Supporting Information

Catalyst-Free and Selective Trifluoromethylative Cyclizations of Acryloanilides Using PhICF₃Cl

Jia Guo, ^{†a} Cong Xu, ^{†b} Ling Wang,^a Wanqiao Huang,^a and Mang Wang^{*,a}

^{*a*}Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun (China)

*E-mail: wangm452@nenu.edu.cn

^bNational Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, 2555 Jingyue Street, Changchun (China)

[†] Jia Guo and Cong Xu contributed equally to this work.

Table of Contents

I. General Information	2
II. Screen of Reaction Conditions	2
III. Procedures for the synthesis of substrates	5
1. Synthesis of substrates 1.	5
2. Synthesis of substrates 3.	5
IV. Synthetic Procedures and Analytical Data	14
1.Catalyst-free intramolecular aryltrifluoromethylation of activated alkenes 1	14
V. Mechanistic Study	27
VI. References	29
VII. Crystallographic data.	
VIII. NMR Spectra	35
1. NMR Spectra of New Substrates	35
2. NMR Spectra of Products	49

I. General Information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. PIFA and TMSCF₃ were purchased from Energy Chemical Co. Ltd., Anhydrous MeCN, THF (Tetrahydrofuran), DMF (N, N-dimethylformamide), 1,4-dioxane were purchased from Innochem Co. Ltd., DCM (dichloromethane) was distilled over CaH₂ before use. The products were purified by column chromatography over silica gel (particle size 300-400 mesh ASTM, purchased from Taizhou, China). ¹H NMR, ¹³C NMR spectra were recorded at 25 °C on a Bruker 600 MHz or Varian 500 MHz, 400 MHz, and 151 MHz or 125 MHz spectrometer, respectively by using TMS as internal standard. ¹⁹F-NMR were recorded at 25 °C on a Bruker 565 MHz or Varian 470 MHz spectrometer by using (trifluoromethyl)benzene (δ -63.2 ppm) as external standard. Data for ¹H, ¹³C, ¹⁹F were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, td = triplet of doublets). High-resolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focus spectrometer (ESI). Melting points were uncorrected. PhICF₃Cl reagent was prepared according to literature procedures.¹

II. Screen of Reaction Conditions

	$ \begin{array}{c} & & \\ $	$rac{vent, N_2}{^{\circ}C, 12 h}$ $rac{CF_3}{0}$ $rac{CF_3}{0}$
Entry	Solvent	Yield of 2a [%] ^b
1	toluene	0
2	DCE	0
3	MeCN	8
4	CH_2Cl_2	18
5	THF	46
6	1,4-dioxane	82
7	NMP	82

Table S1. Screen of solvents.^a

8	DMF	85

^{*a*}Reaction conditions: **1a** (0.1 mmol), PhICF₃Cl (0.15 mmol), solvent (1 mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Table S2. Screen of temperature.^a

	N O + PhICF ₃ Cl T 1a	$\frac{DMF, N_2}{/^{\circ}C, 12 \text{ h}}$
Entry	<i>T</i> [°C]	Yield of 2a [%] ^b
1	rt	0
2	30	85
3	40	90
4	50	96
5	60	95

^aReaction conditions: 1a (0.1 mmol), PhICF₃Cl (0.15 mmol), DMF (1 mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Table S3. Screen of time.^a

+ PhICF ₃ Cl 1a	$\frac{DMF, N_2}{50 \text{ °C, t/h}} \qquad $
t	Yield of 2a [%] ^b
2h	62
4h	80
6h	87
8h	92
10h	95
12h	95
	$ \begin{array}{c} $

^aReaction conditions: 1a (0.1 mmol), PhICF₃Cl (0.15 mmol), DMF (1 mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Table S4. Screen of reaction concentration.^a

	+ PhICF ₃ Cl -	DMF, N ₂ 50 °C, 12 h 2a
Entry	DMF / mL	Yield of 2a [%] ^[b]
1	0.5	80
2	1.0	95
3	1.5	95
4	2.0	95

^aReaction conditions: 1a (0.1 mmol), PhICF₃Cl (0.15 mmol), DMF (x mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Table S5. Screen of reaction atomosphere.^a

	$ \begin{array}{c} $	$\frac{DMF}{0^{\circ}C, 12 \text{ h}}$
Entry	N ₂ or Air	Yield of $2a [\%]^b$
1	N_2	96
2	Air	66

^aReaction conditions: 1a (0.1 mmol), PhICF₃Cl (0.15 mmol), DMF (1 mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Table S6. Screen of the ratio of 1a / PhICF₃Cl.^a

	$ \begin{array}{c} $	$\begin{array}{c} F, N_2 \\ C, 12 h \\ 2a \end{array}$
Entry	1a: PhICF ₃ Cl	Yield of 2a [%] ^b
1	1:1.2	90
2	1 : 1.5	95
3	1:2.0	95

^{*a*}Reaction conditions: **1a** (0.1 mmol), PhICF₃Cl (x mmol), DMF (1 mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Table S7. Catalyst-free trifluoromethylative cyclizations using Togni's reagent.^a

	1a / 3a + Togni's reagent II	DMF, N ₂ 60 °C, 12 h 2a / (+/-)-syn-4a
	Yield of $2a / (+/-)-syn-4a [\%]^b$	Recovery of Togin's reagent II [%] ^b
1a	0	98
3a	0	97

^{*a*}Reaction conditions: **1a** / **3a** (0.1 mmol), **Togin's reagent II** (0.15 mmol), DMF (1 mL). ^{*b*19}F NMR yields using PhCF₃ as an internal standard.

III. Procedures for the synthesis of substrates

1. Synthesis of substrates 1.

All of compounds in the scheme **1** of the manuscript were synthesized according to the literature, and the NMR spectroscopy were consistented with reported data.²

Synthesis of substrates 1a-1t:

Synthesis of substrates **1u-1w**:

2. Synthesis of substrates 3.

Substrates **3a-3n** were new compounds synthesized according to the literature.^{2,3} The NMR spectroscopy were as follow:

Synthesis of substrates **3a-3l** (taking **3a** as an example):

A solution of Ph₃PCH₂Br (3.72 g, 10.4 mmol) and KOtBu (1.60 g, 13.6 mmol) in 20 mL of dry THF was stirred at 0 °C under N₂ for 30 min. A solution of (2-aminophenyl) (phenyl) methanone (1.58 g, 8.0 mmol) in 20 mL dry THF was then added dropwise and the resulting milky mixture was stirred at room temperature for 12 h. The reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were rinsed with sat. NaHCO₃ (2 × 15 mL), and brine, dried over anhydrous MgSO₄ and concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 20/1, v/v) to give 1.23 g (85%) of 2-(1-phenylvinyl)aniline as a yellow solid. The yield and NMR spectroscopy were consistented with reported data.^{2,3}

A solution of 2-(1-phenylvinyl)aniline (0.91 g, 5.0 mmol) in 13 mL of dry CH₂Cl₂ was stirred at 0 °C under N₂. Methacryloyl chloride (0.73 mL, 7.5 mmol) and Et₃N (1.05 mL, 7.5 mmol) were slowly added. The reaction was stirred at room temperature for 12 h. Aqueous NaHCO₃ (10 mL) was added and reaction mixture was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were washed with 2N HCl (2 x 10 mL), water (2 x 10 mL), and brine (2 x 10 mL). After dried over anhydrous MgSO₄, the resulting solution was concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 10/1, v/v) to give 0.99 g (75%) of *N*-(2-(1-phenylvinyl)phenyl)methacrylamide as a yellow solid.

A solution of *N*-(2-(1-phenylvinyl)phenyl)methacrylamide (0.79 g, 3.0 mmol) and NaH (0.15 g, 60%, 4.2 mmol) in 15 mL of dry THF was stirred at 0 °C under N₂ for 15 min. Then, MeI (0.28 mL, 4.5 mmol) was added. The mixture was stirred at room temperature until *N*-(2-(1-phenylvinyl)phenyl)methacrylamide was consumed (monitored by TLC). The reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were rinsed with brine, dried

over anhydrous MgSO₄ and concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 10/1 to 5/1, v/v) to give **3a** as a white solid.

N-methyl-N-(2-(1-phenylvinyl)phenyl)methacrylamide (3a).

0.66 g, 80% yield. White solid. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): δ = 7.25 - 7.36 (m, 9H), 5.61 (s, 1H), 5.24 (s, 1H), 5.00 (s, 1H), 4.75 (s, 1H), 2.75 (s, 3H), 1.76

(s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.7$, 147.4, 143.1, 141.1, 140.0, 139.9, 131.7, 128.8, 128.2 (3C), 127.9 (2C), 127.3, 127.0, 120.1, 117.9, 37.6, 20.4. HRMS (ESI): Calcd for [C₁₉H₁₉NO, M+Na]⁺: 300.1359, measured: 300.1366.

N-methyl-N-(2-(1-(p-tolyl)vinyl)phenyl)methacrylamide (3b).

