Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Deoxygenative Cross-Electrophile Coupling of Benzyl

Chloroformates with Aryl Iodides

Yingying pan,[†] Yuxin Gong,[†] Yanhong Song, Weiqi Tong and Hegui Gong*

[†]Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

 $E\text{-mail: Hegui}_Gong@shu.edu.cn$

Table of Contents

Part I.	S1			
1.	General Information	S1		
2.	Preparation of chloroformate substrates	S1-S5		
3.	Control experiments and optimization	S6		
4.	Characterization data of compounds	S7-S 14		
5.	Reduction potential of 1-phenylethyl carbonochloridate	S15		
Part II.	. NMR Data for New Compounds	S16-S55		
Part III. References				

Part I. Experimental Section

1. General Information

(1) Chemicals and Reagents

All reactions were carried out under an atmosphere of N₂. All glassware was oven- or flame-dried prior to use. Ni(acac)₂ was purchased from Meryer Chemical Co. (China) and used as received. MgBr₂ was purchased from Strem and used as received. Nickel (II) chloride ethylene glycol dimethyl ether complex was synthesized, stored in a glovebox under an atmosphere of N₂ atmosphere. Zinc powder was activated using HCl before use. 4,4'-Dimethoxy-2,2'bipyridine L4 was purchased from Nine-Ding Chemical Co. (China), and used as received. The anhydrous solvents were purchased from Acros, THF (99.5%, stabilized), CH₃CN (acetonitrile, 99.9%), DMA (*N*, *N*-dimethylacetamide, 99.5%, extra pure). Unless otherwise noted, all other reagents were purchased commercially and used as received.

(2) Physical methods

Column chromatography was performed using silica gel 300-400 mesh (purchased from shaoyuan Co., China) as the solid support. All NMR spectra were recorded on Bruker Avance 600MHz spectrometer at STP unless otherwise indicated. ¹H NMR and ¹³C NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in ¹H NMR and ¹³C NMR spectra were set at 7.26 ppm and 77.16 ppm, respectively. The real-time EESI-MS breath experiments were carried out using an Orbitrap FusionTM TribridTM mass spectrometer (Thermo Scientific). Melting point was recorded on a micro melting point apparatus (X-4, YUHUA Co., Ltd, Gongyi, China).

2. Preparation of chloroformate substrates

A general procedure for the preparation of chloroformate substrates (method 1): To a stirred solution of the corresponding alcohol (1 equiv., 20 mmol) in dichloromethane (100 mL) at 0 °C was added triethylamine (2 equiv., 40 mmol) followed by triphosgene (1.2 equiv., 24 mmol). The resulting mixture was stirred at room temperature overnight, and then it was partially evaporated at reduced pressure and diluted with hexane (100 mL). The solid was removed by filtration and the filtrate was evaporated to afford the crude product. Then the crude oily liquid was purified by flash column chromatography, using a mixture of ethyl acetate in petroleum ether (1:99) as eluent. The filtrate was evaporated to afford the corresponding chloroformate in quantitative yield.¹

A general procedure for the preparation of alcohol substrates (method 2): (Aldehyde/ ketone reduction reaction). To a stirred solution of the corresponding aldehyde or ketone (1 equiv., 30 mmol) in methanol (100 ml) at 0 °C was added sodium borohydride (1.1 equiv., 22 mmol). The resulting mixture was stirred at room temperature for 3h. The reaction solvent was evaporated under reduced pressure. Then the residue was added saturated aqueous ammonium chloride solution (100 mL) and washed with dichloromethane (50 mL \times 3). The organic phase was collected, dried over anhydrous Na₂SO₄. After filtration and concentration, the crude mixture was purified and afforded the alcohol in quantitative yield.¹

4-Methoxybenzyl chloroformate

This compound was prepared from 4-methoxybenzyl alcohol (2.8 g, 20.0 mmol) according to the *General Procedure*. The crude residue was purified by silica gel chromatography (2% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 95% yield.

¹H NMR (600MHz, CDCl₃) δ 7.32-7.31 (m, 2H), 6.89-6.88 (m, 2H), 4.57 (s, 2H), 3.81 (s, 3H).
 ¹³C NMR (151 MHz, CDCl₃) δ 159.70, 130.07, 114.15, 55.33, 46.30, 29.71.

4-(Methoxycarbonyl) benzyl chloroformate

This compound was prepared from methyl (4-hydroxymethyl) benzoate (3.3 g, 20.0 mmol) according to the *General Procedure*. The crude residue was purified by silica gel chromatography (2% ethyl acetate/ petroleum ether) to yield the product as a colorless

oil in 94% yield.

¹H NMR (600MHz, CDCl₃) δ 8.04- 8.02 (m, 2H), 7.47-7.45 (m, 2H), 4.61 (s, 2H), 3.92 (s, 3H).
 ¹³C NMR (151 MHz, CDCl₃) δ 166.68, 142.31, 130.10, 128.57, 52.32, 45.46.

4-Tert-butyl benzyl chloroformate

This compound was prepared from 4-*tert*-butylbenzyl alcohol (3.3 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield

the product as a colorless oil in 95% yield.

¹H NMR (600MHz, CDCl₃) δ 7.38-7.37 (m, 2H), 7.32-7.30 (m, 2H,) 4.56 (s, 2H), 1.31 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 151.63, 134.58, 128.40, 125.75, 46.18, 34.67, 31.33.

4-Phenyl benzyl chloroformate²

This compound was prepared from 4-phenylbenzyl alcohol (3.7 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product

as a colorless oil in 96% yield.

¹**H NMR** (600MHz, CDCl₃) δ7.60-7.58 (m, 4H), 7.47-7.43 (m, 4H), 7.37-7.35 (m, 1H), 4.64 (s, 2H).

4-Fluorobenzyl chloroformate (6)³

This compound was prepared from 4-fluorobenzyl alcohol (2.5 g, 20.0 mmol) according to the *General Procedure*. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 95% yield.

