Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Toda et al.

ESI-X

Electronic Supplementary Information

Use of Trichloroacetonitrile as a Hydrogen Chloride Generator for Ring-Opening Reactions of Aziridines

Yasunori Toda,* Riki Matsuda, Shuto Gomyou and Hiroyuki Suga*

Department of Materials Chemistry, Faculty of Engineering Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

*E-mail: ytoda@shinshu-u.ac.jp (Y.T.); sugahio@shinshu-u.ac.jp (H.S.)

General information	2
Preparation of aziridines	2
General procedure for HCl addition reactions	2
General procedure for methanol addition reactions	4
Mohr's method	7
Appendix	8
References	8
¹ H & ¹³ C NMR Spectra of 2a	9
¹ H & ¹³ C NMR Spectra of 2b	10
¹ H & ¹³ C NMR Spectra of $2c$	11
¹ H & ¹³ C NMR Spectra of 2d	12
¹ H & ¹³ C NMR Spectra of 2e	13
¹ H & ¹³ C NMR Spectra of 2f	14
¹ H & ¹³ C NMR Spectra of $2g$	15
¹ H & ¹³ C NMR Spectra of $2h$	16
¹ H & ¹³ C NMR Spectra of 4	17
¹ H & ¹³ C NMR Spectra of 3a	18
¹ H & ¹³ C NMR Spectra of 3b	19
¹ H & ¹³ C NMR Spectra of $3c$	20
¹ H & ¹³ C NMR Spectra of 3d	21
¹ H & ¹³ C NMR Spectra of 3e	22
¹ H & ¹³ C NMR Spectra of 3f	23
¹ H & ¹³ C NMR Spectra of $3g$	24
¹ H & ¹³ C NMR Spectra of 3h	25
¹ H & ¹³ C NMR Spectra of 3i	26
¹ H & ¹³ C NMR Spectra of 3 j	27
¹ H & ¹³ C NMR Spectra of 6	28
HPLC Trace of $2\bar{a}$	29
HPLC Trace of 3a	30
HPLC Trace of 6	31

Toda et al.

General information

All reagents and solvents were commercial grade and purified prior to use when necessary. Tetrahydrofuran (THF), diethyl ether (Et₂O), and dichloromethane (CH₂Cl₂) were dried by passage through a column of activated alumina as described by Grubbs.¹ Thin layer chromatography (TLC) was performed using TLC aluminum sheets from Merck (silica gel 60 F_{254} , 200 μ m), and flash chromatography utilized silica gel from Fuji Silysia Chemical (PSQ60B, 60 µm). Products were visualized by ultraviolet (UV) light, iodine (I₂), and/or a TLC stain (phosphomolybdic acid (PMA), 4-anisaldehyde (AA), potassium permanganate (KMnO₄)). High-performance liquid chromatography (HPLC) was performed on a Jasco HPLC system using Daicel chiral columns (25 cm x 4.6 mm). Optical rotations were measured on a Jasco P-1010 polarimeter with a halogen lamp and are reported as follows; $[\alpha]^{T \circ C}_{D}$ (c = g/100 mL, solvent). Melting points were measured on a Yanaco micro melting point apparatus and were not corrected. Nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Fourier 300 (300 MHz). Chemical shifts are measured relative to residual solvent peaks as an internal standard set to 7.26 and 77.0 for CDCl₃ (or 0.00 for TMS). Data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, br = broad, m = multiplet), coupling constants (Hz), and integration. Infrared (IR) spectra were recorded on a Jasco FT/IR-4200 spectrophotometer and are reported in wavenumbers (cm⁻¹). All compounds were analyzed as neat films on a potassium bromide (KBr) plate. Mass spectra were recorded on a Bruker micrOTOF II mass spectrometer by the ionization method noted. A post-acquisition gain correction was applied using sodium formate (HCO₂Na) as the lock mass.

Preparation of aziridines

1a was prepared according to the reported procedure.² The procedure was applied to the synthesis of **1b**-**1j**, and their characterization data matched the literature.³⁻⁶ (*R*)-**1a** was prepared according to the reported procedure.⁶

General procedure for HCl addition reactions

To an oven-dried test tube equipped with a stir bar was added aziridine **1** (0.20 mmol, 1.0 equiv), 1,4dioxane (2.0 mL, 0.1 M), and trichloroacetonitrile (60 μ L, 0.60 mmol, 3.0 equiv). The mixture was stirred with UV irradiation (365 nm, 4 W x 2) under air atmosphere at 30 °C for 6 h. The mixture was treated with satd NaHCO₃ aq, and the aqueous layer was extracted with Et₂O (x 3). The organic layers were combined, washed with H₂O (x 2), dried over Na₂SO₄, and concentrated. Flash column chromatography (SiO₂: 9 g) yielded product **2**.