0.74 g, 85% yield. Light yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): $\delta = 7.29 - 7.34$ (m, 4H), 7.18 - 7.19 (m, 1H), 7.09 (d, J = 7.8 Hz, 3H), 5.59 (s, 1H), 5.18 (s,

1H), 4.99 (s, 1H), 4.76 (s, 1H), 2.78 (s, 3H), 2.32 (s, 3H), 1.75 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.8, 147.2, 143.1, 140.1, 140.0, 138.3, 137.7, 131.7$ (2C), 128.9 (2C), 128.7, 128.2, 127.3, 126.9, 120.1, 117.1, 37.8, 21.1, 20.4. HRMS (ESI): Calcd for [C₂₀H₂₁NO, M+Na]⁺: 314.1515, measured: 314.1525.

N-(2-(1-(4-fluorophenyl)vinyl)phenyl)-N-methylmethacrylamide (3c).

0.75 g, 85% yield. Light yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): δ = 7.36 (s, 2H), 7.31 (s,1H), 7.21 (d, J = 7.8 Hz, 1H), 7.14 (s, 2H), 6.96 - 7.00 (m, 2H), 5.57 (s, 1H), 5.21 (s, 1H), 5.00 (s, 1H), 4.75 (s, 1H), 2.77 (s, 3H), 1.75 (s, 3H). ¹³C-NMR (151 MHz, $CDCl_3$): $\delta = 170.7, 162.6 (d, J = 247.8 Hz), 146.4, 143.0, 139.9, 139.7, 137.3, 131.6, 129.0, 128.7, 137.3, 13$ 128.3, 127.7, 127.4, 120.3, 117.9, 115.2, 115.1, 37.7, 20.4. HRMS (ESI): Calcd for [C₁₉H₁₈FNO, M+Na]⁺: 318.1265, measured: 318.1264.

N-(2-(1-(4-bromophenyl)vinyl)phenyl)-N-methylmethacrylamide (3d).

0.74 g, 70% yield. Light yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): $\delta = 7.42$ (d, J =8.4 Hz, 3H), 7.30 - 7.32 (m, 2H), 7.22 (d, J = 7.8 Hz, 1H), 7.04 (d, J = 7.8

Hz, 2H), 5.61 (s,1H), 5.25 (s, 1H), 5.01 (s, 1H), 4.74 (s, 1H), 2.79 (s, 3H), 1.75 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ = 170.6, 146.3, 143.1, 140.1, 139.9, 139.3, 131.6 (2C), 131.4 (2C), 129.1, 128.6, 128.3, 127.4, 122.0, 120.4, 118.5, 37.8, 20.4. HRMS (ESI): Calcd for [C₁₉H₁₈BrNO, M+Na]⁺: 378.0464, measured: 378.0460.

N-methyl-N-(5-methyl-2-(1-phenylvinyl)phenyl)methacrylamide (3e).

0.74 g, 85% yield. White solid. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.25 - 7.31 (m, 5H), 7.18 (m, 1H), 7.10 (d, J = 7.2 Hz, 1H), 7.00 (s, 1H), 5.58 (s, 1H), 5.20 (s, 1H), 5.00 (s, 1H), 4.77 (s, 1H), 2.75 (s, 3H), 2.38 (s, 3H), 1.75 (s, 3H). ¹³C-NMR (151 MHz, $CDCl_3$): $\delta = 170.7, 142.3, 142.9, 141.4, 140.1, 138.9, 136.9, 131.5, 128.7, 128.2 (2C), 128.1, 127.8 (2C), 128.1, 128.2 (2C), 128.1, 128.1, 128.2 (2C), 128.1,$ 127.1, 120.0, 117.5, 37.6, 21.0, 20.4. HRMS (ESI): Calcd for [C₂₀H₂₁NO, M+Na]⁺: 314.1515, measured: 314.1523.

N-methyl-N-(5-methyl-2-(1-(p-tolyl)vinyl)phenyl)methacrylamide (3f).

0.78 g, 85% yield. Red solid. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹**H-NMR** (600 MHz, CDCl₃): $\delta = 7.33$ (s, 6H), 7.00 (s, 1H), 5.55 (s, 1H), 5.15 (s, 1H), 4.99 (s, 1H), 4.78 (s, 1H), 2.78 (s, 3H),

2.38 (s, 3H), 2.32 (s, 3H), 1.75 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.8$, 147.0, 142.9, 140.1, 138.7, 138.5, 137.6, 137.0, 131.5 (2C), 128.9 (2C), 128.7, 128.0, 127.0, 120.0, 116.8, 37.1, 21.1, 21.0, 20.4. HRMS (ESI): Calcd for [C₂₁H₂₃NO, M+Na]⁺: 328.1672, measured: 328.1681.

N-(4-chloro-2-(1-phenylvinyl)phenyl)-N-methylmethacrylamide (3g).

0.66 g, 71% yield. Red oil. The amide isomerism was observed by ¹H-NMR with a ratio of 2:1. ¹H-NMR (600 MHz, CDCl₃): $\delta = 7.27 - 7.33$ (m, 5H), 7.15 - 7.16 (m, 3H), 5.64 (s, 1H), 5.25 (s, 1H), 5.03 (s, 1H), 4.74 (s, 1H), 2.70 (s, 3H), 1.77 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.5$, 146.4, 141.7, 141.5, 140.4, 139.8, 132.9, 131.4, 129.5, 128.9 (2C), 128.4 (2C), 128.2, 127.0, 120.4, 118.7, 37.5, 20.4. HRMS (ESI): Calcd for [C₁₉H₁₈ClNO, M+Na]⁺: 334.0969, measured: 334.0974.

N-methyl-N-(4-nitro-2-(1-phenylvinyl)phenyl)methacrylamide (3h).

0.68 g, 70% yield. Light yellow oil. ¹H-NMR (600 MHz, CDCl₃): $\delta = 8.23$ -8.25 (m, 2H), 7.40 - 7.41 (m, 1H), 7.32 - 7.34 (m, 3H), 7.19 (s, 2H), 5.77 (s, 1H), 5.39 (s, 1H), 5.08 (s, 1H), 4.65 (s, 1H), 287 (s, 3H), 1.78 (s, 3H). ¹³C-

NMR (125 MHz, CDCl₃): $\delta = 170.2$, 148.9, 148.7, 146.3, 145.5, 140.7, 139.9, 139.6, 130.5, 128.9, 128.8 (2C), 127.0 (2C), 126.3, 124.5, 120.1, 119.8, 20.0. HRMS (ESI): Calcd for [C₁₉H₁₈N₂O₃, M+Na]⁺: 345.1210, measured: 345.1201.

N-(4-chloro-2-(1-(2-fluorophenyl)vinyl)phenyl)-N-methylmethacrylamide (3i).

0.74 g, 70% yield. Yellow solid. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): $\delta = 7.36$ (s, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.26 - 7.27 (m, 1H), 7.12 - 7.14 (m, 3H), 7.05 (d, J= 11.4 Hz, 1H), 5.66 (s, 1H), 5.50 (s, 1H), 5.02 (s, 1H), 4.74 (s, 1H), 2.68 (s, 3H), 1.79 (s, 3H). ¹³C-**NMR** (151 MHz, CDCl₃): $\delta = 170.7$, 159.8 (d, J = 254.0 Hz), 141.5, 141.3, 141.0, 139.9, 133.1, 131.0, 130.2, 129.8, 129.5, 128.9, 124.2, 122.6, 120.2, 116.1, 115.9, 36.9, 20.4. HRMS (ESI): Calcd for [C₁₉H₁₇ClFNO, M+Na]⁺: 352.0875, measured: 352.0884.

N-ethyl-N-(2-(1-phenylvinyl)phenyl)methacrylamide (3j).

0.70 g, 80% yield. Yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 2:1. ¹**H-NMR** (600 MHz, CDCl₃): $\delta = 7.26 - 7.35$ (m, 7H), 7.17 - 7.21 (m, 2H), 5.63 (s, 1H), 5.26 (s, 1H), 4.99 (s, 1H), 4.79 (s, 1H),

3.59 - 3.64 (m, 1H), 2.64 (s, 1H), 1.74 (s, 1H), 1.10 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.4$, 147.3, 142.2, 141.2, 140.6, 139.4, 131.8, 131.2, 128.9, 128.4, 128.2 (2C), 127.9, 127.3, 127.1, 119.9, 117.9, 44.8, 20.4, 13.3. HRMS (ESI): Calcd for [C₂₀H₂₁NO, M+Na]⁺: 314.1515, measured: 314.1528.

N-butyl-N-(2-(1-phenylvinyl)phenyl)methacrylamide (3k).