¹**H NMR** (600 MHz, CDCl₃) δ 7.38-7.35 (m, 2H), 7.06-7.03 (m, 2H), 4.57 (s, 2H).

1-Phenylethyl chloroformate¹

This compound was prepared from 1-phenethylalcohol (2.5 g, 20.0 mmol) according to the *General Procedure*. The crude residue was purified by silica gel chromatography (1% ethyl acetate/

petroleum ether) to yield the product as a colorless oil in 92% yield. ¹H NMR (600MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.40-7.38 (m, 2H), 7.35-7.32 (m, 1H), 5.13 (q, *J* = 6.8 Hz, 1H), 1.89 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 142.83, 128.65, 128.27, 126.52, 58.80, 26.53.

1-(4-Cyanophenyl) ethyl chloroformate

This compound was prepared from methyl 4-(1-hydroxyethyl) benzonitrile (3.0 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (5% ethyl acetate/ petroleum

ether) to yield the product as a colorless oil in 98% yield.

¹**H NMR** (600 MHz, CDCl₃) δ 7.65-7.64 (m, 2H), 7.53-7.52 (m, 2H), δ 5.08 (q, J = 6.8 Hz, 1H), 1.83 (d, J = 6.8 Hz, 3H).

1-(4-(Methyl formate) phenyl) ethyl) chloroformate

This compound was prepared from methyl 4-(1-hydroxyethyl) benzoate (3.6 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (3% ethyl

acetate/ petroleum ether) to yield the product as a colorless oil in 95% yield. ¹**H NMR** (600 MHz, CDCl₃) δ 8.03-8.01 (m, 2H), 7.49-7.47 (m, 2H), δ 5.10 (q, J = 6.8 Hz, 1H), 3.91 (s, 3H), 1.84 (d, *J* = 6.8 Hz, 3H).

1-(4-(Trifluoromethyl) phenyl) ethyl chloroformate

This compound was prepared from methyl 1-(4-(trifluoromethyl) phenyl) ethan-1-ol (3.8 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (2% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 97% yield.

¹**H NMR** (600 MHz, CDCl₃) δ 7.63-7.62 (m, 2H), 7.55-7.54 (m, 2H), δ 5.11 (q, J = 6.8 Hz, 1H), 1.86 (d, *J* = 6.9 Hz, 3H).

1-(4-Chlorophenyl) ethyl chloroformate

This compound was prepared from methyl 1-(4-chlorophenyl) ethan-1ol (3.2 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 90% yield.

¹**H** NMR (600 MHz, CDCl₃) δ 7.32-7.28 (m, 4H), δ 5.02 (q, J = 6.8 Hz, 1H), 1.79 (d, J = 6.8 Hz, 3H).

1-(*P*-tolyl) ethyl chloroformate

This compound was prepared from methyl 1-(p-tolyl) ethan-1-ol (2.8 g, 20.0 mmol) which was

obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 97% yield.

¹**H NMR** (600 MHz, CDCl₃) δ 7.30-7.28 (m, 2H), 7.15-7.13 (m, 2H), δ 5.06 (q, J = 6.8 Hz, 1H), 2.33 (s, 3H), 1.82 (d, J = 6.8 Hz, 3H).

1-(M-tolyl) ethyl chloroformate

This compound was prepared from methyl 1-(m-tolyl) ethan-1-ol (2.8 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield

the product as a colorless oil in 98% yield.

¹**H NMR** (600 MHz, CDCl₃) δ 7.25-7.21 (m, 3H), 7.12-7.11 (m, 1H), δ 5.07 (q, *J* = 6.8 Hz, 1H), 2.37 (s, 3H), 1.85 (d, *J* = 6.8 Hz, 3H).

1-(2-Methoxyphenyl) ethyl chloroformate

This compound was prepared from methyl 1-(2-methoxyphenyl) ethan-1-ol (3.1 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (2% ethyl acetate/ petroleum ether) to yield the product

as a colorless oil in 95% yield.

¹**H** NMR (600 MHz, CDCl₃) δ 7.53-7.51 (m, 1H), 7.27-7.25 (m, 1H), δ 6.97 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 5.60 (q, J = 6.8 Hz, 1H), 3.84 (s, 3H) 1.80 (d, J = 6.9 Hz, 3H).

1-(4-(Tert-butyl) phenyl) ethyl chloroformate

This compound was prepared from 1-(*tert*-butyl) methylbenzenemethanol (3.6 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/

petroleum ether) to yield the product as a colorless oil in 90% yield. ¹**H NMR** (600MHz, CDCl₃) δ 7.39-7.37 (m, 2H), 7.36-7.35 (m, 2H), 5.10 (q, *J* = 6.8 Hz, 1H), 1.85

(d, *J* = 6.8 Hz, 3H), 1.32 (s, 9H).

1-(4-Fluorophenyl) ethyl chloroformate

This compound was prepared from 1-(4-fluorophenyl) ethanol (2.8 g, 20.0 mmol) according to the *General Procedure*. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 92% yield.

¹**H NMR** (600MHz, CDCl₃) δ 7.28-2.26 (m, 2H), 7.19-7.18 (m, 2H), 4.12 (q, *J* = 7.2 Hz, 1H), 1.61 (d, *J* = 7.2 Hz, 3H).

1-Phenylpentyl chloroformate

This compound was prepared from fenipentol (3.3 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (2% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 96% yield. ¹H NMR (600MHz, CDCl₃) δ 7.41-7.36 (m, 4H), 7.34-7.31 (m, 1H), 4.87 (t, 1H), 2.10 2.12 (m, 1H), 2.00 2.02 (m, 1H), 4.52 1.46 (m, 1H), 1.20 1.20 (m, 1H), 1.20 1.20 (m, 1H), 1.20 1.20 (m, 1H), 1.20 1.20 (m, 1H), 1.2

1H), 2.19-2,13 (m, 1H), 2.09-2.03 (m, 1H), 1.53-1.46 (m, 1H), 1.38-1.28 (m. 3H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 142.04, 128.60, 128.18, 126.95, 63.89, 39.75, 29.23, 22.14, 13.91.

