Synthesis and *In Vitro* Evaluation of Fluorine-18 Benzimidazole Sulfones as CB2 PET-Radioligands

Annukka Kallinen, Rochelle Boyd, Samuel Lane, Rajiv Bhalla, Karine Mardon, Damion H. R. Stimson, Eryn L. Werry, Roger Fulton, Mark Connor; Michael, Kassiou

Supporting information

Chemistry

General

All reactions were performed under an atmosphere of nitrogen unless otherwise specified. Anhydrous N,N-dimethylformamide, dichloromethane, tetrahydrofuran and toluene were obtained from a PureSolv MD 7 solvent purification system (Innovative Technology, Inc.). All other solvents and reagents were used as received from commercial sources. Analytical thin-layer chromatography (TLC) was performed using Merck aluminium backed silica gel 60 F_{254} (0.2 mm) plates that were visualised with shortwave (254 nm) and/or longwave (365 nm) ultraviolet light. Products were visualised with potassium permanganate, vanillin, cerium molybdate, also bromocresol green or ninhydrin stains. Flash column chromatography was performed using Grace Davisil 60 (230-400 mesh) silica gel, with the eluent mixture reported as the volume:volume ratio, unless otherwise stated. Melting points were measured in open capillaries using a Stanford Research System Optimelt Automated melting point apparatus and are uncorrected. Infrared absorption spectra were recorded on a Bruker ALPHA FT-IR spectrometer as a solid or a thin film from ethanol, and the data are reported as vibrational frequencies (cm⁻¹). Nuclear magnetic resonance spectra were recorded at 300 K using a Bruker AVANCE DRX300, 400 or 500 (300 MHz, 400 MHz, 500 MHz) spectrometer. ¹H chemical shifts are expressed as parts per million (ppm) with residual chloroform (δ 7.26) and dimethyl sulfoxide (δ 2.50) as reference and are reported as chemical shift (δ); relative integral; multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, t= triplet, q = quartet, m = multiplet); coupling constants (J) reported in Hz. 13 C chemical shifts

are expressed as parts per million (ppm) with residual chloroform (δ 77.16) and dimethyl sulfoxide (δ 39.52) as reference and reported as chemical shift (δ); multiplicity, coupling constants (J) reported in Hz. Proton coupled or decoupled ¹⁹F chemical shifts are reported as parts per million (ppm). Low-resolution mass spectra (LRMS) were recorded using electrospray ionisation (ESI) recorded on a Bruker AmaZon SL ion trap spectrometer. High-resolution mass spectrometry was performed on a Bruker Apex Qe 7T Fourier Transform Ion Cyclotron Resonance mass spectrometer equipped with an Apollo II ESI/MALDI dual source. Samples were run with syringe infusion at 150 µL/hr on a Cole Palmer syringe pump into the electrospray ionisation (ESI) source. High performance liquid chromatography (HPLC) analysis of organic purity was conducted on a Waters Alliance 2695 instrument using a SunFireTM C18 column (5 µm, 2.1 x 150 mm) or an X-BridgeTM C18 column (5 µm, 2.1 x 150 mm) and detected using a Waters 2996 photodiode array (PDA) detector set at 254 nm. Separation was achieved using water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.2 mL/min and a gradient of 0 % B to 100 % B over 30 minutes. HPLC data is reported as percentage purity and retention time (RT) in minutes.

N-(5-((4-methoxybenzyl)thio)-2-(pentylamino)phenyl)pivalamide (6b)

Was prepared according to the general method *iv* from *N*-(2-amino-5-((4-methoxybenzyl)thio)phenyl)pivalamide **5** (0.90 g, 2.6 mmol) and n-pentanal (0.28 mL, 2.6 mmol). Purification on basic alumina using Hex \rightarrow EtOAc:Hex (1:10) \rightarrow (1:5) \rightarrow (1:2) gradient, which gave the title compound as an orange oil (0.76 g, 55%). ¹H NMR (200 MHz): δ 0.91 (3H, t, *J* = 5 Hz), 1.33 (9H, s), 1.37 (4H, m), 1.62 (2H, m), 3.04 (2H, t, *J* = 7.0 Hz), 3.77 (3H, s), 3.92 (2H, s), 6.65 (1H, d, *J* = 8.4 Hz), 6.79 (2H, d, *J* = 8.8 Hz), 7.08 (1H, m), 7.11 (2H, d, *J* = 8.6 Hz), 7.23 (1H, s), 7.26 (1H, bs); ¹³C NMR (75 MHz): δ 14.2, 22.6, 27.9 (3xC), 29.3, 29.4, 39.6, 41.1, 44.5, 55.4, 113.9 (2xC), 114.2, 123.4, 124.9, 130.0, 130.3 (2xC), 130.5, 132.2, 142.4, 158.9, 177.5; HRMS (ESI-TOF) *m/z*: calculated for C₂₄H₃₄N₂O₂S [M+Na]⁺ 437.2233; found 437.2234.

