a	2a	3a H
Entry	Solvent	$\operatorname{Yield}^{b}[\%]$
1	DMF	Trace
2	DMSO	Trace
3	DCE	N.R.
4	Toluene	N.R.
5	THF	N.R.
6	CH ₃ COOH	N.R.
7	PEG400	N.R.
8	CH ₃ OH	33
9	HFIP	21
10	CH ₃ CH ₂ OH	Trace
11 ^c	CH ₃ OH/HFIP	38
12^d	CH ₃ OH/HFIP	31
13 ^e	CH ₃ OH/HFIP	34

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), CuCl (0.5 equiv), DTBP (2 equiv), NaO^{*t*}Bu (1 equiv), solvent (2 mL), under air, 100 °C, 12 h. ^{*b*}Isolated yield, ^{*c*}CH₃OH/HFIP (v/v = 1/1, 2 mL). ^{*d*}NaO^{*t*}Bu (0.5 equiv). ^{*e*}NaO^{*t*}Bu (2 equiv).

Table S4. Optimization of oxidants^{*a*}

Entry	Oxidant	Yield ^{<i>b</i>} [%]
1	DTBP	38
2	TBHP	47
3	$K_2S_2O_8$	Trace
4	DDQ	N.R.
5	Ag ₂ O	54
6	Ag_2CO_3	31
7	AgOAc	N.R.
8	Mn(OAc) ₂	Trace
9	KMnO ₄	68
10^c	$KMnO_4$	30
11^d	KMnO ₄	52
12^e	KMnO ₄	70

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), CuCl (0.5 equiv), oxidant (2 equiv), NaO'Bu (1 equiv), CH₃OH/HFIP (v/v = 1/1, 2 mL), under air, 100 °C, 12 h. ^{*b*}Isolated yield. ^{*c*}KMnO₄ (0.5 equiv). ^{*d*}KMnO₄ (1 equiv). ^{*e*}KMnO₄ (3 equiv).

Table S5. Optimization of ratio of oxidant combinations^{*a*}

N N Ph -	O ⊢ H ₂ N−S Ph <u>CuCl, Oxi</u> O CH ₃ OH/HF	idant, NaO ^t Bu IP, 100 °C, 12 h	N N SO ₂ Ph
1a	2a		3a H
Entry	Oxidant	Ratio	Yield ^b [%]
1	KMnO ₄ /DTBP	2/1	78
2	$KMnO_4/Ag_2O$	2/1	79
3	KMnO ₄ /TBHP	2/1	66
4	KMnO ₄ /DTBP	1/1	56
5	KMnO ₄ /DTBP	1/2	65
6 ^{<i>c</i>}	KMnO ₄ /DTBP	1/2	74
7^d	KMnO ₄ /DTBP	1/2	79
8^e	KMnO ₄ /DTBP	1/2	79

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), CuCl (0.5 equiv), oxidant (3 equiv), NaO'Bu (1 equiv), CH₃OH/HFIP (v/v = 1/1, 2 mL), under air, 100 °C, 12 h. ^{*b*}Isolated yield. ^{*c*}120 °C. ^{*d*}130 °C, ^{*e*}140 °C.

Table S6. Optimization of ratio of Solvents^{*a*}

Entry	Solvent	Ratio	Yield ^b [%]
1	CH ₃ OH/HFIP	1/9	42
2	CH ₃ OH/HFIP	2/8	43
3	CH ₃ OH/HFIP	3/7	47
4	CH ₃ OH/HFIP	4/6	58
5	CH ₃ OH/HFIP	5/5	79
6	CH ₃ OH/HFIP	6/4	83
7	CH ₃ OH/HFIP	7/3	82
8	CH ₃ OH/HFIP	8/2	85
9	CH ₃ OH/HFIP	9/1	87

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), CuCl (0.5 equiv), DTBP (2 equiv), KMnO₄ (1 equiv), NaO'Bu (1 equiv), CH₃OH/HFIP (2 mL), under air, 130 °C, 12 h. ^{*b*}Isolated yield. **Table S7.** Optimization of reaction time^{*a*}

N +	$\substack{ \substack{ \\ H_2N- \overset{II}{_{\scriptstyle H}} = Ph \\ \overset{II}{_{\scriptstyle U}} } }_{O} $	CuCl, KMnO ₄ /DTBP, NaO ^t Bu CH ₃ OH/HFIP, 130 °C, Time	N N SO ₂ Ph
1a	2a		3a H
Entry		Time (h)	Yield ^b [%]
1		10	85
2		8	85
3		6	80
4		4	71
5		2	65
6 ^c		8	85

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), CuCl (0.5 equiv), DTBP (2 equiv), KMnO₄ (1 equiv), NaO'Bu (1 equiv), CH₃OH/HFIP (v/v = 9/1, 2 mL), under air, 130 °C. ^{*b*}Isolated yield. ^{*c*}Without CuCl.