2,3-Dihydro-1H-inden-1-yl chloroformate

This compound was prepared from methyl 1-indanol (2.7 g, 20.0 mmol) according to the *General Procedure*. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product as a colorless oil in 82% yield.

¹**H** NMR (600 MHz, CDCl₃) δ 7.40 (d, J = 7.1 Hz, 1H), 7.24-7.21 (m, 3H), 5.40-5.38 (m, 1H), 3.15 (dt, J = 15.4, 7.5 Hz, 1H), 2.88-2.83 (m, 1H), 2.58-2.52 (m, 1H), 2.37-2.32 (m, 1H).

Cyclopropyl(phenyl)methyl chloroformate (20)

This compound was prepared from cyclopropyl(phenyl)methanol (3.0 g, 20.0 mmol) which was obtained by reduction of the corresponding aldehyde precursor using method 2. The crude residue was purified by silica gel chromatography (1% ethyl acetate/ petroleum ether) to yield the product as a

colorless oil in 92% yield.

¹**H NMR** (600 MHz, CDCl₃) δ7.31-7.29 (m, 3H), 7.23-7.22 (m, 1H), 4.29 (d, *J* = 9.2 Hz, 1H), 1.59-1.53 (m, 1H), 0.84-0.79 (m, 1 H), 0.58-0.55 (m, 1H), 0.44-0.40 (m, 1H).

3. Control experiments and optimization

Ph (CI +	OMe 1.0 equiv	Ni(acac) ₂ 10mol% <u>Zn 200mol%</u> 4 15mol% MgBr ₂ 100% DMA(1mL), 50°C,	Ph 	OMe 1a
	entry	variation from t	he condition1	yield for 1a ^a	
	1	r.t		87%	
	2	30 ℃		88%	
	3	40°C		96%	
4		MgCl ₂ (1.0 equ	iv)	64%	
	5	MgBr ₂ (2.0 qui	v)	89%	
	6	Mgl ₂ (1.0 equiv	()	56%	

Table S1. Variations from the conditions for the formation of 1a.^a

^a NMR yield using 2,5-dimethylfuran as the internal reference

Table S2. Variation of reaction conditions for the coupling of secondary chloroformate derivatives and aryl iodide.^a

\bigcirc		+ COOCH ₃	ViCl ₂ (DME) (10 mol%) 2n (200 mol%) 4 (15 mol%) √gBr ₂ (100 mol%) DMA (1 mL), 40 °C,12 h	Ph Ph Ra	OOCH ₃
				0a	
	Entry	Entry deviation from the standard conditions			
	1	none		91	
	2	Ni(acac) ₂ instead of NiCl ₂ (DME)	63	
	3	Nil ₂ instead of NiCl ₂ (DME)	I.	69	
	4	NiCl ₂ instead of NiCl ₂ (DME	Ξ)	73	
	5	L2 instead of L4		79	
	6	L6 instead of L4		44	
	7	w/o nickel catalyst		ND	
	8	w/o Zn		ND	
	9	w/o ligand		34	
	10	w/o MgBr ₂		58	
	11	chloroformate (1.2 equiv)		88	
	12	chloroformate (1.0 equiv)		79	
	13	DMA 0.5ml		84	
	14	DMA 2.0ml		59	
	15	4-chloroanisole instead of	4-iodoanisole	34	
	16	4-bromoanisole instead of	4-iodoanisole	66	

^a NMR yield using 2,5-dimethylfuran as the internal reference

4. Characterization Data of Compounds

To a flame-dried Schlenk tube equipped with a stir bar was loaded aryl iodide (0.3 mmol, 100 mol%), followed by addition of ligand 4,4'-dimethoxy-2,2'-bipyridine **L4** (0.045 mmol, 15 mol%), zinc powder (0.6 mmol, 200 mol%), and MgBr₂ (0.3 mmol, 100 mol%). The tube was moved into a dry glovebox, at which point Ni (II) catalyst (0.03 mmol, 10 mol%) was added. The tube was capped with a rubber septum and moved out of the glovebox. *N*, *N*-Dimethyl acetamide (1 mL) and benzyl chloroformate (0.45 mmol, 150 mol%) were added by syringes. The mixture was stirred for 12 h under N₂ atmosphere at 40 °C, then directly loaded onto a silica column without work-up. The residue in the reaction vessel was rinsed with small amount of petroleum ether. Flash column chromatography provided the product as a solid or oil.

1-Benzyl-4-methoxybenzene (1a)⁶

Yield 98%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.30-7.27 (m, 2H), 7.21 – 7.18 (m, 2H), 7.11 (d, *J* = 8.6 Hz, 1H), 6.84 (d, *J* = 8.6 Hz, 1H), 3.94 (s, 2H), 3.79(s, 3H). ¹³C NMR (151 MHz, CDCl₃,

ppm) δ 157.98, 141.60, 133.27, 129.88, 128.83, 128.44, 125.99, 113.89, 55.25, 41.04. HRMS (ESI) C₁₄H₁₄O for [+H] calcd. 199.1123; found 199.1118.

Methyl 4-benzylbenzoate (1b)⁷

Yield 93%. Colorless oil. ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.97 (d, *J*=8.31, 2H), 7.30-7.26 (m, 2H), 7.24- 7.16 (m, 3H), 4.03 (s, 2H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm): δ 167.20,

146.63, 140.22, 129.88, 129.04, 128.71, 128.17, 126.48, 52.12, 42.01. HRMS (ESI) $C_{15}H_{14}O_2$ for [+H] calcd. 227.1075; found 227.1068.

4-Benzylbenzaldehyde (1c)⁸

Yield 83%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 10.00 (s, 1H), δ 7.83 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 7.35-7.31 (m, 3H), 7.21 (d, J = 7.5 Hz, 1H), 4.08 (s, 2H). ¹³C NMR (151

MHz, CDCl₃) δ 192.02, 148.47, 139.78, 134.70, 130.49, 130.08, 129.59, 129.00, 128.72, 126.55, 42.12.