N-(2-Chloro-2-phenylethyl)-4-methylbenzenesulfonamide (2a). Prepared according to the general procedure using aziridine 1a (54.6 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (57.6 mg, 93%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.36-7.25 (m, 7H), 4.94 (t, *J* = 6.6 Hz, 1H), 4.87 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.52-3.36 (m, 2H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.8 (C), 137.8 (C), 136.9 (C), 129.9 (CH), 129.1 (CH), 128.9 (CH), 127.2 (CH), 127.0 (CH), 61.6 (CH), 50.3 (CH₂), 21.5 (CH₃). Chiral HPLC analysis (Chiralcel OJ, Hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, *t*_r(*major*) = 16.4 min, *t*_r(*minor*) = 18.7 min, 220 nm, 35 °C). Characterization data matched the literature.^{7,8}

N-(2-Chloro-2-*m*-tolylethyl)-4-methylbenzenesulfonamide (2b). Prepared according to the general procedure using aziridine 1b (57.5 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1)

yielded a white solid (58.9 mg, 91%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.70 (m, 2H), 7.32-7.29 (m, 2H), 7.24-7.05 (m, 4H), 5.02 (t, *J* = 6.6 Hz, 1H), 4.83 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.51-3.36 (m, 2H), 2.43 (s, 3H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.7 (C), 138.6 (C), 137.7 (C), 136.9 (C), 129.8 (CH x 2), 128.7 (CH), 127.8 (CH), 127.0 (CH), 124.2 (CH), 61.6 (CH), 50.2 (CH₂), 21.5 (CH₃), 21.3 (CH₃). Characterization data matched the literature.⁹

N-(2-Chloro-2-*o*-tolylethyl)-4-methylbenzenesulfonamide (2c). Prepared according to the general procedure using aziridine 1c (57.5 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (59.2 mg, 91%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.76-7.72 (m, 2H), 7.34-7.30 (m, 3H), 7.24-7.13 (m, 3H), 5.16 (dd, *J* = 8.7, 5.4 Hz, 1H), 4.83 (dd, *J* = 7.5, 5.7 Hz, 1H), 3.55-3.37 (m, 2H), 2.43 (s, 3H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.8 (C), 137.0 (C), 135.9 (C), 135.8 (C), 130.8 (CH), 129.8 (CH), 128.8 (CH), 127.0 (CH), 126.7 (CH), 126.4 (CH), 58.2 (CH), 49.4 (CH₂), 21.5 (CH₃), 19.0 (CH₃). Characterization data matched the literature.⁹

N-(2-Chloro-2-*p*-tolylethyl)-4-methylbenzenesulfonamide (2d). Prepared according to the general procedure using aziridine 1d (57.5 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (60.1 mg, 93%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.70 (m, 2H), 7.31-7.28 (m, 2H), 7.17-7.11 (m, 4H), 5.00 (t, *J* = 6.6 Hz, 1H), 4.84 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.50-3.35 (m, 2H), 2.43 (s, 3H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.7 (C), 139.0 (C), 136.9 (C), 134.8 (C), 129.8 (CH), 129.5 (CH), 127.04 (CH), 126.97 (CH), 61.5 (CH), 50.2 (CH₂), 21.5 (CH₃), 21.1 (CH₃). Characterization data matched the literature.⁷

N-(2-Chloro-2-(3-chlorophenyl)ethyl)-4-methylbenzenesulfonamide (2e). Prepared according to the general procedure using aziridine 1e (61.6 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (64.2 mg, 95%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.71 (m, 2H), 7.34-7.26 (m, 5H), 7.18 (dd, *J* = 6.6, 1.8 Hz, 1H), 4.87-4.82 (m, 2H), 3.51-3.35 (m, 2H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.9 (C), 139.8 (C), 136.7 (C), 134.6 (C), 130.1 (CH), 129.9 (CH), 129.1 (CH), 127.4 (CH), 126.9 (CH), 125.5 (CH), 60.6 (CH), 50.1 (CH₂), 21.5 (CH₃). Characterization data matched the literature.⁹