0.73 g, 72% yield. Yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 2:1. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.26 - 7.29 (m, 7H), 7.18 (s, 2H), 5.64 (s, 1H), 5.26 (s, 1H), 4.99 (s, 1H), 4.80 (s, 1H), 3.60 (s, 1H), 2.57 (s, 1H), 1.73 (s, 3H), 1.26 - 1.35 (m, 2H), 1.10 - 1.22 (m, 2H), 0.86 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.6, 147.2, 142.2, 141.2, 140.6, 139.3, 131.9 (2C), 131.1, 129.1, 128.3 (2C), 127.9, 128.3 (2C), 127.9, 128.3 (2C), 127.9, 128.3 (2C), 127.9, 128.3 (2C), 128.3 (2C$ 127.3, 127.1, 119.9, 117.9, 49.7, 31.0, 30.1, 20.4, 13.7. HRMS (ESI): Calcd for [C₂₂H₂₅NO, M+Na]⁺: 342.1828, measured: 342.1838.

N-benzyl-N-(2-(1-phenylvinyl)phenyl)methacrylamide (3l).

0.76 g, 71% yield. Yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 4:1. ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.17 - 7.35 (m, 12H), 7.03 (s, 1H), 6.87(d, J = 7.8 Hz, 1H), 5.67 (s, 1H), 5.27 (s, 1H), 5.04 (s, 2H), 4.84 (s, 1H), 3.39 (d, J = 15.0 Hz, 1H), 1.78 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.8$, 147.3, 142.0, 141.2, 140.2, 139.6, 138.3, 131.7, 129.0, 128.4 (5C), 128.3 (2C), 128.28, 128.1, 127.5, 127.2, 127.1, 120.5, 118.2, 52.4, 20.4. HRMS (ESI): Calcd for [C₂₅H₂₃NO, M+Na]⁺: 376.1672, measured: 376.1678.

Synthesis of substrates **3m** and **3n**:

To a 10 mL Schlenk tube was sequentially added paraformaldyde (0.92 g, 30.0 mmol), DABCO (0.83g, 7.2 mmol), PhOH (141 mg, 1.5 mmol) and a mixture of t-BuOH and H₂O (2 mL, v/v, 3/7) under N₂. The suspended mixture was stired at 55 °C untill it was completely dissolved. Then, N-methyl-N-(2-(1-phenylvinyl)phenyl)acrylamide (1.58 g, 6.0 mmol) was added. The resulting mixture was stirred at 55 °C for 3 days. After evaporation of t-BuOH, the mixture solution was extracted by CH₂Cl₂. The combined organic phase was dried over anhydrous MgSO₄, and concentrated under reduce pressure. Resulting residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 5/1 to 3/1, v/v) to give 1.23 g (70%) of delivered hydroxymethylated product as a white solid.

A 15 mL Schlenk tube was charged with a stir bar. The tube was evacuated and backfilled with N₂ (3 times). The above hydroxymethylated product (0.59 g, 2.0 mmol) and Et₃N (0.57 mL, 4.0 mmol) was added in CH₂Cl₂ (4.0 mL) at 0 °C. Then, AcCl (0.28 mL, 4.0 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred over night. Water was added to quench the reaction when the substrate was consumed. The resulting mixture was extracted by CH₂Cl₂, and the organic phase was dried over anhydrous MgSO₄, then concentrated under reduce pressure. Residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 5/1 to 3/1, v/v) to give **3m** as a yellow oil.

2-(Methyl(2-(1-phenylvinyl)phenyl)carbamoyl)allyl acetate (3m).

0.47 g, 70% yield. Yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): δ = 7.15 - 7.42 (m, 9H), 5.62 (s, 1H), 5.27 (s, 1H), 5.23 (s, 1H), 4.96 (s, 1H), 4.72 (d, *J* = 15.0

Hz, 1H), 4.56 (d, J = 14.4 Hz, 1H), 2.74 (s, 3H), 2.05 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.3$, 167.8, 147.6, 142.4, 141.0, 139.9, 139.3, 138.7, 131.8, 129.0 (2C), 128.3 (2C), 128.0, 127.7, 127.0, 121.2, 118.1, 64.0, 37.6, 20.9. HRMS (ESI): Calcd for $[C_{21}H_{21}NO_3, M+Na]^+$: 358.1414, measured: 358.1428.

After a solution of hydroxymethylated product (0.59 g, 2.0 mmol) and NaH (0.12 g, 60%, 3.0 mmol) in 10 mL of dry THF was stirred at 0 °C under N₂ for 15 min, MeI (0.19 mL, 3.0mmol) were added. The reaction mixture was stirred at room temperature for 3 h and was quenched with water. After extraction with ethyl acetate, the combined organic layers were rinsed with brine, dried over anhydrous MgSO₄ and concentrated under reduce pressure. Resulting residues were purified by silica column chromatography (eluent: petroleum ether/EtOAc = 5/1 to 3/1, v/v) to give **3n** as a yellow oil.

2-(Methoxymethyl)-N-methyl-N-(2-(1-phenylvinyl)phenyl)acrylamide (3n).

0.43 g, 70% yield. Yellow oil. The amide isomerism was observed by ¹H-NMR with a ratio of 3:1. ¹H-NMR (600 MHz, CDCl₃): δ = 7.22 - 7.40 (m, 7H), 7.17 (d, *J* = 7.2 Hz, 2H), 5.61 (s, 1H), 5.27 (s, 2H), 4.94 (s, 1H), 4.08 (d,

J = 13.8 Hz, 1H), 3.79 (d, J = 13.8 Hz, 1H), 3.27 (s, 3H), 2.76 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 168.7, 147.5, 142.5, 141.1, 139.8, 139.9, 131.7, 128.9, 128.6, 128.3$ (2C), 128.0 (2C), 127.6, 127.0, 119.4, 117.8, 72.2, 58.4, 37.5. HRMS (ESI): Calcd for $[C_{20}H_{21}NO_2, M+Na]^+$: 330.1456, measured: 330.1460.

IV. Synthetic Procedures and Analytical Data

1.Catalyst-free intramolecular aryltrifluoromethylation of activated alkenes 1

Typical procedures for catalyst-free intramolecular aryltrifluoromethylation of activated alkenes (taking **1a** as an example):

To a dried polytetrafluoroethene (PTFE) sealed pressure tube was added **1a** (52.6 mg, 0.3 mmol), PhICF₃Cl (138.6 mg, 0.45 mmol) and anhydrous DMF (3.0 mL) in sequence under N₂. After the reaction mixture was stirred at 50 °C for 12 h, PhCF₃ (30 μ L, 0.2436 mmol) was added as the internal standard and the NMR yield of **2a** was calculated from ¹⁹F-NMR integrals. Then the mixture was washed with water and brine, extracted by CH₂Cl₂. The combined organic phase was dried over

anhydrous MgSO₄ and concentrated under reduce pressure. The residue was purified by silica column chromatography (eluent: petroleum ether/EtOAc = 10/1 to 5/1, v/v) to give **2a** as a white solid. The NMR spectroscopy were consistented with reported data.^{2,4-7}

Analytical data for compounds 2a-2w:

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2a).

63.2 mg, 87% yield. White solid, mp: 73-74 °C (lit.² mp 45-46 °C). ¹H-NMR (600 MHz, CDCl₃): δ = 7.30 - 7.33 (m, 1H), 7.26 - 7.27 (m, 1H), 7.08 - 7.11 (m, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 3.24 (s, 3H), 2.81 (dq, *J* = 15.6 Hz, 10.8

Hz, 1H), 2.65 (dq, J = 15.0 Hz, 10.2 Hz, 1H), 1.41 (s,3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.5$, 142.9, 131.0, 128.5, 125.2 (q, J = 278.3 Hz), 123.6, 122.6, 108.4, 44.3 (q, J = 1.5 Hz), 40.7 (q, J = 28.5 Hz), 26.4, 25.0. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₂H₁₂F₃NO, M+H]⁺: 243.0865, measured: 243.0872.

1,3,5-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2b).

63.2 mg, 82% yield. Yellow solid, mp: 68-69 °C (lit.² mp 70-71 °C). ¹HNMR (600 MHz, CDCl₃): δ = 7.11 (dd, J = 7.8 Hz, 1.8 Hz, 1H), 7.07 (s,
1H), 6,77 (d, J = 7.86, 1H), 3.21 (s, 3H), 2.80 (dq, J = 15.6 Hz, 10.8 Hz, 1H),

2.63 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 2.35 (s, 3H), 1.39 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.4$, 140.5, 132.2, 131.1, 128.8, 125.3 (q, J = 278.0 Hz), 124.3, 108.1, 44.4 (d, J = 2.3 Hz), 40.6 (q, J = 28.2 Hz), 26.4, 25.0, 21.1. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₃H₁₄F₃NO, M+Na]⁺: 280.0920, measured: 280.0919.

5-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2c).

65.6 mg, 81% yield. Yellow solid, mp: 111-112 °C (lit.²107-108 °C). ¹H-**NMR** (400 MHz, CDCl₃): $\delta = 6.78$ (d, J = 2.4 Hz, 1H), 6.74 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.68 (d, J = 8.4, 1H), 3.71 (s, 3H), 3.12 (s, 3H), 2.65 - 2.77 (m, 1H), 2.47 - 2.58 (m, 1H), 1.30 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.1$, 156.1, 136.4, 132.4, 125.2 (q, J = 278.1 Hz), 122.6, 111.3, 108.7, 55.9, 44.8 (q, J = 1.4 Hz), 40.6 (q, J = 28.4 Hz), 26.5, 25.0.