4-Benzylbenzonitrile (1d)⁹

Yield 89%. Light yellow solid. m. p. 45-46 °C. ¹H NMR (600 MHz, CDCl₃, ppm): δ 7.57 (d, *J*=8.36Hz, 2H), 7.55-7.29 (m, 3H), 7.29-7.23 (m,2H), 7.16-7.14 (m, 2H), 4.02 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ

146.80, 139.40, 132.33, 129.69, 129.01, 128.82, 126.72, 119.04, 110.07, 42.00. HMRS (ESI) $C_{14}H_{11}N$ for [+H] calcd. 194.0969; found 194.0967.

4-Benzyl-1,1'-biphenyl (1e)¹⁰

Yield 92%. Pale yellow solid. m.p. 84-85 °C. ¹H NMR (600 MHz, CDCl₃)
δ 7.55 (d, J = 7.3 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.31-7.27 (m, 3H), 7.24 (d, J = 8.0 Hz, 2H), 7.22-7.18 (m, 3H), 4.00

(s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 141.10, 140.35, 139.14, 129.43, 129.07, 128.82, 128.62, 127.31, 127.18, 127.11, 126.25, 41.69.

1-Benzyl-3-methoxybenzene (1f)¹¹

OMe Yield 94%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.29-7.26 (m, 2H), 7.23-7.19 (m, 4H), 7.08-7.07 (m, 1H), 6.90-6.87 (m, 2H), 4.00 (s, 2H), 3.80 (s,3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.80, 142.77,

140.99, 129.48, 128.99, 128.53, 126.17, 121.45, 114.87, 111.38, 55.17, 42.03. HMRS (ESI) $C_{14}H_{14}O$ for [+H] calcd. 194.1123; found 194.1119.

1-Benzyl-2-methoxybenzene (1g)¹²

Yield 88%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃, ppm) δ 7.27 (t, *J* = 7.6 Hz, 2H), 7.20-7.17 (m, 4H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.74-6.73 (m, 2H), 3.94 (s, 2H), 3.74 (s, 3H). ¹³C NMR (151 MHz, CDCl₃, ppm) δ 159.78, 142.76, 140.97, 129.46, 128.97, 128.51, 126.15, 121.44, 114.85, 111.37, 55.16, 42.02.

HMRS (ESI) C₁₄H₁₄O for [+H] calcd. 194.1123; found 194.1120.

1-Benzylnaphthalene (1h)¹³

Yield 95%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.97-7.95 (like d, 1H), 7.83-7.81 (m, 1H), δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.43-7.37 (m, 3H), 7.26-7.22 (m, 3H), 7.17-7.15 (m, 3H), 4.41 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 140.71, 136.70, 134.02, 132.22, 128.82, 128.74, 128.52, 127.41, 127.23,

126.13, 126.04, 125.63, 124.35, 39.11. HMRS (ESI) $C_{17}H_{14}$ for [+H] calcd. 219.1174; found 219.1124.

1-Benzylpyrene (1i)

Yield 93%. Pale yellow solid. m.p. 86-87 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 9.2 Hz, 1H), 8.13-8.08 (m, 3H), 8.01-7.99 (m, 3H), 7.96-7.93 (m, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.26-7.23 (m, 2H), 7.20-7.18 (m, 3H), 4.69 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 141.27, 134.55, 131.47, 130.95, 130.30, 129.26, 128.78, 128.60,

 $128.32, 127.58, 126.95, 126.16, 125.95, 125.25, 125.10, 124.96, 123.82, 39.36. \mbox{ HMRS (ESI) } C_{23} \mbox{H}_{16} \mbox{ for [+H] calcd. } 293.1330; \mbox{ found } 293.1324.$

5-Benzyl-1,2,3-trimethoxybenzene (1j)¹⁴

 OMe
 Yield 93%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.30 (m, 2H), 7.2-7.21 (m, 3H), 6.42 (s, 2H), 3.94 (s, 2H), 3.84 (s, 3H), 3.82 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 153.23, 140.92, 136.75, 136.36, 128.82, 128.51, 126.21, 105.99, 60.87, 56.07, 42.23. HMRS (ESI)

 $C_{16}H_{18}O_3$ for [+H] calcd. 259.1344; found 259.1330.

2-Benzyl-9H-fluorene (1k)¹⁵

Yield 96%. White solid. m.p. 104-105 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.48 (d, *J* = 7.4 Hz, 1H), 7.33-7.32 (m. 2H), 7.29-7.27 (m, 2H), 7.26-7.23 (m,

1H), 7.22-7.18 (m, 4H), 4.03 (s, 2H), 3.81 (s, 2H). 13 C NMR (151 MHz, CDCl₃) δ 143.74, 143.27, 141.69, 141.49, 139.90, 129.02, 128.57, 127.70, 126.76, 126.46, 126.15, 125.69, 125.04, 119.86, 119.75, 42.16, 36.90. HMRS (ESI) C₂₀H₁₆ for [+H] calcd. 257.1330; found 293.1325.

6-Benzyl-2,3-dihydro-1H-inden-1-one (11)

Yield 60%. Brick-red solid. m.p. 93-94 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.28 (s, 1H), 7.25-7.19 (m, 4H), 4.06 (s, 2H), 3.09-3.07 (t, 2H), 2.68-2.66 (t, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 206.61, 155.85, 148.73, 140.02, 135.42, 128.99,

128.70, 128.47, 126.91, 126.50, 123.81, 42.30, 36.43, 25.74. HMRS (ESI) $C_{16}H_{14}O$ for [+H] calcd. 223.1123; found 223.1118.

5-Benzylbenzothiophene (1m)¹⁶

Yield 93%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.3 Hz, 1H), 7.61 (s, 1H), 7.38 (d, J = 5.4 Hz, 1H), 7.28-7.26 (m, 2H), 7.23 (d, J = 5.4 Hz, 1H), 7.21-7.16 (m, 4H), 4.08 (s, 2H). ¹³C

NMR (151 MHz, CDCl₃) δ 141.37, 140.05, 137.68, 137.35, 129.02, 128.56, 126.66, 126.18, 125.83, 123.76, 123.67, 122.47, 41.90.