N-(2-Chloro-2-(2-chlorophenyl)ethyl)-4-methylbenzenesulfonamide (2f). Prepared according to the general procedure using aziridine 1f (61.6 mg, 0.20 mmol) at 30 °C for 12 h. Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (63.8 mg, 93%, 4% of regioisomer was included). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.77-7.72 (m, 2H), 7.52-7.46 (m, 1H), 7.37-7.22 (m, 5H), 5.37 (dd, J = 8.7, 4.8 Hz, 1H), 5.03 (dd, J = 8.1, 5.1 Hz, 1H), 3.59 (ddd, J = 14.1, 8.1, 4.8 Hz, 1H), 3.36 (ddd, J = 14.1, 8.7, 5.1 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.8 (C), 136.9 (C), 135.1 (C), 132.8 (C), 130.0 (CH), 129.83 (CH), 128.79 (CH), 128.7 (CH), 127.4 (CH), 127.1 (CH), 57.9 (CH), 49.1 (CH₂), 21.5 (CH₃). Characterization data matched the literature.^{8,9}

N-(2-Chloro-2-(4-chlorophenyl)ethyl)-4-methylbenzenesulfonamide (2g). Prepared according to the general procedure using aziridine 1g (61.7 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (67.4 mg, 98%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.68 (m, 2H), 7.31-7.20 (m, 6H), 5.11 (t, *J* = 6.6 Hz, 1H), 4.87 (dd, *J* = 7.5, 6.6 Hz, 1H), 3.49-3.34 (m, 2H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.9 (C), 136.8 (C), 136.4 (C), 134.9 (C), 129.8 (CH), 129.0 (CH), 128.6 (CH), 127.0 (CH), 60.7 (CH), 50.2 (CH₂), 21.5 (CH₃). Characterization data matched the literature.^{7,8}

N-(2-Chloro-2-(3-methoxyphenyl)ethyl)-4-methylbenzenesulfonamide (2h). Prepared according to the general procedure using aziridine 1h (60.6 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (61.9 mg, 91%). $R_f = 0.2$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.70 (m, 2H), 7.32-7.20 (m, 3H), 6.87-6.81 (m, 3H), 4.96 (t, *J* = 6.6 Hz, 1H), 4.83 (dd, *J* = 7.8, 6.3 Hz, 1H), 3.78 (s, 3H), 3.54-3.36 (m, 2H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.8 (C), 143.7 (C), 139.2 (C), 136.9 (C), 129.9 (CH), 129.8 (CH), 127.0 (CH), 119.3 (CH), 114.4 (CH), 112.9 (CH), 61.4 (CH), 55.3 (CH₂), 50.2 (CH₂), 21.5 (CH₃). Characterization data matched the literature.⁹

N-(2-Bromo-2-phenylethyl)-4-methylbenzenesulfonamide (4). Prepared according to the general procedure using aziridine 1a (54.6 mg, 0.20 mmol) and tetrabromomethane (199.0 mg, 0.60 mmol). Flash column chromatography (Hexane/EtOAc = 10/1) yielded a white solid (66.5 mg, 94%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.35-7.26 (m, 7H), 4.91 (dd, *J* = 7.5, 6.9 Hz, 1H), 4.85 (t, *J* = 6.6 Hz, 1H), 3.65-3.49 (m, 2H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.8 (C), 138.1 (C), 136.9 (C), 129.9 (CH), 129.2 (CH), 129.0 (CH), 127.6 (CH), 127.0 (CH), 52.6 (CH), 50.1 (CH₂), 21.5 (CH₃). Characterization data matched the literature.⁹

General procedure for methanol addition reactions

To an oven-dried test tube equipped with a stir bar was added aziridine **1** (0.20 mmol, 1.0 equiv), methanol (2.0 mL, 0.1 M), and trichloroacetonitrile (60 μ L, 0.60 mmol, 3.0 equiv). The mixture was then stirred with UV irradiation (365 nm, 4 W x 2) under air atmosphere at 30 °C for 30 minutes. The resulting mixture was concentrated and purified by flash column chromatography (SiO₂: 7 g) to give product **3**.