¹⁹**F-NMR** (470 MHz, CDCl₃): $\delta = -61.9$ (t, J = 11.3 Hz). HRMS (ESI): Calcd for [C₁₃H₁₄F₃NO₂, M+Na]⁺: 296.0868, measured: 296.0877.

5-Fluoro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2d).

71.3 mg, 91% yield. White solid, mp: 69-70 °C (lit.²56-57 °C). ¹H-NMR $(600 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.00 - 7.04 \text{ (m, 2H)}, 6.80 \text{ (q, } J = 4.2 \text{ Hz}, 1\text{H}), 3.23$ (s, 3H), 2.82 (dq, J = 15.0 Hz, 10.8 Hz, 1H), 2.63 (dq, J = 15.0 Hz, 10.2 Hz,

1H), 1.41 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.1$, 159.3 (d, J = 240.8 Hz), 138.8, 132.6 (d, J = 240.8 Hz), 138.8, 132.8 (d, J = 240.8 Hz), 138.8, 132.8 (d, J = 240.8 Hz), 138.8 = 9.5 Hz, 125.1 (q, J = 278.1 Hz), 114.8 (d, J = 23.4 Hz), 111.8 (d, J = 24.9 Hz), 108.9 (d, J = 8.2 Hz), 44.8 (q, J = 1.4 Hz), 40.6 (q, J = 28.4 Hz), 26.6, 24.9. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -62.0$ (t, J =10.2 Hz, 3F), -120.4 (m, 1F). HRMS (ESI): Calcd for $[C_{12}H_{11}F_4NO, M+H]^+$: 262.0850, measured: 262.0847.

5-Chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2e).

74.0 mg, 89% yield. White solid, mp: 91-92 °C (lit.²100-101 °C). ¹H-NMR (600 MHz, CDCl₃): δ = 7.29 (dd, J = 8.4 Hz, 1.8Hz, 1H), 7.24 (d, J = 1.8 Hz, 1H), 6.81 (d, J = 7.8 Hz, 1H), 3.22 (s, 3H), 2.83 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 2.63 (dq, J = 15.0 Hz, 10.2 Hz, 1H), 1.41 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 177.9$, 141.5, 132.7, 128.5, 128.1, 125.1 (q, J = 276.3 Hz), 124.1, 109.4, 44.6 (q, J = 2.3 Hz), 40.6 (q, J = 28.4Hz), 26.6, 24.9. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -62.0$ (t, J = 10.2 Hz). HRMS (ESI): Calcd for [C₁₂H₁₁ClF₃NO, M+H]⁺: 278.0554, measured: 278.0549.

5-Bromo-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2f).

85.7 mg, 89% yield. Yellow solid, mp: 107-108 °C (lit.²106-107 °C). ¹H-**NMR** (600 MHz, CDCl₃): $\delta = 7.44$ (dd, J = 8.4 Hz, 1.8 Hz, 1H), 7.38 (d, J =2.4 Hz, 1H), 6.76 (d, J = 8.4, 1H), 3.22 (s, 3H), 2.74 (dg, J = 15.6 Hz, 10.8

Hz, 1H), 2.62 (dq, J = 15.0 Hz, 10.2 Hz, 1H), 1.41 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 177.8$, 141.9, 133.1, 131.4, 126.8, 125.0 (q, J = 278.0 Hz), 115.3, 109.9, 44.5 (q, J = 1.5 Hz), 40.6 (q, J = 28.5Hz), 26.5, 24.9. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₂H₁₁BrF₃NO, M+Na]⁺: 343.9868, measured: 343.9867.

5-Iodo-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2g).

96.3 mg, 87% yield. White solid, mp: 121-122 °C (lit.²110-111 °C). ¹H-**NMR** (600 MHz, CDCl₃): $\delta = 7.63$ (dd, J = 8.4 Hz, 1.8 Hz, 1H), 7.54 (d, J =1.2 Hz, 1H), 6.67 (d, J = 8.4, 1H), 3.21 (s, 3H), 2.81 (dg, J = 15.6 Hz, 10.8 Hz, 1H), 2.62 (dq, J = 15.0 Hz, 10.2 Hz, 1H), 1.40 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 177.6$, 142.6, 137.4, 133.4, 132.4, 125.0 (q, J = 278.4 Hz), 110.5, 85.1, 44.4 (q, J = 2.4 Hz), 40.6 (q, J = 28.4

Hz), 26.5, 24.9. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10.2 Hz). HRMS (ESI): Calcd for [C₁₂H₁₁IF₃NO, M+Na]⁺: 391.9730, measured: 391.9733.

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)-5-(trifluoromethyl)indolin-2-one (2h).

76.5 mg, 82% yield. White solid, mp: 115-116 °C (lit.4109-110 °C). ¹H-**NMR** (600 MHz, CDCl₃): δ = 7.61 (d, J = 7.8 Hz, 1H), 7.50 (s, 1H), 6.96 (d, J = 8.4, 1H, 3.27 (s, 3H), 2.86 (dq, J = 15.0 Hz, 10.2 Hz, 1H), 2.69 (dq, J =

15.0 Hz, 10.2 Hz, 1H), 1.44 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.3$, 145.9, 131.5, 126.4 (q, J = 4.1 Hz), 125.2 (d, J = 3.3 Hz), 125.0 (q, J = 278.0 Hz), 124.9, 120.7 (d, J = 2,7 Hz), 108.3, 44.3 (q, J= 2.0 Hz), 40.6 (q, J = 28.7 Hz), 26.7, 24.9. ¹⁹F-NMR (565 MHz, CDCl₃): δ = -61.5 (s, 3F), -62.1 (t, J= 9.6 Hz, 3F). HRMS (ESI): Calcd for $[C_{13}H_{11}F_6NO, M+H]^+$: 312.0817, measured: 312.0810.

1,3-Dimethyl-2-oxo-3-(2,2,2-trifluoroethyl)indoline-5-carbonitrile (2i).

69.4 mg, 86% yield. Yellow solid, mp: 107-108 °C (lit.²141-142 °C). ¹H-**NMR** (600 MHz, CDCl₃): $\delta = 7.66$ (dd, J = 8.4 Hz, 1.8 Hz, 1H), 7.52 (d, J =1.2 Hz, 1H), 6.96 (d, J = 8.4, 1H), 3.27 (s, 3H), 2.87 (dg, J = 15.6 Hz, 10.8 Hz, 1H), 2.67 (dq, J = 15.6 Hz, 10.2 Hz, 1H), 1.44 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.1$, 146.7, 133.9, 132.0, 127.0, 124.9 (q, J = 277.8 Hz), 118.9, 109.0, 106.0, 44.2 (q, J = 2.0 Hz), 40.6 (q, J = 28.7 Hz), 26.7, 24.9. ¹⁹F-NMR (565 MHz, CDCl₃): δ = -62.3 (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₃H₁₁F₃N₂O, M+Na]⁺: 291.0716, measured: 291.0708.

1,3-Dimethyl-5-nitro-3-(2,2,2-trifluoroethyl)indolin-2-one (2j).

62.6 mg, 70% yield. Yellow solid, mp: 57-58 °C.⁵ 1H-NMR (600 MHz, CDCl₃): $\delta = 8.31$ (dd, J = 9.0 Hz, 2.4 Hz, 1H), 8.17 (d, J = 1.2 Hz, 1H), 6.98 (d, J =8.6, 1H), 3.32 (s, 3H), 2.91 (dq, J = 15.0 Hz, 10.2 Hz, 1H), 2.73 (dq, J = 15.6

Hz, 10.2 Hz, 1H), 1.48 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.4$, 148.5, 143.6, 131.8, 125.9, 124.8 (q, J = 278.1 Hz), 119.5, 108.1, 44.3 (q, J = 1.7 Hz), 40.6 (q, J = 28.8 Hz), 26.9, 24.0. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -62.1$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for $[C_{12}H_{11}F_{3}N_{2}O_{3}, M+H]^{+}$: 299.0794, measured: 299.0789.

1,3,6-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2k) and 1,3,4-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2k').

67.1 mg, 87% yield. Light yellow oil.² Two inseperable isomers were obtained with a ratio of 1:2. **2k** ¹**H-NMR** (600 MHz, CDCl₃): $\delta = 7.14$ (d, J = 7.8 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 6.72 (t, J =

7.8, 1H), 3.22 (s, 3H), 2.96 (dq, J = 15.0 Hz, 10.8 Hz, 1H), 2.75 - 2.87 (m, 1H), 2.40 (s, 3H), 1.38 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): δ = 178.8, 142.9, 138.7, 128.1, 127.8, 125.3 (q, J = 278.1 Hz), 123.3, 109.4, 44.2 (q, J = 2.1 Hz), 40.6 (q, J = 28.1 Hz), 26.4, 25.1, 21.8. ¹⁹F-NMR (470 MHz, CDCl₃): δ = -63.9 (t, J = 10.8 Hz). HRMS (ESI): Calcd for [C₁₃H₁₄F₃NO, M+Na]⁺: 280.0920, measured: 280.0916.