5-Benzylbenzofuran (1n)¹⁷

Yield 92%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J*=2.0, 1H), 7.41-7.38 (m, 2H), 7.2-7.26 (m, 2H), 7.21-7.17 (m, 3H), 7.12-7.11 (m, 1H), 6.67 (d, *J* = 1.2 Hz, 1H), 4.06 (s, 2H). ¹³C NMR (151

MHz, CDCl3) δ 153.75, 145.22, 141.70, 135.69, 128.94, 128.51, 127.66, 126.09, 125.49, 121.17, 111.24, 106.52, 41.84. HMRS (ESI) C₁₅H₁₂O for [+H] calcd. 209.0966; found 209.0963.

1, 2, 3-Trimethoxy-5-(4-methoxybenzyl) benzene (2a)¹⁸

Yield 87%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.13-7.11 (m, 2H), 6.86-6.84 (m, 2H), 6.39 (s, 2H), 3.87 (s, 2H), 3.82 (s, 3H), 3.81 (s, 6H), 3.79 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.10, 153.25, 144.98, 137.34, 136.26, 133.06, 129.84, 113.96,

105.82, 60.94, 56.12, 55.33, 41.39. HMRS (ESI) $C_{17}H_{20}O_4$ for [+H] calcd. 289.1440; found 289.1433.

Methyl 4-(4-cyanobenzyl) benzoate (3a)¹⁹

Yield 95%. White solid. m.p. 128-129 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 4.08 (s, 2H), 3.90 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.84, 145.68, 144.58, 132.45, 130.10, 129.69, 129.00, 128.72, 118.83, 110.44, 52.12, 41.88. HMRS (ESI) $C_{16}H_{13}NO_2$ for [+H] calcd. 252.1042; found 252.1020.

4-(4-Methoxybenzyl) benzonitrile (4a)¹⁹

Yield 94.5%. Light yellow solid. m. p. 48-49 °C. NMR (600 MHz) ¹H δ 7.57-7.55 (m, 2H), 7.28- 7.26 (m, 2H), 7.09-7.07
 CN (m, 2H), 6.86-6.84 (m, 2H), 3.97 (s, 2H), 3.79 (s, 3H). NMR

(151 MHz) 13 C δ 158.43, 147.34, 132.37, 131.48, 130.04, 129.61, 119.15, 114.23, 109.98, 55.36, 41.17. HMRS (ESI) C $_{15}$ H $_{13}$ NO for [+H] calcd. 224.1075; found 224.1072.

4-(4-(Tert-butyl) benzyl) benzonitrile (5a)¹⁵

MeO

Yield 86%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 4.01 (s, 2H), 1.32 (s, 9H). ¹³C

NMR (151 MHz, CDCl₃) δ 149.59, 146.98, 136.30, 132.29, 129.69, 128.60, 125.68, 119.07, 109.97, 41.50, 34.45, 31.38. HMRS (ESI) C₁₈H₁₉N for [+H] calcd. 250.1595; found 250.1590.

4-([1,1'-Biphenyl]-4-ylmethyl) benzonitrile (6a)²⁰

Yield 96%. White solid. m.p. 126-127 °C. ¹H NMR (600 MHz, CDCl3) δ 7.60-7.56 (m, 4H), δ 7.54 (d, J = 8.1 Hz, 2H), 7.43 (t, J = 7.7 Hz, 1H), 7.35-7.32 (m, 3H), 7.23 (d, J = 8.1 Hz, 2H), 4.07 (s,

2H). ¹³C NMR (151 MHz, CDCl₃) δ 146.64, 140.69, 139.69, 138.40, 132.38, 129.69, 129.38, 128.80, 127.50, 127.32, 127.02, 118.99, 110.15, 41.63. HMRS (ESI) C₂₀H₁₅N for [+H] calcd. 270.1282; found 270.1277.

4-(4-Fluorobenzyl) benzonitrile (7a)²⁰

Yield 95%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.9 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 7.12-7.10 (m, 2H), 7.00-6.97 (m, 2H), 4.00 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 162.52,

160.89, 146.53, 135.04, 132.38, 130.46, 130.41, 129.57, 118.93, 115.68, 115.54, 110.22, 41.10. HMRS (ESI) $C_{14}H_{10}FN$ for [+H] calcd. 212.0875; found 212.0871.

Methyl 4-(1-phenylethyl) benzoate (8a)⁶

Yield 86%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 2H), 7.31-7.30 (m, 2H), 7.22-7.20 (m, 2H), 4.22 (q, J = 7.2 Hz, 1H), 3.90 (s, 3H), 1.67 (d, J = 7.3Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.07, 151.75,

145.46, 129.78, 128.54, 128.05, 127.70, 127.62, 126.36, 52.00, 44.85, 21.61. HMRS (ESI) $C_{16}H_{16}O_2$ for [+H] calcd. 241.1228; found 241.1224.

Methyl 3-(1-phenylethyl) benzoate (8b)²¹

Yield 65%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (s, COOCH₃ 1H), δ 7.88 (d, J = 7.6 Hz, 1H), 7.41-7.40 (m, 1H), δ 7.35 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 7.4 Hz, 2H), 7.23-7.19 (m, 3H), 4.22 (q, J = 7.1 Hz, 1H), 3.91 (s, 3H), 1.68 (d, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.25, 146.74, 145.76, 132.39, 130.26, 128.66, 128.51, 128.47, 127.58, 127.42, 126.26, 52.09, 44.67, 21.76. HMRS (ESI) C₁₆H₁₆O₂ for [+H] calcd. 241.1228; found 241.1224.