N-(2-Methoxy-2-phenylethyl)-4-methylbenzenesulfonamide (3a). Prepared according to the general procedure using aziridine 1a (54.5 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (59.6 mg, 98%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.72 (m, 2H), 7.36-7.27 (m, 5H), 7.21-7.18 (m, 2H), 5.18-5.15 (m, 1H), 4.19 (dd, *J* = 9.3, 3.6 Hz, 1H), 3.25-3.16 (m, 4H), 2.97 (ddd, *J* = 12.9, 9.3, 3.3 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3 (C), 138.2 (C), 137.0 (C), 129.6 (CH), 128.6 (CH), 128.3 (CH), 127.0 (CH), 126.5 (CH), 82.0

(CH), 56.7 (CH₃), 49.2 (CH₂), 21.4 (CH₃). Chiral HPLC analysis (Chiralcel OJ, Hexane/^{*i*}PrOH = 90/10, 1.0 mL/min, $t_r(major) = 10.3 \text{ min}, t_r(minor) = 14.2 \text{ min}, 254 \text{ nm}, 35 \text{ °C}$), $[\alpha]_D^{27} + 112.1 (c = 0.52, \text{CHCl}_3 \text{ for } 96\% \text{ ee})$. Characterization data matched the literature.^{10,11}

N-(2-Methoxy-2-*m*-tolylethyl)-4-methylbenzenesulfonamide (3b). Prepared according to the general procedure using aziridine 1b (57.5 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (61.3 mg, 96%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; Mp 71-72 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.75-7.72 (m, 2H), 7.30-7.18 (m, 3H), 7.11-7.08 (m, 1H), 7.01-6.98 (m, 1H), 5.16 (dd, *J* = 8.7, 3.3 Hz, 1H), 4.16 (dd, *J* = 9.3, 3.6 Hz, 1H), 3.24-3.16 (m, 4H), 2.96 (ddd, *J* = 12.9, 9.3, 3.3 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3 (C), 138.3 (C), 138.2 (C), 136.9 (C), 129.6 (CH), 129.0 (CH), 128.5 (CH), 127.2 (CH), 127.0 (CH), 123.6 (CH), 82.0 (CH), 56.7 (CH₃), 49.3 (CH₂), 21.4 (CH₃), 21.3 (CH₃); IR (KBr) 3269, 2921, 1420, 1331, 1164, 1081 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NNaO₃S [M+Na]⁺ 342.1134, found 342.1143.

N-(2-Methoxy-2-*o*-tolylethyl)-4-methylbenzenesulfonamide (3c). Prepared according to the general procedure using aziridine 1c (57.5 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a colorless oil (61.0 mg, 95%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; Mp 80-81 °C;¹H NMR (300 MHz, CDCl₃) δ 7.76-7.73 (m, 2H), 7.30-7.28 (m, 2H), 7.25-7.10 (m, 4H), 5.27-5.24 (m, 1H), 4.45 (dd, *J* = 9.3, 3.6 Hz, 1H), 3.24-3.14 (m, 4H), 2.87 (ddd, *J* = 12.6, 9.3, 3.0 Hz, 1H), 2.41 (s, 3H), 2.26 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3 (C), 137.1 (C), 136.1 (C), 135.7 (C), 130.6 (CH), 129.6 (CH), 127.8 (CH), 127.0 (CH), 126.3 (CH), 125.5 (CH), 78.7 (CH), 56.6 (CH₃), 48.2 (CH₂), 21.4 (CH₃), 18.8 (CH₃); IR (KBr) 3267, 2921, 1415, 1327, 1161, 1114 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NNaO₃S [M+Na]⁺ 342.1134, found 342.1135.

N-(2-Methoxy-2-*p*-tolylethyl)-4-methylbenzenesulfonamide (3d). Prepared according to the general procedure using aziridine 1d (57.3 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (60.2 mg, 90%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; Mp 75-76 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.71 (m, 2H), 7.30-7.27 (m, 2H), 7.14-7.07 (m, 4H), 5.14 (dd, *J* = 8.7, 3.3 Hz, 1H), 4.16 (dd, *J* = 9.3, 3.9 Hz, 1H), 3.22-3.14 (m, 4H), 2.96 (ddd, *J* = 12.9, 9.3, 3.3 Hz, 1H), 2.41 (s, 3H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3 (C), 138.1 (C), 137.0 (C), 135.2 (C), 129.6 (CH), 129.2 (CH), 127.0 (CH), 126.5 (CH), 81.8 (CH), 56.5 (CH₃), 49.3 (CH₂), 21.4 (CH₃), 21.0 (CH₃); IR (KBr) 3252, 2923, 1411, 1332, 1164, 1116, 1086 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NNaO₃S [M+Na]⁺ 342.1134, found 342.1153.