2k' ¹**H-NMR** (600 MHz, CDCl₃): $\delta = 7.21$ (t, J = 7.2 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 6.72 (t, J = 7.8, 1H), 3.22 (s, 3H), 2.75 - 2.87 (m, 1H), 2.63 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 2.38 (s, 3H), 1.45 (s, 3H). ¹³**C-NMR** (151 MHz, CDCl₃): $\delta = 178.5$, 143.2, 134.8, 128.3, 125.2, 125.1 (q, J = 278.1 Hz), 123.2, 106.2, 44.9 (q, J = 2.3 Hz), 39.7 (q, J = 28.1 Hz), 26.5, 23.1, 18.2. ¹⁹**F-NMR** (470 MHz, CDCl₃): $\delta = -65.9$ (t, J = 10.8 Hz). HRMS (ESI): Calcd for $[C_{13}H_{14}F_{3}NO, M+Na]^{+}$: 280.0920, measured: 280.0916.

1,3,7-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (21).

54.0 mg, 72% yield. Colourless oil.² ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.08 (d, *J* = 7.2 Hz, 1H), 7.03 (d, *J* = 7.2 Hz, 1H), 6,96 (t, *J* = 7.2, 1H), 3.51 (s, 3H), 2.82 (dq, *J* = 15.6 Hz, 10.8 Hz, 1H), 2.58 - 2.65 (m, 1H), 2.59 (s, 3H),

1.37 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 179.2$, 140.6, 132.2, 131.6, 125.2 (q, J = 278.1 Hz), 122.5, 121.4, 120.1, 43.7 (q, J = 2.1 Hz), 40.9 (q, J = 28.2 Hz), 29.8, 25.5, 19.1. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -62.0$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₃H₁₄F₃NO, M+Na]⁺: 280.0920, measured: 280.0914.

7-Chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2m).

67.3 mg, 81% yield. Colourless oil.² ¹H-NMR (600 MHz, CDCl₃): δ = 7.23
(dd, J = 7.8 Hz, 1.2 Hz, 1H), 7.13 (d, J = 7.2 Hz, 1H), 6.99 (t, J = 5.2, 1H),
3.61 (s, 3H), 2.85 (dq, J = 15.0 Hz, 10.8 Hz, 1H), 2.62 (dq, J = 15.6 Hz, 10.8

Hz, 1H), 1.40 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.7$, 138.8, 133.7, 130.9, 125.0 (q, J = 278.0 Hz), 123.4, 122.0, 115.9, 44.1 (q, J = 2.0 Hz), 40.9 (q, J = 28.2 Hz), 29.9, 25.4. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -62.0$ (t, J = 10.2 Hz). HRMS (ESI): Calcd for [C₁₂H₁₁ClF₃NO, M+Na]⁺: 300.0373, measured: 300.0366.

1,3,4,6-Tetramethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2n).

66.2 mg, 82% yield. Red solid, mp: 129-130 °C.⁵ ¹H-NMR (400 MHz, CDCl₃): δ = 6.58 (s, 1H), 6.46 (s, 1H), 3.11 (s, 3H), 2.79 - 2.93 (m, 1H), 2.64 - 2.76 (m, 1H), 2.24 (d, *J* = 5.2 Hz, 6H), 1.33 (s, 3H). ¹³C-NMR (151

MHz, CDCl₃): $\delta = 178.9$, 143.3, 138.4, 134.4, 125.7, 125.1 (q, J = 278.0 Hz), 124.9, 107.2, 44.7 (q, J = 2.3 Hz), 39.7 (q, J = 27.9 Hz), 26.5, 23.3, 20.6, 18.1. ¹⁹**F-NMR** (470 MHz, CDCl₃): $\delta = -63.9$ (t, J = 10.3 Hz). HRMS (ESI): Calcd for [C₁₄H₁₆F₃NO, M+Na]⁺: 292.0920, measured: 292.0927.

7-Chloro-1,3,5-trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (20).

70.7 mg, 81% yield. Yellow solid, mp: 99-100 °C. ¹H-NMR (600 MHz, CDCl₃): δ = 7.04 (d, J = 0.6 Hz, 1H), 6.93 (d, J = 1.2 Hz, 1H), 3.57 (s, 3H),
2.83 (dq, J = 15.0 Hz, 10.8 Hz, 1H), 2.59 (dq, J = 15.6 Hz, 10.2 Hz, 1H),

2.31 (s, 3H), 1.38 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.6$, 136.3, 133.7, 133.4, 130.9, 125.0 (q, J = 278.1 Hz), 122.9, 115.4, 44.2 (q, J = 2.4 Hz), 40.9 (q, J = 28.2 Hz), 29.8, 25.5, 20.6. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₃H₁₃ClF₃NO, M+Na]⁺: 314.0530, measured: 314.0534.

1-Methyl-1-(2,2,2-trifluoroethyl)-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one (2p).

73.4 mg, 91% yield. White solid, mp:74-75 °C (lit.²71-72 °C). ¹H-NMR (600 MHz, CDCl₃): δ = 7.10 (d, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 6.97 (t, *J* = 7.8 Hz, 1H), 3.73 (t, *J* = 5.4 Hz, 2H), 2.73 - 2.83 (m, 3H), 2.64 (dq, *J* =

15.6 Hz, 10.8 Hz, 1H), 2.00 - 2.04 (m, 2H), 1.42 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 177.3$, 138.6, 129.7, 127.3, 125.4 (q, J = 279.7 Hz), 122.1, 121.5, 120.5, 45.6 (q, J = 2.4 Hz), 40.5 (q, J = 28.2 Hz), 39.1, 24.6, 24.5, 21.1. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.8$ (t, J = 10.2 Hz). HRMS (ESI): Calcd for [C₁₄H₁₄F₃NO, M+Na]⁺: 292.0920, measured: 292.0917.

1-Ethyl-3-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2q).

68.6 mg, 85% yield. Yellow solid, mp: 98-99 °C (lit.²52-53 °C). ¹H-NMR (600 MHz, CDCl₃): δ = 7.29 - 7.31 (m, 1H), 7.26 (d, *J* = 7.2 Hz 1H), 7.06 -7.09 (m, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 3.85 - 3.91 (m, 1H), 3.66 - 3.71 (m,

1H), 2.84 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 2.64 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 1.40 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.0$, 141.9, 131.2, 128.4, 125.3 (q, J = 278.3 Hz), 123.7, 122.4, 108.6, 44.3 (q, J = 2.1 Hz), 40.7 (q, J = 28.2 Hz), 34.8, 25.1, 12.2. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for [C₁₃H₁₄F₃NO, M+Na]⁺: 280.0920, measured: 280.0928.

1-Benzyl-3-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2r).

74.7 mg, 82% yield. Colourless oil.² ¹H-NMR (600 MHz, CDCl₃): δ = 7.30
7.32 (m, 2H), 7.24 - 7.28 (m, 4H), 7.17 - 7.19 (m, 1H), 7.03 - 7.06 (m, 1H),
6.75 (d, J = 7.8 Hz, 1H), 4.98 (d, J = 15.6 Hz, 1H), 4.89 (d, J = 15.6 Hz, 1H),

2.87 - 2.94 (m, 1H), 2.66 - 2.74 (m, 1H), 1.46 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.6$, 142.0, 135.7, 131.0, 128.8 (2C), 128.4, 127.6, 127.2 (2C), 125.3 (q, J = 278.1 Hz), 123.6, 122.6, 109.6, 44.4 (q, J = 2.0 Hz), 44.0, 40.5 (q, J = 28.2 Hz), 25.7. ¹⁹F-NMR (470 MHz, CDCl₃): $\delta = -61.7$ (t, J = 10.3 Hz). HRMS (ESI): Calcd for [C₁₈H₁₆F₃NO, M+H]⁺: 320.1256, measured: 320.1268.

3-Methyl-1-phenyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2s).

75.1 mg, 82% yield. Yellow solid, mp: 119-120 °C (lit.4116-117 °C). 1H-**NMR** (600 MHz, CDCl₃): δ = 7.53 (t, J = 7.8 Hz, 2H), 7.42 (d, J = 7.2 Hz, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.32 (d, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 2.96 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 2.72 (dq, J = 15.6 Hz, 10.8 Hz 15.0 Hz, 10.2 Hz, 1H), 1.53 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 178.0, 143.0, 134.3, 130.7,$ 129.7 (2C), 128.4, 128.3, 126.6 (2C), 125.3 (q, J = 278.1 Hz), 123.8, 123.1, 109.8, 44.5 (q, J = 2.0 Hz), 41.1 (q, J = 28.2 Hz), 25.5. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.9$ (t, J = 10,7 Hz). HRMS (ESI): Calcd for [C₁₇H₁₄F₃NO, M+Na]⁺: 328.0920, measured: 328.0924.

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)-1,3-dihydro-2H-benzo[g]indol-2-one (2t).