1-Methoxy-4-(1-phenylethyl) benzene (8d)²²

Yield 82%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.31-7.28 (m, 2H), 7.23-7.18 (m, 3H), 7.17-7.15 (m, 2H), 6.86-6.84 (m, 2H), δ 4.13 (q, *J* = 7.2 Hz, 1H), 3.79 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.86, 146.80, 138.58, 128.54,

128.36, 127.55, 125.96, 113.75, 55.25, 43.96, 22.08.

4-(1-Phenylethyl) benzaldehyde (8e)⁶

Yield 62%. White solid. m.p. 125-126 °C. ¹H NMR (600 MHz, CDCl₃) δ 9.97 (s, 1H), δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.33-7.30 (m, 2H), 7.23-7.21 (m, 2H), 4.24 (q, *J* = 7.2 Hz, 1H), 1.68 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

191.96, 153.65, 145.09, 134.65, 130.00, 128.61, 128.33, 127.62, 126.50, 45.04, 21.54. HMRS (ESI) $C_{15}H_{14}O$ for [+H] calcd. 211.1123; found 211.1119.

2-(1-Phenylethyl)-9H-fluorene (8f)

1H), 3.83 (s, 2H), 1.68 (d, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 146.62, 145.26, 143.56, 143.29, 141.66, 139.80, 128.43, 127.67, 126.70, 126.38, 126.05, 124.98, 124.30, 119.72, 44.93, 36.92, 22.10. HMRS (ESI) C₂₁H₁₈ for [+H] calcd. 271.1487; found 271.1485.

5-(1-Phenylethyl) benzofuran (8g)

Yield 60%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 2.0 Hz, 1H), 7.44 (1H), 7.40-7.38 (m, 1H), 7.29-7.23 (m, 4H), 7.18-7.13 (m, 2H), 6.69 (d, J = 1.2 Hz, 1H), 4.25 (q, J = 7.2 Hz, 1H), 4.25 (q, J = 7.2

CDCl₃) δ 153.61, 146.80, 145.19, 141.11, 128.39, 127.69, 127.46, 126.01, 124.45, 119.63, 111.13, 106.62, 44.67, 22.36.

Methyl 4-(1-(4-cyanophenyl) ethyl) benzoate (9a)

Yield 76%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 3.90 (s, 3H), 4.25 (q, *J* = 7.1 Hz, 1H), 1.66 (d, *J* = 7.2

Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.81, 150.92, 149.88, 132.40, 130.02, 128.64, 128.43, 127.64, 118.85, 110.32, 52.10, 44.89, 21.22. HMRS (ESI) C₁₇H₁₅NO₂ for [+H] calcd. 266.1181; found 266.1176.

Dimethyl 4,4'-(ethane-1,1-diyl) dibenzoate (10a)

Yield 68%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.4 Hz, 4H), 7.27 –7.25 (m, 4H), 4.24 (q, *J* = 7.2 Hz, 1H), 1.66 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.93,

150.71, 129.89, 128.35, 127.66, 52.04, 44.84, 21.36.

Methyl 4-(1-(4-(trifluoromethyl) phenyl) ethyl) benzoate (11a)

Yield 54%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 4.26 (q, *J* = 7.2 Hz, 1H), 3.90 (s, 3H), 1.67 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151

MHz, CDCl₃) δ 166.91, 150.49, 149.49, 129.93, 128.45, 127.95, 127.64, 125.50, 125.47, 52.06, 44.68, 21.40. HMRS (ESI) C₁₇H₁₅F₃O₂ for [+H] calcd. 309.1102; found.

Methyl 4-(1-(4-chlorophenyl) ethyl) benzoate (12a)⁶

Yield 57%. Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 4H), 7.12 (d, *J* = 8.4 Hz, 2H), 4.17 (q, *J* = 7.2 Hz, 1H), 3.89 (s, 3h), 1.62 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.96,

151.10, 143.94, 132.12, 129.86, 128.97, 128.63, 128.26, 127.59, 52.04, 44.22, 21.55. HMRS (ESI) $C_{16}H_{15}ClO_2$ for [+H] calcd. 275.0839; found 275.0829.

Methyl 4-(1-(p-tolyl) ethyl) benzoate (13a)

Yield 72%. Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 7.12-7.09 (m, 4H), 4.17 (q, *J* = 7.2 Hz, 1H), 3.90 (s, 3H), 2.32 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

167.10, 152.01, 142.49, 135.88, 129.76, 129.21, 127.95, 127.63, 127.47, 51.99, 44.45, 21.67, 20.99. HMRS (ESI) C₁₇H₁₈O₂ for [+H] calcd. 255.1385; found. 255.1378.

Methyl 4-(1-(m-tolyl) ethyl) benzoate (14a)⁶

Yield 60%. Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.20-7.17 (m, 1H), 7.03-7.01 (m, 3H), 4.17 (q, *J* = 7.2 Hz, 1H), 3.90 (s, 3H), 2.32 (s, 3H), 1.65 (d, *J* = 7.2 Hz, 3H). ¹³C NMR

 $(151 \text{ MHz}, \text{CDCl}_3) \ \delta \ 167.11, \ 151.86, \ 145.41, \ 138.09, \ 129.75, \ 128.41, \ 127.97, \ 127.67, \ 127.10, \\ 124.60, \ 51.99, \ 44.79, \ 21.61, \ 21.49. \ \text{HMRS} \ (\text{ESI}) \ \text{C}_{17}\text{H}_{18}\text{O}_2 \ \text{for} \ [+\text{H}] \ \text{calcd}. \ 255.1385; \ \text{found}. \\ 255.1378.$

Methyl 4-(1-(2-methoxyphenyl) ethyl) benzoate (15a)

Yield 40%. Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 7.22-7.16 (m, 2H), 6.93 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 4.59 (q, J = 7.2 Hz, 1H), 3.89 (s, 3H), 3.74 (s, 3H), 1.59 (d, J = 7.3 Hz, 3H). ¹³C

NMR (151 MHz, CDCl₃) δ 167.23, 156.84, 152.12, 133.88, 129.49, 127.69, 127.54, 127.44, 120.57, 110.65, 55.37, 51.94, 37.76, 20.60. HMRS (ESI) C₁₇H₁₈O₃ for [+H] calcd. 271.1334; found. 271.1332

1-(*Tert*-butyl)-4-(1-(4-fluorophenyl) ethyl) benzene (16a)

Yield 68%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.31 (m, 2H), 7.20-7.18 (m, 2H), 7.14-7.13 (m, 2H), 6.99-6.96 (m, 2H), δ 4.12 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.3 Hz, 3H), 1.31 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 160.45, 148.90, 143.06,

129.02, 128.97, 127.09, 125.31, 115.10, 114.97, 43.60, 34.37, 31.40, 22.08.