N-(2-((cyclobutylmethyl)amino)-5-((4-methoxybenzyl)thio)phenyl)pivalamide (6c)

Was prepared according to the general method *iv* from *N*-(2-amino-5-((4-methoxybenzyl)thio)phenyl)pivalamide **5** (0.40 g, 1.17 mmol) and cyclobutane carbaldehyde (0.11 g, 1.29 mmol). Purification on basic alumina EtOAc:Hex (1:5) \rightarrow (1:4) gave the title product as dark orange solid (0.40 g, 82%).

m.p. 105.8 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.32 (9H, s), 1.71-1.84 (2H, m), 1-84-1.99 (2H, m), 2.02-2.14 (2H, m), 2.58 (1H, m, *J* = 7.5 Hz), 3.06 (2H, d, *J* = 7.2 Hz), 3.77 (3H, s), 3.92 (2H, s), 6.64 (1H, d, *J* = 8.4 Hz), 6.79 (2H, d, *J* = 8.7 Hz), 7.10 (2H, d, *J* = 8.7 Hz), 7.10 (1H, m), 7.23 (1H, s), 7.24 (1H, bs); ¹³C NMR (75 MHz, CDCl₃): δ 18.7, 26.1 (2xC), 27.8 (3xC), 35.2, 39.5, 41.1, 49.9, 55.3, 113.8 (3xC), 123.0, 124.7, 130.0, 130.2 (2xC), 130.4, 132.2, 142.7, 158.7, 177.3; HRMS (ESI-TOF) *m/z*: calculated for C₂₄H₃₂N₂O₂S [M+H]⁺ 435.2077, found 435.2077.

2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1-pentyl-1H-benzo[d]imidazole (7b)

Was prepared from *N*-(5-((4-methoxybenzyl)thio)-2-(pentylamino)phenyl)pivalamide (0.74 g, 1.78 mmol) and *p*-TsOH monohydrate (0.30 g, 0.9 equiv.) according to general method ν . The crude product was purified on silica chromatography (EtOAc:Hex (1:6) \rightarrow (1:4) \rightarrow (1:2) to give the title product as a light orange solid (0.56 g, 79%).

m.p. 96.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 0.95 (3H, t, *J* = 6.6 Hz), 1.43 (4H, m), 1.54 (9H, s), 1.84 (2H, m), 3.77 (3H, s), 4.05 (2H, s), 4.23 (2H, m), 6.78 (2H, d, *J* = 7.8 Hz), 7.2 (4H, m), 7.83 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.5, 29.3, 29.5, 29.8 (3xC), 34.3, 40.7, 45.9, 55.4, 109.7, 113.9, 123.0, 126.4, 128.6, 130.07 (2xC), 130.13, 135.9, 142.5, 158.7, 161.3; HRMS (ESI-TOF) *m/z*: calculated for C₂₄H₃₂N₂OS [M+Na]⁺ 419.2128, found 419.2129.

2-(tert-butyl)-1-(cyclobutylmethyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazole (7c)

Was prepared from N-(2-((cyclobutylmethyl)amino)-5-((4methoxybenzyl)thio)phenyl)pivalamide (0.34 g, 0.83 mmol) using p-TsOH monohydrate (0.18 g, 0.96 mmol) according to the general method v. Purification on silica gel using EtOAc:Hex (1:6) afforded the product as light orange solid (0.245 g, 75%). m.p. 91.1 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.62 (9H, s), 1.88 - 2.05 (4H, m), 2.09 - 2.20 (2H, m), 2.76 - 2.91 (1H, m), 3.85 (3H, s), 4.13 (2H, s), 4.37 (2H, d, *J* = 6.6 Hz), 6.86 (2H, d, *J* = 8.4 Hz), 7.20 - 7.34 (4H, m), 7.88 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 18.5, 28.2 (2xC), 30.2 (3xC), 34.4, 37.4, 40.7, 50.9, 55.4, 110.2, 113.9 (2xC), 122.8, 126.2, 128.3, 130.1 (2xC), 130.2, 136.2, 142.4, 158.7, 161.4; HRMS (ESI-TOF) *m/z*: calculated for C₂₄H₃₀N₂OS [M+H]⁺ 395.2152, found 395.2151.