35.2 mg, 40% yield. Colorless oil.⁶ ¹H-NMR (600 MHz, CDCl₃): δ = 7.76 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 8.4 Hz, 2H), 7.44 (q, J = 7.2 Hz, 2H), 6.98(d, J = 7.8 Hz, 1H), 3.56 (s, 3H), 3.44 - 3.52 (m, 1H), 2.74 - 2.81 (m, 1H),

1.73 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 171.4$, 136.2, 134.9, 133.5, 126.7, 126.7, 126.5, 125.5 (q, J = 279.4 Hz), 123.4, 122.8, 119.0, 108.8, 45.4 (q, J = 26.9 Hz), 43.8 (q, J = 2.1 Hz), 33.1, 29.9.¹⁹**F**-**NMR** (470 MHz, CDCl₃): $\delta = -60.9$ (t, J = 9.9 Hz). HRMS (ESI): Calcd for $[C_{16}H_{14}F_{3}NO, M+Na]^{+}$: 316.0920, measured: 316.0909.

3-(Hydroxymethyl)-1-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2u).

58.3 mg, 75% yield. Colourless oil.⁶ ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.37 (t, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 3.75 (t, *J* = 10.8 Hz, 1H), 3.67 (dd, *J* = 10.8 Hz, 3.0 Hz, 1H),

3.26 (s, 3H), 3.08 (dq, J = 15.6 Hz, 10.8 Hz, 1H), 2.81 (dq, J = 15.6 Hz, 10.2 Hz, 1H), 2.54 (dd, J = 9.6 Hz, 3.6 Hz, 1H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 177.1$, 143.6, 129.2, 126.9, 125.6 (q, J = 277.8 Hz), 124.0, 122.9, 108.7, 67.4, 49.7 (q, J = 1.8 Hz), 36.4 (q, J = 28.7 Hz), 26.5. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.5$ (t, J = 10.7 Hz). HRMS (ESI): Calcd for $[C_{12}H_{12}F_{3}NO_{2}, M+Na]^{+}$: 282.0712, measured: 282.0704.

(1-Methyl-2-oxo-3-(2,2,2-trifluoroethyl)indolin-3-yl)methyl acetate (2v).

60.5 mg, 67% yield. Yellow oil.² ¹**H-NMR** (600 MHz, CDCl₃): δ = 7.35 (dt, J = 7.8 Hz, 1.2 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.40 (d, J = 10.8 Hz, 1H), 4.08 (d, J = 10.8 Hz, 1H),

3.25 (s, 3H), 2.80 - 2.93 (m, 2H), 1.97 (s, 3H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 175.1$, 170.0, 143.6, 129.3, 126.6, 125.2 (q, J = 278.0 Hz), 124.6, 122.7, 108.5, 67.0, 48.2 (q, J = 1.8 Hz), 36.8 (q, J = 29.1 Hz), 26.5, 20.5. ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -61.4$ (t, J = 10.2 Hz). HRMS (ESI): Calcd for [C₁₄H₁₄F₃NO₃, M+Na]⁺: 324.0818, measured: 324.0826.

2-((1-Methyl-2-oxo-3-(2,2,2-trifluoroethyl)indolin-3-yl)methyl)isoindoline-1,3-dione (2w).

82.7 mg, 71% yield. Yellow solid, mp: 209-210 °C (lit.²167-170 °C). ¹H-**NMR** (400 MHz, CDCl₃): δ = 7.72 - 7.77 (m, 2H), 7.61 - 7.65 (m, 2H), 7.22 (dt, J = 8.0 Hz, 0.8 Hz, 1H), 7.13 (d, J = 7.6 Hz, 1H), 6.94 (dt, J = 7.6 Hz, 1)0.8 Hz, 1H), 6.79 (d, J = 7.6 Hz, 1H), 3.90 (d, J = 14.4 Hz, 1H), 3.78 (d, J = 14.0 Hz, 1H), 3.15 (s, 3H),

2.83 - 3.04 (m, 2H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 175.5$, 168.0 (2C), 143.4, 134.3 (2C), 131.6, 129.3, 126.7, 125.0 (q, J = 278.3 Hz), 124.4, 123.6 (2C), 122.5 (2C), 108.7, 48.4 (q, J = 2.0 Hz), 44.0, 38.1 (q, J = 28.5 Hz), 26.6. ¹⁹F-NMR (470 MHz, CDCl₃): $\delta = -61.5$ (t, J = 10.3 Hz). HRMS (ESI): Calcd for [C₂₀H₁₅F₃N₂O₃, M+Na]⁺: 411.0927, measured: 411.0934.

V. Mechanistic Study

1. Experimental Procedures: To a dried polytetrafluoroethene (PTFE) sealed pressure tube was added alkene **1a** (35.0 mg, 0.2 mmol), PhICF₃Cl (92.4 mg, 0.3 mmol), TEMPO/BHT and anhydrous DMF (2 mL) in sequence under N₂. The reaction mixture was stirred at 50 °C for 12 h, monitored by ¹⁹F NMR using PhCF₃ (20 μ L, 0.1564 mmol) as the internal standard.

Table S8. Radical trapping experiment for trifluoromethylation of activated alkenes.^a

) + Ph <mark>ICF₃Cl</mark>	additive DMF, 50 °C, 1	$rac{}{2h}$ $rac{}{2h}$ $rac{}{2a}$ $rac{$	CF ₃ TEMPO-CF ₃
Entry	1a : PhICF ₃ Cl	additive	eq	Yield of $2a [\%]^b$	TEMPO-CF3 [%] ^b
1	1:1.5			97	
2	1:1.5	TEMPO	1.5	41	0
3	1:1.5	BHT	1.5	96	

^aReaction conditions: 1a (0.2 mmol), PhICF₃Cl (0.30 mmol), DMF (2 mL).

^{*b*19}F NMR yields using PhCF₃ as an internal standard.

Plausible mechanistic:

Based on the above experimental results (**Table S7**), an ionic process is proposed as shown in **Scheme S1**. The activation of the alkene double bond of **1a** by $[PhICF_3]^+$ affords iodonium complex **I**. Then exo-cyclization occurs via an attack of the *N*-aryl substituent affording cyclic intermediate **II**. Finally, the deprotonation of **II** gives trifluoromethylated product **2a** along with the elimination of PhI.

2. Experimental Procedures: To a dried polytetrafluoroethene (PTFE) sealed pressure tube was added alkene **3a** (55.5 mg, 0.2 mmol), PhICF₃Cl (92.4 mg, 0.3 mmol), TEMPO/BHT and anhydrous DMF (2 mL) in sequence under N₂. The reaction mixture was stirred at 60 °C for 12 h, monitored by ¹⁹F NMR using PhCF₃ (20 μ L, 0.1564 mmol,) as the internal standard.

^aReaction conditions: **3a** (0.2 mmol), PhICF₃Cl (0.30 mmol), DMF (2 mL).

^{b19}F NMR yields using PhCF₃ as an internal standard.

Proposed mechanism I

Scheme S2

Proposed mechanism for the transformations of S-cis-3 to 4:

A similar sequence was involved in the transformations of S-cis-3 to 4. As described in Scheme S2,

 $[PhICF_3]^+$ prefers to activate styrene olefin bond and a following trap of the acryloyl substituent furnishes carbocation II or II'. The carbocation center in II happens to have a *syn*-**Ar**² group for easy trap along with the elimination of PhI. Thus, *syn*-substituted **4** are delivered as the final products. On the contrary, *anti*-substituted **4** could not be isolated from the reaction mixture in all cases. However, **Proposed mechanism II** can not be ruled out.

Proposed mechanism II

Scheme S3

VI. References

- 1 C. Xu, X. Song, J. Guo, S. Chen, J. Gao, J. Jiang, F. Gao, Y. Li and M. Wang, Org. Lett., 2018, **20**, 3933.
- 2 (a) X. Mu, T, Wu, H.-Y. Wang, Y.-L. Guo, G. Liu. J. Am. Chem. Soc. 2012, 134, 878; (b) W. Fu, F. Xu, Y. Fu, C. Xu, S. Li, D. Zou. Eur. J. Org. Chem. 2014, 4, 709; (c) G. Bergonzini, C. Cassani, C.-J. Wallentin. Angew. Chem., Int. Ed. 2015, 54, 14066.
- 3 (a) L.-J. Yu, Q. Xu, X.-Y. Tang, M. Shi. ACS Catal. 2015, 6, 526; (b) Q.-H. Deng, J.-R. Chen, Q. Wei, Q.-Q. Zhao, L.-Q. Lu, W.-J. Xiao. Chem. Commun. 2015, 51, 3537; (c) Y. Zhao, J.-R. Chen, W.-J. Xiao. Org. Lett. 2016, 18, 6304; (d) Y. Zhao, J.-R. Chen, W.-J. Xiao. Org. Lett. 2018, 20, 224.
- 4 J. Liu, S. Zhuang, Q. Gui, X. Chen, Z. Yang, Z. Tan. Eur. J. Org. Chem. 2014, 2014, 3196.
- 5 L. Shi, X. Yang, Y. Wang, H. Yang, H. Fu. Adv. Synth. Catal. 2014, **356**, 1021.
- 6 L. Li, M. Deng, S.-C. Zheng, Y.-P. Xiong, B. Tan, X.-Y. Liu. Org. Lett. 2014, 16, 504.
- 7 J.-Y. Guo, R.-X. Wu, J.-K. Jin, S.-K. Tian. Org. Lett. 2016, 18, 3850.