4-(1-(4-(*Tert*-butyl) phenyl) ethyl) benzaldehyde (16b)

Yield 51%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 9.98, 7.82-7.81 (m, 2H), 7.42-7.40 (m, 2H), 7.34-7.33 (m, 2H), 7.16-7.15 (m, 2H), 4.22 (q, *J* = 7.2 Hz, 1H), 1.68 (d, *J* = 7.2 Hz, 3H), 1.32 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 191.99,

153.94, 149.29, 141.97, 134.61, 130.00, 128.35, 127.20, 125.48, 44.61, 34.41, 31.39, 21.58. HMRS (ESI) $C_{19}H_{22}O$ for [+H] calcd. 267.1749; found 267.1742.

4-(1-(4-Fluorophenyl) ethyl) benzaldehyde (17a)

Yield 70%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 9.97 (s, 1H), δ 7.81 (d, J = 7.9 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.18-7.15 (m, 2H), 7.00-6.97 (m, 2H), 4.21 (q, J = 7.1 Hz, 1H), 1.69 – 1.61 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 191.89, 160.67,

153.37, 140.77, 134.74, 130.05, 129.00, 128.22, 115.30, 44.28, 21.69. HMRS (ESI) $C_{15}H_{13}FO$ for [+H] calcd. 229.1028; found 229.1022.

4-(1-Phenylpentyl) benzaldehyde (18a)

Yield 54%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 9.96 (s, 1H), δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.32-7.29 (m, 2H), 7.25-7.19 (m, 3H), 3.98 (t, *J* = 7.8 Hz, 1H), 2.11-2.06 (m, 2H), 1.38-1.35 (m, 2H), 1.29-1.24 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C

NMR (151 MHz, CDCl₃) δ 191.95, 152.72, 144.08, 134.65, 130.02, 128.62, 128.57, 127.87, 126.48, 51.60, 35.14, 30.15, 22.67, 13.98. HMRS (ESI) C₁₈H₂₀O for [+H] calcd. 253.1592; found 253.1586.

Methyl 4-(1-phenylpentyl) benzoate (18b)

Yield 52%. Yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H), 7.33-7.31 (m, 2H), 7.29-7.28 (m, 1H), 7.24-7.23 (m, 2H), 7.20-7.18 (m, 1H), 3.95 (t, J = 7.8 Hz, 1H), 3.89 (s, 3H), 2.09-2.05 (m, 2H), 1.37-1.34 (m, 2H), 1.26-1.23 (m,

2H), 0.88 (t, J = 7.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 167.08, 150.80, 144.44, 129.79, 128.54, 128.02, 127.94, 127.86, 126.33, 51.98, 51.40, 35.20, 30.16, 22.67, 13.98. HMRS (ESI) C₁₉H₂₂O₂ for [+H] calcd. 283.1698; found 283.1690.

Methyl 4-(2,3-dihydro-1H-inden-1-yl) benzoate (19a)⁶

Yield 78%. Colorless solid. m.p. 66-67 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.5 Hz, 1H), 4.39 (t, *J* = 8.3 Hz, 1H), 3.90 (s,

3H), 3.08-3.04 (m, 1H), 3.00-2.94 (m, 1H), 2.62, -2.57 (m, 1H), 2.08-2.02 (m, 1H). 13 C NMR (151 MHz, CDCl₃) δ 167.12, 150.98, 146.06, 144.35, 129.88, 128.32, 128.15, 126.86, 126.53, 124.87, 124.51, 52.03, 51.64, 36.39, 31.87. HMRS (ESI) C₁₇H₁₆O₂ for [+H] calcd. 252.1228; found 253.1222.

Methyl 4-(4-phenylbut-3-en-1-yl) benzoate (21)

COOCH₃ Yield 70%. Pale yellow solid. m.p. 57-58 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 2H) 7.33-7.29 (m, 6H), 7.22-7.20 (m, 1H), 6.41 (d, J = 15.8 Hz, 0H), 6.25-6.20 (m,

1H), 3.91 (s, 3H), 2.85 (t, J = 7.7 Hz, 1H), 2.56 (dd, J = 14.7, 7.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 167.16, 147.23, 137.53, 130.82, 129.75, 129.28, 128.56, 128.53, 127.96, 127.09, 126.02, 52.00, 35.90, 34.44. HMRS (ESI) C₁₈H₁₈O₂ for [+H] calcd. 267.1385; found. 267.1379.

5. Cyclic Voltammetry Measurements

Cyclic voltammetric studies were conducted according to a literature procedure using a Pine Research Instruments Wavedriver potentiostat,²³ a glassy carbon disk working electrode, a glassy carbon rod counter electrode, and a Ag/Ag+ reference electrode (Vycor tip). Samples were prepared with a substrate concentration of 0.01 M in a 0.1 M of tetrabutylammonium tetrafluoroborate in acetonitrile electrolyte solution. Data was collected with a sweep rate of 100 mV/s.