N-(5-bromo-2-((3-methoxypropyl)amino)phenyl)pivalamide (12d)

General method xi: 2,5-dibromonitrobenzene (6.00 g, 90%, 19.2 mmol) was dissolved in ethanol (80 mL) in a pressure flask and and 3-methoxypropan-1-amine (2.20 mL, 21.1 mmol) and di-isopropylethylamine (6.6 mL, 38 mmol) were added. The flask was sealed and the solution was heated to 100 °C. After 48 h, reaction mixture was cooled down to room temperature and solution was concentrated. Residue was dissolved in EtOAc (60 mL) and washed with sat. NaHCO₃ (30 mL) and brine (30 mL). Aqueous phase was extracted with EtOAc (2 x 10 mL), and the combined organic phase was dried over anhydrous MgSO₄. Concentrated crude product was purified on silica gel chromatography using EtOAc:Hex gradient (1:8 \rightarrow 1:6 \rightarrow 1:4), which gave 4-bromo-*N*-(3-methoxypropyl)-2-nitroaniline as orange oil (4.35 g, 78%).

¹H NMR (300 MHz, CDCl₃): δ 1.97 (2H, m, *J* = 6.6 Hz), 3.37 (3H, s), 3.40 (2H, m), 3.53 (2H, t, *J* = 5.7 Hz), 6.77 (1H, d, *J* = 9.3 Hz), 7.47 (1H, dd, *J*₁ = 9.3 Hz, *J*₂ = 2.4 Hz), 8.25 (1H, bs), 8.29 (1H, d, *J* = 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.0, 41.2, 58.9, 70.5, 106.2, 115.6, 129.0, 132.3, 138.9, 144.6; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₁₀H₁₃N₂O₃Br 311.0002 and 312.9981, found 311.0005 and 312.9985.

4-bromo-*N*-(3-methoxypropyl)-2-nitroaniline (3.50 g, 12.2 mmol) was treated with iron powder (6.8 g, 10 equiv) according to the general method *iii*. Purification on silica gel using EtOAc:Hex gradient (1:2 \rightarrow 1:1) gave 4-bromo-*N1*-(3methoxypropyl)benzene-1,2-diamine as light brown solid (2.59 g, 82%).

¹H NMR (300 MHz, CDCl₃): δ 1.92 (2H, m, *J* = 6 Hz), 3.18 (2H, t, *J* = 6.3 Hz), 3.36 (s, 3H), 3.43 (2H, bs), 3.53 (2H, t, *J* = 5.7 Hz), 6.50 (1H, d, *J* = 8.4 Hz), 6.82 (1H, d, *J*

= 2.4 Hz), 6.89 (1H, dd, J_1 = 8.4 Hz, J_2 = 2.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.5, 42.5, 58.9, 71.7, 110.4, 113.0, 118.8, 123.0, 135.9, 137.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₀H₁₅BrN₂O 281.0260 and 283.0240, found 281.0264 and 283.0244.

4-bromo-*N1*-(3-methoxypropyl)benzene-1,2-diamine (2.50 g, 9.69 mmol) was reacted with pivaloyl chloride (1.19 mL, 9.70 mmol) according to the general method ii. Purification on silica gel using EtOAc:Hex (1:6 \rightarrow 1:5 \rightarrow 1:2) gave the title product (12d) as white solid (2.26 g, 68%).

m.p. 96 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.33 (9H, s), 1.90 (2H, pentet, J = 6 Hz), 3.15 (2H, t, J = 6 Hz), 3.33 (3H, s), 3.52 (2H, t, J = 5.7 Hz), 4.02 (1H, bs), 6.63 (1H, d, J = 8.7 Hz), 7.18 (1H, dd, $J_1 = 8.7$ Hz, $J_2 = 2.1$ Hz), 7.62 (1H, d, J = 2.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 27.8 (3xC), 39.8, 43.1, 59.0, 72.1, 110.1, 114.8, 126.3, 127.2, 129.3, 141.1, 177.3; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₅H₂₃BrN₂O₂ 365.0835 and 367.0818, found 365.0838 and 367.0818.

