Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic supplementary information

Content

Fig. S1 Single point inhibition ratios of 44 compounds in HeLa and MCF-7 cells at 100μ M.

Fig. S2 Similarity analysis of the confirmed anticancer agent hits in this study and their nearest neighbors in the NCI-60 actives set (A and B) and a tubulin inhibitor from the ChEMBL database (C). All calculations were conducted in Discovery Studio 3.5.

Table S1 The 44 virtual hits purchased from ChemDiv for experimental validation.

Table S2 *In vitro* cytotoxicity assay results for 61 compounds in HeLa and MDA-MB-231 cells at 100 μM.

Table S3 SAR analysis of 21 class III analogues obtained by simultaneously changing the R_1 and R_2 groups.

Table S4 Changes in anticancer activity resulting from scaffold hopping from pyrazolo[3,4

b]pyridin-6-one.

Table S5 Binding free energies of I2 and tubulin calculated using MM-GBSA method.

Fig. S1 Single point inhibition ratios of 44 compounds in HeLa and MCF-7 cells at 100 μ M.

Fig. S2 Similarity analysis of the confirmed anticancer agent hits in this study and their nearest neighbors in the NCI-60 actives set (A and B) and a tubulin inhibitor from the ChEMBL database (C). All calculations were conducted in Discovery Studio 3.5.

	1		*	
Compound name	Compound ID	NB_LCFP_6#EstPGood score	NB_FCFP_8#EstPGood score	Cscore
al	0806-0330	0.632	0.544	0.586
a2	0806-0348	0.733	0.563	0.643
a3	0851-0574	0.747	0.545	0.638
a4	0927-0061	0.675	0.559	0.615
a5	0927-0170	0.661	0.614	0.637
a6	0927-0171	0.682	0.573	0.626
a7	0927-0175	0.666	0.628	0.647
a8	1013-0084	0.670	0.593	0.630
b1	1071-0067	0.688	0.632	0.659
b2	1326-1810	0.705	0.704	0.704
b3	1809-0060	0.699	0.591	0.643
b4	1995-0023	0.691	0.586	0.636
b5	3078-0586	0.831	0.686	0.755
b6	3170-5253	0.707	0.577	0.639
b7	3229-0932	0.678	0.622	0.649
b8	3229-0935	0.717	0.628	0.671
c2	3229-1041	0.677	0.604	0.639
c3	3229-1043	0.622	0.540	0.579
c4	3229-1089	0.602	0.551	0.576
c7	3229-2575	0.640	0.579	0.609
d1	4380-0074	0.663	0.627	0.645
d3	6539-2712	0.672	0.571	0.620
d4	6969-0995	0.786	0.626	0.702
d5	8001-4431	0.665	0.555	0.607
d6	8004-1720	0.729	0.645	0.686
d7	8004-1864	0.625	0.548	0.585
d8	8006-1659	0.660	0.543	0.599
e4	8006-9147	0.749	0.613	0.678
e5	8007-0268	0.676	0.568	0.620
e7	8008-5344	0.785	0.641	0.710
f5	8011-9990	0.762	0.630	0.693
f6	8012-3656	0.768	0.624	0.692
f7	8012-3660	0.740	0.624	0.679
f8	8012-4328	0.768	0.623	0.692
g1	8012-4943	0.718	0.615	0.664
g3	8012-6677	0.658	0.551	0.602
g7	8015-3908	0.633	0.556	0.593
h2	8019-6627	0.641	0.696	0.668
h4	8525-0874	0.746	0.719	0.732
h5	8561-08556	0.735	0.685	0.710
h6	8640-0511	0.680	0.591	0.634
h8	E859-0669	0.610	0.546	0.577

 Table S1 The 44 virtual hits purchased from ChemDiv for experimental validation.

i2	L036-0394	0.677	0.741	0.708
i4	L971-0108	0.601	0.534	0.567

Table S2 In vitro cytotoxicity assay results for 61 compounds in HeLa and MDA-MB-231 cells at

100 µM.