Part II. NMR Data for New Compounds

¹H NMR Spectrum of Compound 1a

¹³C NMR Spectrum of Compound 1a

¹H NMR Spectrum of Compound 1b

¹³C NMR Spectrum of Compound 1b

¹H NMR Spectrum of Compound 1c

¹³C NMR Spectrum of Compound 1c

¹H NMR Spectrum of Compound 1d

¹³C NMR Spectrum of Compound 1d

¹³C NMR Spectrum of Compound 1e

¹H NMR Spectrum of Compound 1f

¹³C NMR Spectrum of Compound 1f

¹H NMR Spectrum of Compound 1g

¹³C NMR Spectrum of Compound 1g

¹H NMR Spectrum of Compound 1h

¹³C NMR Spectrum of Compound 1h

¹H NMR Spectrum of Compound 1i

¹³C NMR Spectrum of Compound 1i

¹H NMR Spectrum of Compound 1j

¹³C NMR Spectrum of Compound 1j

¹H NMR Spectrum of Compound 1k

¹³C NMR Spectrum of Compound 1k

¹H NMR Spectrum of Compound 11

¹³C NMR Spectrum of Compound 11

¹H NMR Spectrum of Compound 1m

¹³C NMR Spectrum of Compound 1m

¹H NMR Spectrum of Compound 1n

¹³C NMR Spectrum of Compound 1n

¹H NMR Spectrum of Compound 2a

¹³C NMR Spectrum of Compound 2a

¹H NMR Spectrum of Compound 3a

¹³C NMR Spectrum of Compound 3a

¹H NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 4a

¹H NMR Spectrum of Compound 5a

¹³C NMR Spectrum of Compound 5a

¹H NMR Spectrum of Compound 6a

¹³C NMR Spectrum of Compound 6a

¹H NMR Spectrum of Compound 7a

¹³C NMR Spectrum of Compound 12b

¹H NMR Spectrum of Compound 8a

¹³C NMR Spectrum of Compound 8a

¹³C NMR Spectrum of Compound 8b

¹H NMR Spectrum of Compound 8d

¹³C NMR Spectrum of Compound 8d

¹H NMR Spectrum of Compound 8e

¹³C NMR Spectrum of Compound 8e

¹³C NMR Spectrum of Compound 8f

¹H NMR Spectrum of Compound 8g

¹³C NMR Spectrum of Compound 8g

¹H NMR Spectrum of Compound 9a

¹³C NMR Spectrum of Compound 9a

¹H NMR Spectrum of Compound 10a

¹³C NMR Spectrum of Compound 10a

¹H NMR Spectrum of Compound 11a

¹³C NMR Spectrum of Compound 11a

¹H NMR Spectrum of Compound 12a

¹³C NMR Spectrum of Compound 12a

¹H NMR Spectrum of Compound 13a

¹³C NMR Spectrum of Compound 13a

¹H NMR Spectrum of Compound 14a

¹³C NMR Spectrum of Compound 14a

¹H NMR Spectrum of Compound 15a

¹³C NMR Spectrum of Compound 15a

¹H NMR Spectrum of Compound 16a

¹³C NMR Spectrum of Compound 16a

¹H NMR Spectrum of Compound 16b

¹³C NMR Spectrum of Compound 16b

¹H NMR Spectrum of Compound 17a

¹³C NMR Spectrum of Compound 17a

¹H NMR Spectrum of Compound 18a

¹³C NMR Spectrum of Compound 18a

¹H NMR Spectrum of Compound 18b

¹³C NMR Spectrum of Compound 18b

¹H NMR Spectrum of Compound 19a

¹³C NMR Spectrum of Compound 19a

¹H NMR Spectrum of Compound 21

¹³C NMR Spectrum of Compound 21

Reference

- 1. H. Lebel, H. Piras and M. Borduy, ACS Catal. 2016, 6, 1109-1112.
- 2. C. G. Overberger and M. D. Shalati, Eur. Polym. J. 1983, 19, 1055-1065.
- 3. J. M. Scott, C. Baccei and G. Bain, Bioorg. Med. Chem. Lett. 2011, 21, 6608-6612.
- 4. A. Klein, A. Kaiser and W. Wielandt, Inorg. Chem. 2008, 47, 11324-11333.
- 5. J. Liu, Q. Ren, Q. Zhang and H. Gong, Angew. Chem., Chem. Int. 2016, 55, 15544-15548.
- 6. Q. Zhang, X. Wang, Q. Qian and H. Gong, Synthesis 2016, 48, 2829-2836.
- 7. C. C. Le, M. K. Wismer and Z. C. Shi, ACS Cent. Sci. 2017, 3, 647-653.
- 8. J. Luo and J. Zhang. ACS Catal. 2016, 6, 873-877.
- 9. Z. Liu, N. Dong and M. Xu, J. Org. Chem. 2013, 78, 7436-7444.
- 10. J. R. Schmink and N. E. Leadbeater, Org. Lett. 2009, 11, 2575-2578.
- 11. R. J. Procter, J. J. Dunsford and P. J. Rushworth, Chem. Eur. J. 2017, 23, 15889-15893.
- 12. Z. Y. Wang, G. Q. Chen and L. X. Shao, J. Org. Chem. 2012, 77, 6608-6614.
- 13. J. Zhang, G. Lu and J. Xu, Org. Lett. 2016, 18, 2860-2863.
- 14. L. Lv, D. Zhu and J. Tang, ACS Catal. 2018, 8, 4622-4627.
- 15. K. Nakajima, S. Nojima and Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 14106-14110.
- 16. Y. Xia, F. Hu and Y. Xia, *Synthesis* 2017, **49**, 1073-1086.
- 17 A. K. Saha, X. Yu and J. Lin, ACS Med. Chem. Lett. 2010, 2, 97-101.
- 18. J. Tang, L. Lv and X. J. Dai, Chem. Commum. 2018, 54, 1750-1753.
- 19. J. C. Tellis, D. N, Primer and G. A. Molander, Science 2014, 125,3647.
- 20. T. Wang, S. Yang and S. Xu, RSC Adv. 2017, 7, 15805-15808.
- 21. X. Wang, A. Guram and S. Caille, Org. Lett. 2011, 13, 1881-1883.
- 22. J. Chen, C. Chen and C. Ji, Org. Lett. 2016, 18, 1594-1597.
- 23. G. L. Lackner, K. W. Quasdorf, G. Pratsch and L. E. Overman, J. Org. Chem. 2015, 80, 6012–6024.