N-(5-bromo-2-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)pivalamide (12e)

Was prepared in three steps following methods *xi*, *iii* and *ii*. 2,5-dibromonitrobenzene (8.0 g, 90%, 25.6 mmol) and 4-aminomethyl tetrahydropyran (6.24 mL, 2 equiv) were reacted according to the general method *xi*. Purification on silica gel using EtOAc:Hex (1:4 \rightarrow 1:2) gave 4-bromo-2-nitro-*N*-((tetrahydro-2*H*-pyran-4-yl)methyl)aniline as red solid (3.10 g, 38%).

m.p. 106.1 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.41 (2H, m), 1.76 (2H, m), 1.95 (1H, m), 3.20 (2H, t), 3.41 (2H, td, $J_1 = 11.8$ Hz, $J_2 = 1.8$ Hz), 4.04 (2H, dd, $J_1 = 11$ Hz, $J_2 = 3.8$ Hz), 6.78 (1H, d, J = 9.2 Hz), 7.50 (1H, dd, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz), 8.13 (1H, bs), 8.32 (1H, d, J = 2.4); ¹³C NMR (75 MHz, CDCl₃): δ 31.0 (2xC), 34.9, 49.2 (2xC), 67.6, 106.5, 115.6, 129.2, 132.4, 139.1, 144.7; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₁₂H₁₅BrN₂O₃ 337.0158 and 339.0138, found 337.0155 and 339.0135.

4-bromo-2-nitro-*N*-((tetrahydro-2*H*-pyran-4-yl)methyl)aniline (3.04 g, 9.66 mmol) was treated with iron powder (5.40 g, 10 equiv) according to the general method *iii*.

Purification on silica gel using EtOAc:Hex (1:2) gave 4-bromo-*N1*-((tetrahydro-2*H*-pyran-4-yl)methyl)benzene-1,2-diamine as light brown solid (2.62 g, 95%).

m.p. 93°C; ¹H NMR (300 MHz, CDCl₃): δ 1.42 (2H, m), 1.73 (2H, d, J = 13.5 Hz), 1.86 (1H, m), 2.98 (2H, d, J = 6.3 Hz), 3.32 (2H, bs), 3.40 (2H, t, J = 10.8 Hz), 4.00 (2H, d, J = 10.5 Hz), 6.50 (1H, d, J = 8.4 Hz), 6.84 (1H, s), 6.90 (1H, d, J = 8.4 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 31.3 (2xC) 35.0, 50.4, 67.9 (2xC), 110.5, 113.1, 119.2, 123.3, 135.9, 137.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₂H₁₇BrN₂O 285.0597 and 287.0577, found 285.0595 and 287.0574.

4-bromo-*N1*-((tetrahydro-2*H*-pyran-4-yl)methyl)benzene-1,2-diamine (2.62 g, 9.20 mmol) was treated with pivaloyl chloride (1.25 mL, 10.1 mmol) according to the general method \mathbf{ii} . Purification on silica gel using EtOAc:Hex (1:2) afforded the title product (**12e**) as light pink solid (3.35 g, 98%).

m.p. 188.6 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.33 (9H, s), 1.40 (2H, m), 1.70 (2H, d, *J*=12.9 Hz), 1.83 (1H, m), 2.96 (2H, d, *J*=6.3 Hz), 3.40 (2H, t, *J*=11.7 Hz), 4.00 (2H, d, *J*=10.2 Hz), 6.65 (1H, d, *J*=8.7 Hz), 7.22 (1H, d, *J*=8.7 Hz), 7.41 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 27.9 (3xC), 31.2 (2xC), 35.1, 39.6, 50.5, 67.8 (2xC), 109.7, 115.1, 126.2, 127.8, 129.9, 141.8, 177.9; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₁₇H₂₅BrN₂O₂ 391.0992 and 393.0971; found 391.0988 and 393.0968.

N-(5-bromo-2-((3-(dimethylamino)propyl)amino)phenyl)pivalamide (12f)

Was prepared in three steps following the general methods *xi*, *iii* and *ii*. 2,5dibromonitrobenzene (90%, 8.03 g, 25.7 mmol) and dimethylamino propylamine (3.56 mL, 28.3 mmol) were reacted according to the general method *xi*. Crude product was purified on silica gel chromatography using $1\% \rightarrow 5\%$ MeOH saturated with NH₃ in DCM to give *N1*-(4-bromo-2-nitrophenyl)- N^3 , N^3 -dimethylpropane-1,3diamine as bright red oil (4.81 g, 61%).