Compound	Compound ID	Inhibition	ratio ^a
Compound	Compound ID	MDA-MB-231	HeLa
A3	8019-5763	0.01 ± 0.21	0.16 ± 0.08
A4	8019-6102	0.31 ± 0.16	0.3 ± 0.08
A5	8019-6103	0.27 ± 0.00	0.38 ± 0.00
A6	8019-6491	0.36 ± 0.02	0.65 ± 0.05
A7	8019-6608	0.98 ± 0.02	0.93 ± 0.05
A8	8019-6609	1.00 ± 0.00	0.92 ± 0.06
B1	8019-6610	0.96 ± 0.05	0.77 ± 0.24
B2	8019-6612	0.99 ± 0.01	0.96 ± 0.03
В3	8019-6613	0.94 ± 0.05	0.88 ± 0.00
B4	8019-6614	0.96 ± 0.01	0.85 ± 0.10
В5	8019-6615	1.00 ± 0.01	1.00 ± 0.00
B6	8019-6628	1.00 ± 0.01	0.99 ± 0.01
B7	8019-6629	0.99 ± 0.00	0.88 ± 0.00
B8	8019-6630	1.00 ± 0.01	0.95 ± 0.07
C1	8019-7263	0.34 ± 0.00	0.53 ± 0.14
C3	D292-0021	0.39 ± 0.08	0.43 ± 0.23
C4	D292-0022	0.38 ± 0.03	0.43 ± 0.01
C5	D292-0024	0.33 ± 0.01	0.43 ± 0.03
C6	D292-0268	0.58 ± 0.11	0.39 ± 0.02
C7	D292-0269	0.57 ± 0.05	0.53 ± 0.10
C8	D292-0271	0.30 ± 0.09	0.76 ± 0.25
D1	D292-0278	0.38 ± 0.00	0.58 ± 0.00
D2	D292-0283	0.37 ± 0.06	0.49 ± 0.08
D3	D292-0284	0.11 ± 0.00	0.30 ± 0.11
D4	D292-0287	0.03 ± 0.05	0.28 ± 0.04
D5	D292-0303	0.47 ± 0.00	0.63 ± 0.04
D6	D302-0061	0.77 ± 0.10	0.67 ± 0.23
D7	D302-0437	0.23 ± 0.05	0.35 ± 0.01
D8	D361-0331	0.27 ± 0.03	0.44 ± 0.06
E1	D361-0859	ND	ND
E2	D361-0922	0.18 ± 0.22	0.32 ± 0.27
E3	D361-0925	0.88 ± 0.06	0.60 ± 0.10
E4	D361-0940	0.33 ± 0.02	0.43 ± 0.03
E5	D361-0943	0.29 ± 0.07	0.43 ± 0.05
E6	D361-1027	0.59 ± 0.16	0.38 ± 0.07
F1	J081-0074	0.58 ± 0.07	0.28 ± 0.37
F2	J081-0182	0.37 ± 0.23	0.58 ± 0.04
F3	J081-0207	0.60 ± 0.14	0.01 ± 0.25
F4	J081-0945	ND	ND
F5	J081-2194	0.55 ± 0.08	0.10 ± 0.10
F6	J081-2207	0.72 ± 0.16	0.62 ± 0.02

F7	J081-2208	0.45 ± 0.12	0.46 ± 0.08
F8	J081-2439	0.65 ± 0.10	0.51 ± 0.13
G1	J081-2452	0.45 ± 0.08	0.53 ± 0.08
G2	J081-2453	0.53 ± 0.05	0.62 ± 0.11
G3	J081-2538	0.41 ± 0.02	0.46 ± 0.12
G4	J094-0187	0.92 ± 0.00	0.68 ± 0.25
G5	J094-0188	1.00 ± 0.01	0.91 ± 0.07
G6	J094-0190	1.01 ± 0.02	0.95 ± 0.05
G7	J094-0252	0.18 ± 0.12	0.04 ± 0.17
G8	J094-0625	0.88 ± 0.09	0.82 ± 0.11
H1	J094-0626	0.99 ± 0.01	0.94 ± 0.06
H2	J094-0633	0.92 ± 0.11	0.93 ± 0.05
Н3	J094-0640	0.99 ± 0.01	0.87 ± 0.15
H4	J094-0642	1.02 ± 0.01	0.87 ± 0.16
Н5	J094-0643	0.99 ± 0.01	0.9 ± 0.08
H6	J094-0644	1.01 ± 0.03	0.86 ± 0.18
H7	J094-0645	1.03 ± 0.02	0.91 ± 0.15
H8	J094-0652	0.99 ± 0.01	0.88 ± 0.13
I1	J094-0653	0.98 ± 0.02	0.94 ± 0.06
I2	J094-0897	1.00 ± 0.01	0.98 ± 0.00
Sorafenib ^b		1.00 ± 0.03	1.00 ± 0.02

^{*a*} Data are presented as the mean values \pm SD from experiments conducted in triplicate at three independent times. ^{*b*} Positive control drug. ND: not determined.