N-(2-(3-Chlorophenyl)-2-methoxyethyl)-4-methylbenzenesulfonamide (3e). Prepared according to the general procedure using aziridine 1e (61.6 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (53.9 mg, 80%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; Mp 98-99 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.71 (m, 2H), 7.31-7.26 (m, 4H), 7.20-7.18 (m, 1H), 7.12-7.08 (m,

Toda et al.

Electronic Supplementary Information

1H), 5.14-5.10 (m, 1H), 4.18 (dd, J = 9.0, 3.6 Hz, 1H), 3.24-3.15 (m, 4H), 2.93 (ddd, J = 12.6, 9.0, 3.3 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5 (C), 140.5 (C), 136.8 (C), 134.6 (C), 130.0 (CH), 129.7 (CH), 128.5 (CH), 127.0 (CH), 126.6 (CH), 124.8 (CH), 81.5 (CH), 56.9 (CH₃), 49.1 (CH₂), 21.5 (CH₃); IR (KBr) 3272, 2921, 1420, 1330, 1165, 1080 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₈ClNNaO₃S [M+Na]⁺ 362.0588, found 362.0563.

N-(2-(2-Chlorophenyl)-2-methoxyethyl)-4-methylbenzenesulfonamide (3f). Prepared according to the general procedure using aziridine 1f (61.6 mg, 0.20 mmol) and trichloroacetonitrile (6 μL, 0.06 mmol, 0.3 equiv). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (64.2 mg, 94%, a trace amount of 2f was contaminating). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.74 (m, 2H), 7.34-7.18 (m, 6H), 5.26-5.24 (m, 1H), 4.61 (dd, *J* = 9.0, 3.0 Hz, 1H), 3.38 (ddd, *J* = 12.3, 9.3, 3.3 Hz, 1H), 3.16 (s, 3H), 2.88 (ddd, *J* = 12.3, 9.0, 3.3 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5 (C), 140.5 (C), 136.8 (C), 134.6 (C), 130.0 (CH), 129.7 (CH), 128.5 (CH), 127.0 (CH), 126.6 (CH), 124.8 (CH), 81.5 (CH), 56.9 (CH₃), 49.1 (CH₂), 21.5 (CH₃); IR (KBr) 3262, 2987, 2923, 1598, 1418, 1325, 911 cm⁻¹. Characterization data matched the literature.¹⁰

N-(2-(4-Chlorophenyl)-2-methoxyethyl)-4-methylbenzenesulfonamide (3g). Prepared according to the general procedure using aziridine 1g (61.6 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (64.0 mg, 94%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; Mp 87-88 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.73-7.70 (m, 2H), 7.30-7.27 (m, 4H), 7.16-7.13 (m, 2H), 5.24-5.21 (m, 1H), 4.19 (dd, *J* = 9.0, 3.9 Hz, 1H), 3.23-3.14 (m, 4H), 2.94 (ddd, *J* = 12.9, 9.0, 3.6 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.4 (C), 136.8 (C), 134.0 (C), 129.6 (CH), 128.7 (CH), 127.9 (CH), 126.9 (CH), 81.3 (CH), 56.7 (CH₃), 49.1 (CH₂), 21.4 (CH₃); IR (KBr) 3269, 2930, 1400, 1332, 1167, 1087 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₆H₁₈ClNNaO₃S [M+Na]⁺ 362.0588, found 362.0561.

N-(2-Methoxy-2-(3-methoxyphenyl)ethyl)-4-methylbenzenesulfonamide (3h). Prepared according to the general procedure using aziridine 1h (61.2 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a white solid (65.8 mg, 97%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.74-7.71 (m, 2H), 7.30-7.21 (m, 3H), 6.85-6.74 (m, 3H), 5.16-5.12 (m, 1H), 4.17 (dd, J = 9.3, 3.6 Hz, 1H), 3.78 (s, 3H), 3.25-3.16 (m, 4H), 2.96 (ddd, J = 12.9, 9.3, 3.3 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.8 (C), 143.3 (C), 139.9 (C), 136.9 (C), 129.6 (CH x 2), 127.0 (CH), 118.9 (CH), 113.7 (CH), 111.9 (CH), 81.9 (CH), 56.7 (CH₃), 55.1 (CH₃), 49.2 (CH₂), 21.4 (CH₃); IR (KBr) 3257, 2912, 1595, 1331, 1164, 1081 cm⁻¹. Characterization data matched the literature.¹⁰