¹H NMR (300 MHz, CDCl₃): δ 1.84 (2H, m, *J* = 6.6 Hz), 2.24 (6H, s), 2.41 (2H, t, *J* = 6.6 Hz), 3.35 (2H, q, *J* = 6.6 Hz), 6.77 (1H, d, *J* = 9.3 Hz), 7.44 (1H, dd, *J*₁ = 9.3 Hz, *J*₂ = 2.4 Hz), 8.28 (1H, d, *J* = 2.4 Hz), 8.54 (1H, bs); ¹³C NMR (75 MHz, CDCl₃): δ 26.6, 42.4, 45.7 (2xC), 57.8, 106.2, 115.9, 129.2, 132.4, 139.0, 144.8; HRMS (ESI-

TOF) m/z: $[M+Na]^+$ calculated for $C_{11}H_{16}BrN_3O_2$ 324.0318 and 326.0318, found 324.0321 and 326.0321.

N1-(4-bromo-2-nitrophenyl)- N^3 , N^3 -dimethylpropane-1,3-diamine (3.02 g, 10.0 mmol) was treated with iron powder (5.6 g, 10 equiv) according to the general method *iii*. Purification of the crude material on silica gel using MeOH (sat. with NH₃) in DCM (2% \rightarrow 5% \rightarrow 10%) afforded 4-bromo-*N1*-(3-(dimethylamino)propyl)benzene-1,2-diamine as a purple solid (2.71 g, >99%).

m.p. 68 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.82 (2H, m, J = 6.3 Hz), 2.25 (6H, s), 2.42 (2H, t, J = 6.6 Hz), 3.13 (2H, t, J = 6.6 Hz), 3.38 (2H, bs), 4.16 (1H, bs), 6.46 (1H, d, J = 8.4 Hz), 6.80 (1H, d, J = 2.1 Hz), 6.87 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 2.1$ Hz); ¹³C NMR (75 MHz, CDCl₃): δ 27.0, 44.0, 45.8 (2xC), 58.8, 110.3, 112.9, 118.6, 123.0, 136.1, 137.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₁H₁₈BrN₃ 272.0757 and 274.0736, found 272.0757 and 274.0737.

4-bromo-*N1*-(3-(dimethylamino)propyl)benzene-1,2-diamine (2.71 g, 9.97 mmol) was treated with pivaloyl chloride (1.90 mL, 15.4 mmol) according to the general method ii. Purification on silica gel using MeOH (sat. with NH₃) in DCM (3% \rightarrow 5%) afforded the title product (**12f**) as a light pink solid (2.42 g, 68%).

m.p. 110 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.33 (9H, s), 1.80 (2H, pentet, J = 6.6 Hz), 2.24 (6H, s), 2.42 (2H, t, J = 6.6 Hz), 3.12 (2H, t, J = 6.6 Hz), 4.42 (1H, bs), 6.63 (1H, d, J = 8.7 Hz), 7.18 (1H, dd, $J_1 = 8.7$ Hz, $J_2 = 1.2$ Hz), 7.29 (1H, bs), 7.66 (1H, d, $J_1 = 1.5$ Hz); ¹³C NMR (75 MHz, CDCl₃): δ 26.8, 28.0 (3xC), 39.9, 44.4, 46.1 (2xC), 59.1, 110.3, 114.9, 126.8, 127.2, 129.3, 141.3, 177.5; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₆H₂₆BrN₃O 356.1332 and 358.1312, found 356.1332 and 358.1313.

Methyl 4-((4-bromo-2-pivalamidophenyl)amino)butanoate (12h)