VII. Crystallographic data.

1. Single-crystal X-ray diffraction data for (+/-)-*syn*-4a as recorded at a temperature of 294(2) K on a Bruker APEX CCD diffractometer, using a ω scan technique with Mo-K α radiation ($\lambda = 1.54178$ Å). The structure was solved by Direct Method of SHELXS-97 and refined by full-matrix leastsquares techniques using the SHELXL-97 program.1 Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of compound (+/-)-*syn*-4a were refined as rigid groups. Basic information pertaining to crystal parameters and structure refinement is summarized in follow. CCDC 1854708 contains the supplementary crystallographic data for (+/-)*syn*-4a. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Identification code	(+/-)- <i>syn</i> -4a
Empirical formula	C ₂₀ H ₁₈ F ₃ N O
Formula weight	355.12
Temperature	294(2) K
Wavelength	1.54178 Å
Crystal system Monoclinic	
space group	P121/n1
Unit cell dimensions	a = 8.1844(9) Å alpha = 90.00 °
	b = 24.475(3) Å beta = 106.736(6) °
	c = 8.6835(9) Å gamma = 90.00 °
Volume	1665.7(3) Å ³
Z	19
Calculated density	1.377 mg/m ³
Absorption coefficient	0.908 mm ⁻¹
F(000)	720
Crystal size	0.40 x 0.30 x 0.20 mm
Theta range for data collection	3.612 to 72.302°
Limiting indices	-8<=h<=10, -29<=k<=30, -10<=l<=10
Reflections collected	3252
Unique	2586 [R(int) = 0.030]
Completeness to theta $= 25.00$	99.6 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	3252 / 0 / 298
Goodness-of-fit on F2	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0520, wR2 = 0.1199
R indices (all data)	R1 = 0.0664, wR2 = 0.1280
Largest diff. peak and hole	0.226 and -0.256 e. Å ⁻³

Table S10. Ci ystai uata anu sti uctui ei chinchicht iui (1/-j-s/n-4a	Fable S10. Cr	ystal data and	structurerefinement	for (-	+/-)-s	<i>vn-</i> 4a.
---	----------------------	----------------	---------------------	--------	--------	----------------

Table S11. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (+/-)-*syn*-4a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U^{IJ} tensor.

Atom	x	у	Z	U(eq)
F1	10111(2)	5517.6(8)	9055.8(18)	85.6(5)
01	7657(2)	6234.0(7)	10727.4(18)	63.7(5)
F3	11209.2(19)	6010.6(8)	7667(2)	94.8(6)
N1	8640(2)	6806.7(7)	9169.7(18)	44.1(4)
F2	11114(3)	5150.4(9)	7316(3)	122.6(8)
C15	8153(2)	6644.5(7)	6293(2)	33.1(4)
C16	8722(2)	6983.1(8)	7643(2)	37.6(4)
C10	7341(2)	6089.0(7)	6408(2)	32.8(4)
C5	5685(2)	6049.2(7)	5015(2)	38.7(4)
C20	8342(3)	6829.0(9)	4842(2)	44.5(5)
C13	7698(3)	6369.2(8)	9385(2)	41.7(4)
C11	8540(3)	5613.0(9)	6304(3)	45.7(5)
C8	6604(2)	6086.0(7)	7885(2)	37.6(4)
C6	4324(2)	6246.4(8)	5507(3)	44.8(5)
C7	4930(3)	6419.9(9)	7229(3)	45.7(5)
C9	6141(3)	5514.2(9)	8324(3)	54.6(6)
C4	5439(3)	5866.4(8)	3451(3)	50.6(5)
C17	9415(3)	7493.5(9)	7490(3)	53.0(6)
C19	9056(3)	7330.8(10)	4712(3)	58.9(6)
C18	9578(3)	7663.9(10)	6033(3)	61.3(6)
C12	10218(3)	5573.5(10)	7567(3)	57.1(6)
C2	2689(3)	6257.2(10)	4433(3)	62.4(7)
C3	3798(4)	5879.6(10)	2389(3)	64.7(7)
C1	2447(4)	6066.6(11)	2883(4)	72.6(8)
C14	9518(5)	7127.9(12)	10589(3)	67.3(7)

Table S12. Anisotropic Displacement Parameters (Å²×10³) for (+/-)-syn-4a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F1	65.8(9)	121.7(14)	60.6(9)	22.3(9)	4.7(7)	11.8(9)
01	87.5(12)	71.0(11)	37.9(8)	5.9(7)	26.1(8)	-5.0(9)
F3	43.5(8)	105.4(13)	123.4(15)	28.6(11)	4.8(8)	-7.3(8)
N1	56.9(10)	43.2(9)	31.0(8)	-6.3(7)	10.9(7)	-6.8(8)
F2	93.5(13)	121.8(16)	132.9(17)	-24.9(13)	1.6(11)	73.0(12)
C15	32.5(9)	34.5(9)	32.5(9)	-2.2(7)	9.7(7)	0.1(7)
C16	39.8(10)	37.3(10)	35.8(10)	-3.2(8)	11.2(8)	-4.2(8)
C10	36.4(9)	29.4(9)	31.7(9)	-2.2(7)	8.7(7)	0.6(7)
C5	42.3(10)	29.3(9)	40.2(10)	-1.1(7)	4.9(8)	-3.5(8)
C20	52.9(12)	46.9(11)	37.2(10)	-4.7(9)	18.6(9)	-6.4(9)
C13	49.8(11)	43.5(11)	33.9(10)	2.4(8)	15.6(8)	5.6(9)

C11	49.8(12)	40.8(11)	46.8(12)	-3.3(9)	14.4(9)	8.4(9)
C8	40.4(10)	34.8(9)	40.4(10)	3.6(8)	16.1(8)	0.0(8)
C6	39.4(10)	36.3(10)	55.4(12)	3.9(9)	8.5(9)	-1.8(8)
C7	40.7(10)	46.3(12)	54.5(12)	1.9(10)	20.7(9)	3.3(9)
C9	62.1(15)	41.8(12)	63.2(15)	8.7(11)	23.1(12)	-6.8(11)
C4	60.9(13)	38.2(11)	45.4(12)	-7.9(9)	3.6(10)	-3.2(10)
C17	61.6(13)	46.4(12)	52.0(13)	-12.6(10)	18.1(11)	-17.7(10)
C19	78.6(16)	56.6(14)	50.5(13)	5.8(11)	33.1(12)	-13.9(12)
C18	77.5(16)	46.5(13)	66.6(15)	-1.0(11)	31.4(13)	-22.6(12)
C12	47.2(12)	59.1(14)	64.6(15)	4.6(11)	15.3(11)	15.3(11)
C2	42.0(12)	58.1(14)	78.1(17)	8.9(12)	3.1(12)	1.9(11)
C3	78.6(17)	47.9(13)	49.3(14)	-5.3(11)	-10.9(12)	-6.6(12)
C1	58.5(15)	58.6(15)	75.8(18)	4.9(13)	-20.3(14)	-8.4(12)
C14	97(2)	60.9(16)	36.6(12)	-11.9(11)	7.2(12)	-12.8(15)

Table S13. Bond Lengths for (+/-)-syn-4a.

Atom	Length/Å	Atom	Length/Å
F1-C12	1.328(3)	C5-C6	1.390(3)
O1-C13	1.222(2)	C5-C4	1.388(3)
F3-C12	1.330(3)	C20-C19	1.379(3)
N1-C16	1.414(2)	C13-C8	1.519(3)
N1-C13	1.363(3)	C11C12	1.493(3)
N1C14	1.464(3)	C8-C7	1.556(3)
F2-C12	1.323(3)	C8-C9	1.527(3)
C15-C16	1.401(2)	C6-C7	1.495(3)
C15-C10	1.529(2)	C6-C2	1.393(3)
C15-C20	1.388(3)	C4-C3	1.394(3)
C16-C17	1.394(3)	C17-C18	1.375(3)
C10-C5	1.537(2)	C19-C18	1.371(3)
C10-C11	1.542(3)	C2-C1	1.384(4)
C10-C8	1.567(2)	C3-C1	1.374(4)

Table S14. Bond Angles for (+/-)-syn-4a.