N-(2-Methoxy-2-phenylpropyl)-4-methylbenzenesulfonamide (3i). Prepared according to the general procedure using aziridine 1i (57.4 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a colorless oil (62.9 mg, 98%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300

MHz, CDCl₃) δ 7.67-7.64 (m, 2H), 7.35-7.23 (m, 7H), 4.91-4.87 (m, 1H), 3.10 (dd, *J* = 12.0, 8.1 Hz, 1H), 3.03-2.98 (m, 4H), 2.39 (s, 3H), 1.60 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.1 (C), 141.8 (C), 136.8 (C), 129.6 (CH), 128.4 (CH), 127.6 (CH), 126.9 (CH), 126.1 (CH), 78.2 (C), 53.5 (CH₂), 50.3 (CH₃), 21.4 (CH₃), 20.3 (CH₃); IR (KBr) 3279, 2936, 1447, 1332, 1167, 1093 cm⁻¹; HRMS (ESI): Exact mass calcd for C₁₇H₂₁NNaO₃S [M+Na]⁺ 342.1134, found 342.1125.

N-(1-Methoxy-2,3-dihydro-1*H*-inden-2-yl)-4-methylbenzenesulfonamide (3j). Prepared according to the general procedure using aziridine 1j (57.1 mg, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 4/1) yielded a yellowish solid (45.3 mg, 71%). $R_f = 0.3$ (Hexane/EtOAc = 4/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.81-7.78 (m, 2H), 7.33-7.28 (m, 3H), 7.23-7.20 (m, 2H), 7.13-7.10 (m, 1H), 5.16 (d, *J* = 8.1 Hz, 1H), 4.60 (d, *J* = 4.5 Hz, 1H), 3.99-3.91 (m, 1H), 3.36 (s, 3H), 3.19 (dd, *J* = 16.2, 7.5 Hz, 1H), 2.57 (dd, *J* = 16.2, 5.4 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.6 (C), 139.9 (C), 139.5 (C), 137.5 (C), 129.7 (CH), 129.0 (CH), 127.13 (CH), 127.08 (CH), 125.2 (CH), 125.0 (CH), 88.7 (CH), 59.1 (CH), 56.9 (CH₃), 37.6 (CH₂), 21.5 (CH₃); IR (KBr) 3199, 2924, 2361, 1598, 1460, 1331, 1164, 1092, 930 cm⁻¹. The *trans*-stereochemistry was postulated by the coupling constant of the methine protons. Characterization data matched the literature.¹⁰

(*R*)-2-Methoxy-2-phenylethanol (6). Prepared according to the general procedure using styrene oxide (*S*)-1a (22.8 μ L, 0.20 mmol). Flash column chromatography (Hexane/EtOAc = 2/1) yielded a colorless oil (28.9 mg, 95%). R_f = 0.3 (Hexane/EtOAc = 2/1) visualized with PMA; ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 4.31 (dd, *J* = 8.1, 3.9 Hz, 1H), 3.72-3.58 (m, 2H), 3.31 (s, 3H), 2.57 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.2 (C), 128.5 (CH), 128.1 (CH), 126.8 (CH), 84.6 (CH), 67.3 (CH₂), 56.9 (CH₃). Chiral HPLC analysis (Chiralcel OD-3, Hexane/^{*i*}PrOH = 98/2, 0.7 mL/min, *t*_r(*major*) = 17.7 min, *t*_r(*minor*) = 19.1 min, 210 nm, 35 °C), $[\alpha]_D^{26}$ -111.7 (*c* = 0.40, CHCl₃ for 82% ee). Characterization data matched the literature.¹²

Mohr's method

UV irradiation was performed for a solution of trichloroacetonitrile (30 μ L, 0.30 mmol) in 1,4-dioxane or methanol (1 mL). After the indicated time, the reaction mixture was poured into 100 mL Erlenmeyer flask,

and diluted with dist H₂O (20 mL). The acidic solution was neutralized with Na₂CO₃ (30 mg), and then 5% K₂CrO₄ aq (5 mL) was added as an indicator. The resulting solution was titrated by a 0.1 M AgNO₃ aq (until the color changes from yellow to orange). This experiment was repeated three times.

in 1,4-dioxane for 30 min: 28.8 μ mol (Cl⁻) 1 h: 131.7 μ mol (Cl⁻) 3 h: 238.1 μ mol (Cl⁻) 12 h: 348.6 μ mol (Cl⁻)

in methanol for 30 min: 6.6 µmol (Cl⁻)

Appendix

The following experiments were conducted in accordance with the reviewers' comments.