Table S8. Optimization of ratio of reactants^{*a*}

N Ph +	$H_2N - S - Ph \qquad \frac{KMnO_4}{CH_3OH/F}$ 2a	TEP, NaO ^t Bu	N N SO ₂ Ph 3a H
Entry	1a (equiv)	2a (equiv)	Yield ^{b} [%]
1	1	1	74
2	1	1.5	78
3	1	2	85
4	1	2.5	86
5	1	3	86

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2a**, DTBP (2 equiv), KMnO₄ (1 equiv), NaO^{*t*}Bu (1 equiv), CH₃OH/HFIP (v/v = 9/1, 2 mL), air atmosphere, 130 °C, 8 h. ^{*b*}Isolated yield.

1.2 Control experiments and mechanistic studies

a) Isotopic labeling experiment

To a 15 mL sealed tube were added imidazo[1,2- α]pyridine **1a** (0.1 mmol, 19.4 mg), benzenesulfonamide **2a** (0.2 mmol, 31.4 mg), NaO'Bu (0.1 mmol, 9.6 mg), and oxidant: {KMnO₄ (0.1 mmol, 15.8 mg) and DTBP (0.2 mmol, 24.2 mg); or KMnO₄ (0.1 mmol, 15.8 mg); or DTBP (0.2 mmol, 24.2 mg)} in CD₃OD/HFIP (v/v = 9/1, 2 mL) under air. The reaction mixture was stirred at 130 °C for 8 h and then cooled to room temperature. After removal of solvent under reduced pressure, the residue was purified by preparative TLC on silica gel plates using petroleum ether/EtOAc as the eluent to give the corresponding products **3a**-d₂ in 66% (D% = 92%), 50% (D% = 100%), or 14% (D% = 72%) yield.

¹H NMR (600 MHz, DMSO-d₆) δ 8.26 (d, J = 5.2 Hz, 2H), 7.79 (d, J = 7.7 Hz, 2H), 7.65 (dd, J = 13.0, 7.1 Hz, 3H), 7.58 (dd, J = 17.7, 9.1 Hz, 3H), 7.42 – 7.29 (m, 4H), 7.00 (t, J = 6.7 Hz, 1H), 4.46 (d, J = 5.0 Hz, 0.16H or 0H or 0.56H). ¹³C{H} NMR (101 MHz, DMSO-d₆) δ 144.2, 143.7, 139.5, 133.8, 132.6, 129.1, 128.4, 128.1, 127.7, 126.4, 125.3, 124.6, 116.7, 114.8, 112.3.

¹H NMR of compound **3a-d**₂ (Using both KMnO₄/DTBP as oxidant)

 ^{13}C NMR of compound $\textbf{3a-}d_2$ (Using both KMnO₄/DTBP as oxidant)

¹H NMR of compound **3a-**d₂ (Using KMnO₄ as oxidant)

¹H NMR of compound **3a-**d₂ (Using DTBP as oxidant)

b) Synthesis of 5 and 5-d₂

Characterization of **5**: ¹H NMR (600 MHz, DMSO-d₆) δ 8.46 (d, J = 6.8 Hz, 1H), 7.84 (d, J = 7.7 Hz, 2H), 7.62 (d, J = 9.0 Hz, 1H), 7.49 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.34 – 7.28 (m, 1H), 6.99 (t, J = 6.7 Hz, 1H), 5.40 (t, J = 4.8 Hz, 1H), 4.92 (d, J = 4.7 Hz, 2H). ¹³C NMR (101 MHz, DMSO-d₆) δ 143.9, 142.8, 134.4, 128.5, 128.1, 127.6, 125.1, 124.9, 120.5, 116.7, 112.0, 52.1.

Characterization of **5**-d₂: ¹H NMR (600 MHz, DMSO) δ 8.47 (d, J = 6.8 Hz, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.62 (d, J = 9.0 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.00 (t, J = 6.7 Hz, 1H), 5.37 (s, 1H), 4.92 (d, J = 5.2 Hz, 0.14H). ¹³C NMR (151 MHz, DMSO) δ 144.5, 143.3, 134.9, 129.0, 128.6, 128.1, 125.6, 125.43, 121.0, 117.2, 112.5.