	R ₁	R ₂ -	IC_{50}^{a} mean \pm SD (μ M)						
			MDA-MB-231	HeLa	MCF-7	HepG2	CNE2	HCT116	
C6	HO		ND	ND	ND	ND	ND	ND	
C8	0-		ND	ND	ND	ND	ND	ND	
D1		₹ S	ND	ND	ND	ND	ND	ND	
D2			ND	ND	ND	ND	ND	ND	
D3		$+ \sqrt[N]{2}$	ND	ND	ND	ND	ND	ND	
D4		+	ND	ND	ND	ND	ND	ND	
D5	HO-	₹ S	ND	ND	ND	ND	ND	ND	
F3	b	₹ S	ND	ND	ND	ND	ND	ND	
F2	>→ ↓	$\frac{1}{N}$	ND	ND	ND	ND	ND	ND	
F5	HO -0	₹ S	ND	ND	ND	ND	ND	ND	
F7	>→ →→ +	₩ S	ND	ND	ND	ND	ND	ND	
E2	HO		ND	ND	ND	ND	ND	ND	
E3			ND	ND	ND	50.20 ± 6.43	56.23 ± 2.22	54.32 ± 1.29	
E4			ND	ND	ND	ND	ND	ND	
F8	но		ND	ND	ND	ND	ND	ND	
G2	> → ↓	₩ S O	ND	ND	ND	ND	ND	ND	
G7	P→→ ₹		ND	ND	ND	ND	ND	ND	
A3	HO	-s	ND	ND	ND	ND	ND	ND	
A5	~~~+	₹ ₹ N-N	ND	ND	ND	ND	ND	ND	

Table S3 SAR analysis of 21 class III analogues obtained by simultaneously changing the R_1 and R_2 groups.

C4	ND	ND	ND	ND	ND	ND
C5	ND	ND	ND	ND	ND	ND

^{*a*} Data are presented as the mean values \pm SD from experiments conducted in triplicate at three independent times. ND: not determined.

Table S4 Changes in anticancer activity resulting from scaffold hopping from pyrazolo[3,4-

b]pyridin-6-one.

Compound	Scoffold			IC50 ^{<i>a</i>} mean \pm SD (μ M)			
	Scanola	MDA-MB-231	HeLa	MCF-7	HepG2	CNE2	HCT116
A6	N N N N N N N N N N N N N	ND	ND	ND	ND	ND	ND
В5		11.27 ± 1.18	8.04 ± 1.12	6.83 ± 0.40	9.12 ± 0.48	9.22 ± 1.53	9.04 ± 1.58

^{*a*} Data are presented as the mean values \pm SD from experiments conducted in triplicate at three independent times. ND: not determined.

Energy terms	Binding free energy (Kcal/mol) (SEM)	
$\Delta E_{ m vdw}{}^a$	-54.23 (3.07)	
$\Delta E_{ m ele}{}^{b}$	-19.21 (4.35)	
$\Delta E_{ m pol,solv} c$	39.21 (3.83)	
$\Delta E_{\text{nonpol,solv}} d$	-5.85 (0.25)	
$\Delta G_{ m gas}{}^e$	-73.45 (6.05)	
$\Delta G_{ m solv}{}^f$	-33.37 (3.66)	
$\Delta G_{ m bind}{}^{g}$	-40.08 (3.41)	

Table S5 Binding free energies of I2 and tubulin calculated using MM-GBSA method.

^{*a*} Non-bonded van der Waals; ^{*b*} Non-bonded electrostatics; ^{*c*} Polar component to solvation; ^{*d*} Non-polar component to solvation; ^{*e*} Total gas phase energy; ^{*f*} Sum of nonpolar and polar contributions to solvation; ^{*g*} Final estimated binding free energy calculated from the terms above. Standard errors of the mean are given in parentheses.