References

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518-1520.

(2) Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M. Tetrahedron 1998, 54, 13485-13494.

(3) For 1b: Hsueh, N.; Clarkson, G. J.; Shipman, M. Org. Lett. 2016, 18, 4908-4911.

(4) For 1c and 1h: Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541-9544.

(5) For **1d**, **1f**, **1g**, **1i**, and **1j**: Arenas, I.; Fuentes, M. A.; Álvarez, E.; Díaz, Y.; Caballero, A.; Castillón, S.; Pérez, P. J. *Inorg. Chem.* **2014**, *53*, 3991-3999.

(6) For **1e** and (*R*)-**1a**: Craig, R. A., II; O'Connor, N. R.; Goldberg, A. F. G.; Stoltz, B. M. Chem. Eur. J. **2014**, 20, 4806-4813.

- (7) Minakata, S.; Yoneda, Y.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 967-969.
- (8) Martínez, C.; Muñiz, K. Adv. Synth. Catal. 2014, 356, 205-211.
- (9) Li, X.; Sun, Z.-Q.; Chang, H.-H.; Wei, W.-L. Chinese Chem. Lett. 2014, 25, 1174-1178.
- (10) Sun, H.; Yang, C.; Lin, R.; Xia, W. Adv. Synth. Catal. 2014, 356, 2775-2780.
- (11) Ghorai, M. K.; Das, K.; Shukla, D. J. Org. Chem. 2007, 72, 5859-5862.

Toda et al. **¹H & ¹³C NMR Spectra of 2f** ^{13SG6-353-1.010.001.1r.esp}

Toda et al. ¹H & ¹³C NMR Spectra of 2h ^{13SG6-328-1.010.001.1r.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3a** ^{14RM-089-CC-1.010.001.1r.esp}

Toda et al. ¹H & ¹³C NMR Spectra of 3b ^{14RM-095-CC-1-f8-13.010.001.1r.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3c** ^{14RM-097-CC-1.010.001.1r.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3d** ^{14RM-091-CC-1.010.001.1r.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3e** ^{14RM-094-CC-1-f10-14.010.001.1r.esp}

Toda et al. ¹H & ¹³C NMR Spectra of 3f ^{14RM-170-CC-1.010.001.1r.esp}

Toda et al. ¹H & ¹³C NMR Spectra of 3g ^{14RM-090-CC-1-re.010.001.1r.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3h** ^{14RM-096CC-1-2-115-22.010.001.11.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3i** ^{14RM-098-CC-1-2.010.001.1r.esp}

Toda et al. **¹H & ¹³C NMR Spectra of 3j** ^{14RM-184-CC-3.010.001.1r.esp}

Toda et al. **¹H &** ¹³C NMR Spectra of 6 ^{14RM-136-CC-1.010.001.1r.esp}

Toda et al. HPLC Trace of 2a

80000 60000 Intensity [µV] 40000 20000 0 18.0 20.0 Retention Time [min] 14.0 24.0 12.0 16.0 22.0 26.0 # Peak CH tR (min) Height Area% Area 50 50 1 3 16.475 3070791 88095 2 3 18.775 3071442 71929 —13SG6-362 chiral OJ 35 i-PrOH10 220nm 1.0 - CH3 F 80000 60000 Intensity [µV] 40000 20000 0

# Peak	CH	tR (min)	Area	Height	Area%
1	3	16.367	2868394	81461	53.4
2	3	18.708	2505263	58580	46.6

16.0

12.0

14.0

18.0 20.0 Retention Time [min] 22.0

24.0

26.0

Toda et al. HPLC Trace of 3a

# Peak	CH	tR (min)	Area	Height	Area%
1	3	10.342	310460	13920	97.845
2	3	14.183	6837	236	2.155

Toda et al. HPLC Trace of 6

# Peak	СН	tR (min)	Area	Height	Area%
1	3	17.667	11937897	608842	90.800
2	3	19.075	1209518	59022	9.200