Atom	Angle/°	Atom	Angle/°
C16-N1-C14	118.75(18)	C13-C8-C10	115.41(15)

C13-N1-C16	123.34(15)	C13-C8-C7	108.29(16)
C13-N1-C14	117.79(18)	C13-C8-C9	109.35(17)
C16-C15-C10	121.17(15)	C7-C8-C10	101.77(15)
C20-C15-C16	118.00(17)	C9-C8-C10	113.01(17)
C20-C15-C10	120.83(16)	C9-C8-C7	108.49(17)
C15-C16-N1	120.63(16)	C5-C6-C7	109.96(17)
C17-C16-N1	119.56(17)	C5-C6-C2	120.1(2)
C17-C16-C15	119.79(18)	C2-C6-C7	129.9(2)
C15-C10-C5	107.83(14)	C6-C7-C8	102.73(16)
C15-C10-C11	111.84(16)	C5-C4-C3	118.7(2)
C15-C10-C8	109.53(14)	C18-C17-C16	120.6(2)
C5-C10-C11	109.75(15)	C18-C19-C20	119.9(2)
C5-C10-C8	100.60(14)	C19-C18-C17	120.0(2)
C11-C10-C8	116.45(15)	F1-C12-F3	103.2(2)
C6-C5-C10	109.85(16)	F1-C12-C11	114.65(19)
C4-C5-C10	129.53(18)	F3-C12-C11	114.2(2)
C4-C5-C6	120.60(19)	F2-C12-F1	105.9(2)
C19-C20-C15	121.66(19)	F2-C12-F3	106.5(2)
01-C13-N1	121.05(19)	F2-C12-C11	111.5(2)
01-C13-C8	121.54(19)	C1-C2-C6	119.0(3)
N1-C13-C8	117.25(16)	C1-C3-C4	120.6(2)
C12-C11-C10	118.19(18)	C3-C1-C2	120.9(2)

Table S15. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$)

for (+/-)-syn-4a.

Atom	x	У	Z.	U(eq)
H9A	5420(30)	5331(11)	7360(30)	62(7)
H9B	5480(40)	5543(13)	9120(40)	95(10)
Н9С	7150(30)	5279(11)	8750(30)	66(7)
H14A	9480(40)	6905(12)	11530(40)	83(9)

H14B	10750(40)	7174(12)	10610(30)	86(10)
H14C	8930(40)	7486(13)	10570(40)	91(10)
H7A	5220(30)	6841(10)	7310(30)	51(6)
H7B	4190(30)	6346(10)	7850(30)	61(7)
H20	7940(30)	6598(9)	3890(30)	57(6)
H4	6440(30)	5717(10)	3080(30)	59(7)
H17	9750(30)	7731(11)	8400(30)	66(7)
H1	1300(40)	6056(12)	2110(40)	92(9)
H3	3580(40)	5731(11)	1240(30)	80(8)
H19	9140(40)	7445(11)	3720(40)	81(9)
H2	1760(40)	6376(11)	4830(30)	74(8)
H18	10060(40)	8022(12)	5940(30)	78(8)
H11A	8820(30)	5648(9)	5310(30)	50(6)
H11B	7950(30)	5252(11)	6270(30)	62(7)

VIII. NMR Spectra

1. NMR Spectra of New Substrates

¹³H-NMR Spectra of 3a

¹³C-NMR Spectra of 3a

¹H-NMR Spectra of 3b

¹³C-NMR Spectra of 3b

¹H-NMR Spectra of 3c

¹H-NMR Spectra of 3d

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹H-NMR Spectra of 3e

¹H-NMR Spectra of 3f

¹H-NMR Spectra of 3g

32 32 34 35 35 35 35 35 35 35 35 35 35 35 35 35	22 336 332 14	66	57
1105533	2105361	.6	5.5
	べんぐいいねね	2-2	7.7

¹³C-NMR Spectra of 3g

¹H-NMR Spectra of 3h

¹H-NMR Spectra of 3i

¹³C-NMR Spectra of 3i

¹H-NMR Spectra of 3j

¹³C-NMR Spectra of 3j

¹H-NMR Spectra of 3k

¹³C-NMR Spectra of 3k

¹H-NMR Spectra of 31

3 3 47 3 3 3 3 3 3 3 47 3 3 11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1	404 379	786
	in in	~1.

¹³C-NMR Spectra of 31

¹H-NMR Spectra of 3m

¹³C-NMR Spectra of 3m

¹H-NMR Spectra of 3n

¹³C-NMR Spectra of 3n

8814 747 747 747 7531 710 067 755 710 067 710 067 88 88 65 725 73 710 067 88 88 65 73 710 067 88 88 65 73 710 72 88 86 72 73 72 73 74 74 74 74 74 74 74 74 74 74 74 74 74	95
88.7119.6.7.7.288.339.441.	9.6
	úũ

2. NMR Spectra of Products

¹H-NMR Spectra of 2a

¹³C-NMR Spectra of 2a

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹⁹F-NMR Spectra of 2a

¹H-NMR Spectra of 2b

¹⁹F-NMR Spectra of 2b

¹H-NMR Spectra of 2c

¹⁹F-NMR Spectra of 2c

¹H-NMR Spectra of 2d

¹³C-NMR Spectra of 2d

¹H-NMR Spectra of 2e

¹⁹F-NMR Spectra of 2e

¹³C-NMR Spectra of 2f

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

¹H-NMR Spectra of 2g

¹⁹F-NMR Spectra of 2g

¹³C-NMR Spectra of 2h

¹⁹F-NMR Spectra of 2h

¹H-NMR Spectra of 2i

¹⁹F-NMR Spectra of 2i

¹³C-NMR Spectra of 2j

fl (ppm)

¹H-NMR Spectra of 2k

¹³C-NMR Spectra of 2k

¹⁹F-NMR Spectra of 2k

¹H-NMR Spectra of 2l

¹³C-NMR Spectra of 21

¹H-NMR Spectra of 2m

¹⁹F-NMR Spectra of 2m

¹³C-NMR Spectra of 2n

¹⁹F-NMR Spectra of 2n

¹H-NMR Spectra of 20

¹⁹F-NMR Spectra of 20

¹³C-NMR Spectra of 2p

¹⁹F-NMR Spectra of 2p

¹H-NMR Spectra of 2q

¹⁹F-NMR Spectra of 2p

-61.891 --61.910 -61.928

¹³C-NMR Spectra of 2r

¹⁹F-NMR Spectra of 2r

¹H-NMR Spectra of 2s

¹³C-NMR Spectra of 2s

¹⁹F-NMR Spectra of 2s

¹H-NMR Spectra of 2t

¹³C-NMR Spectra of 2t

¹H-NMR Spectra of 2u

¹⁹F-NMR Spectra of 2u

¹³C-NMR Spectra of 2v

¹⁹F-NMR Spectra of 2v

¹H-NMR Spectra of 2w

¹⁹F-NMR Spectra of 2w

¹³C-NMR Spectra of (+/-)-Syn-4a

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 fl (ppm)

¹H-NMR Spectra of (+/-)-*Syn*-4b

¹⁹F-NMR Spectra of (+/-)-Syn-4b

¹H-NMR Spectra of (+/-)-*Syn*-4c

¹³C-NMR Spectra of (+/-)-Syn-4c

¹H-NMR Spectra of (+/-)-Syn-4d

71.5 45.6 43.1	1.4.8.1.7.	4 <u>8 0 8 8 6 1 4 1</u>	
71.			
L 440	m a	0004000-4	1
	400000	-0000000	(
			(

¹⁹F-NMR Spectra of (+/-)-Syn-4d

¹H-NMR Spectra of (+/-)-*Syn*-4e

¹³C-NMR Spectra of (+/-)-Syn-4e

¹H-NMR Spectra of (+/-)-Syn-4f

¹⁹F-NMR Spectra of (+/-)-Syn-4f

-60.805 -60.824 -60.843

			<u>, j</u>					- <u>-</u>					·				<u> </u>	
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180
								f	l (ppn	n)								

¹H-NMR Spectra of (+/-)-*Syn*-4g

¹³C-NMR Spectra of (+/-)-Syn-4g

¹H-NMR Spectra of (+/-)-Syn-4h

¹⁹F-NMR Spectra of (+/-)-Syn-4h

¹³C-NMR Spectra of (+/-)-Syn-4i

0

¹H-NMR Spectra of (+/-)-Syn-4j

¹³C-NMR Spectra of (+/-)-*Syn*-4j

¹⁹F-NMR Spectra of (+/-)-Syn-4j

¹H-NMR Spectra of (+/-)-*Syn*-4k

¹³C-NMR Spectra of (+/-)-Syn-4k

¹⁹F-NMR Spectra of (+/-)-Syn-4k

¹H-NMR Spectra of (+/-)-Syn-4l

¹³C-NMR Spectra of (+/-)-Syn-41

¹⁹F-NMR Spectra of (+/-)-Syn-41

¹³C-NMR Spectra of (+/-)-*Syn*-4m

¹H-NMR Spectra of (+/-)-Syn-4n

¹⁹F-NMR Spectra of (+/-)-Syn-4n

¹H-NMR Spectra of (+/-)-Syn-40

¹³C-NMR Spectra of (+/-)-Syn-40

fl (ppm)

¹H-NMR Spectra of 5

¹³C-NMR Spectra of 5

fl (ppm)

¹⁹F-NMR Spectra of 5

--64.195 --64.214 --64.234

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 fl (ppm)