Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Synthesis, structure, and anion binding of functional

oxacalix[4]arenes

Jiao-Xia Ma, Xu Fang, Min Xue, and Yong Yang*

School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China. Email: <u>yangyong@zstu.edu.cn</u>

Fig. S1. Stacked partial spectra for 5 mM **6b** in CDCl₃ (a), with 15 mM $Bu_4N^+F^-$ (b), with 15 mM $Bu_4N^+Cl^-$ (c), with 15 mM $Bu_4N^+Br^-$ (d), with 15 mM $Bu_4N^+I^-$ (e), with 15 mM $Bu_4N^+Ac^-$ (f), with 15 mM $Bu_4N^+HSO_4^-$ (g), 298 K, 400 MHz.

Fig. S2. Stacked partial spectra for 5 mM 6b (bottom) and 5 mM 7 (up), CDCl₃, 298 K, 400 MHz.

Determination of association constant (K_a) of Tetraureido Oxacalix[4]arene 7 and the anion guests F⁻, Cl⁻, Br⁻, I⁻, Ac⁻, and HSO₄⁻, from UV-vis titration data was based on the following equation.^{S1-S2}

$$\begin{split} &K_{a} = \frac{[HG]}{[H][G]} \\ &[H] = [H]_{0} - [HG] \\ &[G] = [G]_{0} - [HG] \\ &[HG] = \frac{[G]_{0} + [H]_{0} + \frac{1}{K_{a}} - \sqrt{([G]_{0} + [H]_{0} + \frac{1}{K_{a}})^{2} - 4[G]_{0}[H]_{0}}}{2} \\ &A_{obs} = \epsilon_{1}[H] + \epsilon_{2}[HG] \\ &= \epsilon_{1}(H]_{0} - [HG]) + \epsilon_{2}[HG] \\ &= \epsilon_{1}(H]_{0} - (HG]) + \epsilon_{2}(HG] \\ &= \delta_{abs} - A_{0} = (\epsilon_{2} - \epsilon_{1})[HG] \\ &\Delta A = A_{obs} - A_{0} = C = \epsilon_{2} - \epsilon_{1} \\ \\ &\Delta A = C \frac{[G]_{0} + [H]_{0} + \frac{1}{K_{a}} - \sqrt{([G]_{0} + [H]_{0} + \frac{1}{K_{a}})^{2} - 4[G]_{0}[H]_{0}}}{2} \\ &[H]_{0} : the initial concentration of Host \\ \\ &[H]_{1} : the concentration of free Host \\ \\ &[G]_{0} : the initial concentration of Guest \\ \\ &[G]_{1} : the concentration of Host - Guest complex \\ \\ &K_{a}: association constant \\ \\ &\epsilon_{1} : molar absorption coeffcient of Host \\ \\ &\epsilon_{2} : molar absorption coeffcient of Host - Guest complex HG \\ \end{aligned}$$

A₀: the initial absorption value of Host

A_{obs}: absorption value measured for each titration

 ΔA : changes for absorption value

C: constant

Fig. S3. UV-vis spectra of mixtures of host 7 and guest $Bu_4N^+F^-$ with different ratios in CHCl₃, with the total concentration fixed at 5×10^{-5} M.

Fig. S4. Job-plot for the complex between host 7 and guest $Bu_4N^+F^-$ in CHCl₃ using UV-vis absorption values at $\lambda = 290$ nm, showing a 1:1 stoichiometry.

Fig. S5. Titration curves of host 7 (fixed at 2×10^{-5} M in CHCl₃) with 0-6.9 equivalents of guest Bu₄N⁺F⁻, 298 K.

Fig. S6. Plot of the absorption intensity changes at $\lambda = 254$ nm *vs* the guest concentration. The red line was obtained from non-linear curve-fitting using Eq. S1, yielding an association constant $K_a = (1.3 \pm 0.2) \times 10^5$ M⁻¹.

Fig. S7. Distribution diagram between 7 and $7 \supset F^-$ during the spectrophotometric titration, calculated using UV-vis titration absorption data at $\lambda = 254$ nm.

Fig. S8. UV-vis spectra of mixtures of host 7 and guest $Bu_4N^+Cl^-$ with different ratios in CHCl₃, with the total concentration fixed at 5×10^{-5} M.

Fig. S9. Job-plot for the complex between host 7 and guest $Bu_4N^+Cl^-$ in CHCl₃ using UV-vis absorption values at $\lambda = 290$ nm, showing a 1:1 stoichiometry.

Fig. S10. Titration curves of host 7 (fixed at 2×10^{-5} M in CHCl₃) with 0-7.6 equivalents of guest Bu₄N⁺Cl⁻, 298 K.

Fig. S11. Plot of the absorption intensity changes at $\lambda = 253$ nm vs the guest concentration. The red line was obtained from non-linear curve-fitting using Eq. S1, yielding an association constant $K_a = (1.2 \pm 0.2) \times 10^5$ M⁻¹.

Fig. S12. Distribution diagram between 7 and $7 \supset Cl^{-}$ during the spectrophotometric titration, calculated using UV-vis titration absorption data at $\lambda = 253$ nm.