¹H NMR of compound **5**

¹³C NMR of compound **5**

 1 H NMR of compound **5-**d₂

¹³C NMR of compound **5**

1.3 X-Ray data of 3a

Table S9	. Crystal	data and	structure refinemen	t of 3a
----------	-----------	----------	---------------------	----------------

Identification code	201806282
Empirical formula	$C_{20}H_{17}N_3O_2S$
Formula weight	363.42
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	7.3160(2)
b/Å	19.1755(5)
c/Å	12.7269(5)
α/°	90
β/°	103.311(4)
γ/°	90
Volume/Å ³	1737.47(10)
Z	4
$\rho_{calc}g/cm^3$	1.389
μ/mm^{-1}	1.820
F(000)	760.0

Crystal size/mm ³	0.18 ×0.15 ×0.13	
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	
20 range for data collection/°	8.5 to 134.138	
Index ranges	$-6 \le h \le 8, -22 \le k \le 22, -15 \le l \le 15$	
Reflections collected	6661	
Independent reflections	$3094 [R_{int} = 0.0256, R_{sigma} = 0.0350]$	
Data/restraints/parameters	3094/6/287	
Goodness-of-fit on F ²	1.015	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0913, wR_2 = 0.1988$	
Final R indexes [all data]	$R_1 = 0.0971, wR_2 = 0.2019$	
Largest diff. peak/hole / e Å ⁻³	0.35/-0.28	

Figure S1. ORTEP views of the molecular structures of **3a** with ellipsoids drawn at the 30% probability level

NMR spectra of synthesized compounds

¹H NMR of compound **3a**

¹³C NMR of compound **3a**

¹H NMR of compound **3b**

¹³C NMR of compound **3b**

¹H NMR of compound **3c**

¹³C NMR of compound **3c**

¹H NMR of compound **3d**

¹³C NMR of compound **3d**

¹H NMR of compound **3e**

¹³C NMR of compound **3e**

¹H NMR of compound **3f**

¹³C NMR of compound **3f**

¹⁹F NMR of compound **3f**

¹H NMR of compound **3g**

¹³C NMR of compound **3g**

¹H NMR of compound **3h**

^{13}C NMR of compound **3h**

¹H NMR of compound **3i**

¹³C NMR of compound **3i**

¹H NMR of compound **3**j

¹³C NMR of compound **3**j

¹H NMR of compound **3k**

¹³C NMR of compound **3k**

¹⁹F NMR of compound **3k**

¹H NMR of compound **3**l

¹³C NMR of compound **3**l

¹H NMR of compound **3m**

¹³C NMR of compound **3m**

¹H NMR of compound **3n**

¹³C NMR of compound **3n**

¹⁹F NMR of compound **3n**

¹H NMR of compound **30**

¹³C NMR of compound **30**

¹H NMR of compound **3p**

¹³C NMR of compound **3p**

¹H NMR of compound **3**q

¹³C NMR of compound **3**q

¹H NMR of compound **3r**

¹³C NMR of compound **3r**

¹⁹F NMR of compound **3r**

0 -20 -40 -60 -80 -100 -120 -140 ppm

¹H NMR of compound **3s**

10 ppm ¹⁹F NMR of compound **3s**

¹H NMR of compound **3**t

¹³C NMR of compound **3t**

¹H NMR of compound **3u**

¹³C NMR of compound **3u**

¹H NMR of compound **3v**

^{13}C NMR of compound 3v

¹H NMR of compound 3w

13 C NMR of compound 3w

¹H NMR of compound **3**x

¹³C NMR of compound **3x**

¹H NMR of compound **3y**

¹³C NMR of compound **3y**

¹H NMR of compound **4a**

¹³C NMR of compound **4a**

¹H NMR of compound **4b**

¹³C NMR of compound **4b**

¹H NMR of compound **4**c

¹³C NMR of compound **4c**

¹⁹F NMR of compound **4c**

¹H NMR of compound **4d**

¹³C NMR of compound **4d**

¹H NMR of compound **4e**

¹³C NMR of compound **4e**

10 ppm

1 H NMR of compound **4**f

¹³C NMR of compound **4f**

¹⁹F NMR of compound **4f**

¹H NMR of compound **4g**

¹³C NMR of compound **4g**

¹H NMR of compound **4h**

^{13}C NMR of compound 4h

¹H NMR of compound **4i**

¹³C NMR of compound **4i**

¹H NMR of compound **4**j

¹³C NMR of compound **4**j

¹⁹F NMR of compound **4**j

¹H NMR of compound **4**k

¹³C NMR of compound **4**k

¹⁹F NMR of compound **4**k

¹H NMR of compound **4**l

¹³C NMR of compound **4**l

¹H NMR of compound **4m**

¹³C NMR of compound **4m**

¹H NMR of compound **4n**

¹³C NMR of compound **4n**

¹H NMR of compound **40**

¹³C NMR of compound **40**

¹H NMR of compound **4p**

¹³C NMR of compound **4p**

¹H NMR of compound **4**q

¹³C NMR of compound **4**q

¹H NMR of compound **4r**

¹³C NMR of compound **4r**