Fig. S13. UV-vis spectra of mixtures of host 7 and guest $Bu_4N^+Br^-$ with different ratios in CHCl₃, with the total concentration fixed at 5×10^{-5} M.

Fig. S14. Job-plot for the complex between host 7 and guest $Bu_4N^+Br^-$ in CHCl₃ using UV-vis absorption value at $\lambda = 290$ nm, showing a 1:1 stoichiometry.

Fig. S15. Titration curves of host 7 (fixed at 2×10^{-5} M in CHCl₃) with 0-7.2 equivalents of guest Bu₄N⁺Br, 298 K.

Fig. S16. Plot of the absorption intensity changes at $\lambda = 250$ nm vs the guest concentration. The red line was obtained from non-linear curve-fitting using Eq. S1, yielding an association constant $K_a = (3.0 \pm 0.6) \times 10^5$ M⁻¹.

Fig. S17. Distribution diagram between 7 and $7 \supset Br$ during the spectrophotometric titration, calculated using UV-vis titration absorption data at $\lambda = 250$ nm.

Fig. S18. UV-vis spectra of a mixture of host 7 and guest $Bu_4N^+I^-$ with different ratios in $CHCl_3$, with the total concentration fixed at 5 × 10⁻⁵ M.

Fig. S19. UV-vis spectra of guest Bu₄N⁺I⁻ with the same concentrations in the above measurements.

Fig. S20. UV-vis spectra, after deduction of I⁻ absorbance.

Fig. S21. Job-plot for the complex between host 7 and guest $Bu_4N^+I^-$ in $CHCl_3$ using UV-vis absorption value at $\lambda = 290$ nm, showing a 1:1 stoichiometry.

Fig. S22. Titration curves of host 7 (fixed at 2×10^{-5} M in CHCl₃) with 0-6 equivalents of guest Bu₄N⁺I⁻, 298 K.

Fig. S23. UV-vis spectra of guest Bu₄N⁺I⁻ with the same concentrations in the above titration measurements.

Fig. S24. UV-vis titration curves, after deduction of I absorbance.

Fig. S25. Plot of the absorption intensity changes at $\lambda = 282$ nm vs the guest concentration. The red line was obtained from non-linear curve-fitting using Eq. S1, yielding an association constant $K_a = (3.7 \pm 0.6) \times 10^4$ M⁻¹.

Fig. S26. Distribution diagram between 7 and $7 \supset I^-$ during the spectrophotometric titration, calculated using UV-vis titration absorption data at $\lambda = 282$ nm.

Fig. S27. UV-vis spectra of mixtures of host 7 and guest $Bu_4N^+Ac^-$ with different ratios in CHCl₃, with the total concentration fixed at 5 × 10⁻⁵ M.

Fig. S28. Job-plot for the complex between host 7 and guest $Bu_4N^+Ac^-$ in CHCl₃ using UV-vis absorption value at $\lambda = 290$ nm, showing a 1:1 stoichiometry.

Fig. S29. Titration curves of host 7 (fixed at 2×10^{-5} M in CHCl₃) with 0-6 equivalents of guest Bu₄N⁺Ac⁻, 298 K.

Fig. S30. Plot of the absorption intensity changes at $\lambda = 255$ nm vs the guest concentration. The red line was obtained from non-linear curve-fitting using Eq. S1, yielding an association constant $K_a = (1.4 \pm 0.3) \times 10^5$ M⁻¹.

Fig. S31. Distribution diagram between 7 and $7 \supset Ac^{-}$ during the spectrophotometric titration, calculated using UV-vis titration absorption data at $\lambda = 255$ nm.

Fig. S32. UV-vis spectra of mixtures of host 7 and guest $Bu_4N^+HSO_4^-$ with different ratios in CHCl₃, with the total concentration fixed at 5×10^{-5} M.

Fig. S33. Job-plot for the complex between host 7 and guest $Bu_4N^+HSO_4^-$ in CHCl₃ using UVvis absorption value at $\lambda = 290$ nm, showing a 1:1 stoichiometry.

Fig. S34. Titration curves of host 7 (fixed at 2×10^{-5} M in CHCl₃) with 0-6.7 equivalents of guest Bu₄N⁺HSO₄⁻, 298 K.

Fig. S35. Plot of the absorption intensity changes at $\lambda = 254$ nm vs the guest concentration. The red line was obtained from non-linear curve-fitting using Eq. S1, yielding an association constant $K_a = (1.4 \pm 0.2) \times 10^5$ M⁻¹.

Fig. S36. Distribution diagram between 7 and $7 \supset HSO_4^-$ during the spectrophotometric titration, calculated using UV-vis titration absorption data at $\lambda = 254$ nm.

Reference

S1. K. A. Connors, *Binding Constants: The Measurement of Molecular Complex Stability*, Wiley, 1987

S2. K. Hirose, in *Analytical Methods in Supramolecular Chemistry*, ed. C. Schalley, Wiley-VCH, 2012, vol. 1, pp. 27-66.