Was synthesised in three steps following the methods xi, iii and ii: 2-nitro-4bromofluorobenzene (10 g, 5.6 mL, 45 mmol) and gamma-amino butyric acid (5.1 g, 50 mmol) were reacted according to the general method xi. After completion of the reaction, solution was cooled down and ethanol was evaporated off. The residue was treated with warm MeOH and CHCl₃ and a small amount of hexane to form an orange precipitate which was filtered and dried under vacuum to give 4-((4-bromo-2nitrophenyl)amino)butanoic acid as orange crystalline solid (12.3 g, 89%). 4-((4-bromo-2-nitrophenyl)amino)butanoic acid (6.0 g) was dissolved in methanol (60 mL) and refluxed in the presence of acid (20 mol-% H_2SO_4) for overnight. The crude product methyl 4-((4-bromo-2-nitrophenyl)amino)butanoate was carried over directly to the next step. Orange solid (6.25 g, >99%)

m.p. 72.4 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.02 (2H, pentet, J = 7.2 Hz), 2.46 (2H, t, J = 7.2 Hz), 3.35 (2H, dt, $J_1 = 5.7$ Hz, $J_2 = 6.9$ Hz), 3.68 (3H, s), 6.80 (1H, d, J = 9 Hz), 7.47 (1H, dd, $J_1 = 9.3$ Hz, $J_2 = 2.4$ Hz), 8.03 (1H, bt), 8.27 (1H, d, J = 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.1, 31.2, 42.4, 51.9, 106.6, 115.6, 129.0, 132.4, 139.0, 144.4, 173.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₁H₁₃BrN₂O₄ 338.9951 and 340.9930, found 338.9956 and 340.9935.

Methyl 4-((4-bromo-2-nitrophenyl)amino)butanoate (6.25 g, 19.9 mmol) was treated with iron powder (11.1 g, 10 equiv) according to the general method *iii*. The crude product methyl 4-((2-amino-4-bromophenyl)amino)butanoate was obtained as a light brown solid (5.1 g, 89%) and was used directly to the next step.

m.p. 83.0 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.99 (2H, pentet, J = 6.9 Hz), 2.47 (2H, t, J = 7.2 Hz), 3.13 (2H, t, J = 6.6 Hz), 3.30 (2H, bs), 3.68 (3H, s), 6.49 (1H, d, J = 8.4 Hz), 6.82 (1H, d, J = 2.4 Hz), 6.88 (1H, dd, $J_1 = 8.1$ Hz, $J_2 = 2.1$ Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 32.0, 43.8, 51.8, 110.4, 113.1, 119.0, 123.1, 136.1, 136.6, 174.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₆H₂₁BrN₂O₂ 375.0679 and 377.0658, found 375.0684 and 377.0664

Methyl 4-((2-amino-4-bromophenyl)amino)butanoate (5.03 g, 17.6 mmol) was treated with pivaloyl chloride (2.33 g, 19.4 mmol) according to the general method ii. Purification on silica gel using EtOAc:Hex (1:5) \rightarrow (1:3) \rightarrow (1:1) afforded the title compound (12h) as a white solid (5.38 g, 82%).

m.p. 116.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.34 (9H, s), 1.95 (2H, pentet, J = 6.9 Hz), 2.44 (2H, t, J = 7.2 Hz), 3.10 (2H, t, J = 6.9 Hz), 3.67 (3H, s), 3.86 (1H, bs), 6.61 (1H, d, J = 8.7 Hz), 7.19 (1H, dd, $J_1 = 8.7$ Hz, $J_2 = 2.4$ Hz), 7.33 (1H, bs), 7.50 (1H, d, J = 2.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.6, 27.9 (3xC), 32.0, 39.8, 44.1, 52.0, 110.0, 115.0, 126.3, 127.9, 129.7, 141.3, 174.2, 177.7; HRMS (ESI-TOF) m/z:

 $[M+Na]^+$ calculated for $C_{16}H_{21}BrN_2O_2$ 393.0784 and 395.0764, found 393.0790 and 395.0770.

5-bromo-2-(tert-butyl)-1-(3-methoxypropyl)-1H-benzo[d]imidazole (13d)

Was prepared from *N*-(5-bromo-2-((3-methoxypropyl)amino)phenyl)pivalamide (2.26 g, 6.60 mmol) using *p*-TsOH monohydrate (1.25 g, 6.60 mmol) in DMF according to the general method *v*. Purification on silica gel using EtOAc:Hex gradient (1:6 \rightarrow 1:4) afforded the product as off-white crystalline solid (1.94 g, 90%).

m.p. 109 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.54 (9H, s), 2.07 (2H, m), 3.39 (3H, s), 3.49 (2H, t, *J* = 5.4 Hz), 4.39 (2H, m), 7.18 (1H, d, *J* = 8.7 Hz), 7.31 (1H, dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz), 7.86 (1H, d, *J* = 1.8 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.8, 30.2, 34.3, 43.2, 59.1, 69.7, 110.8, 114.7, 122.5, 125.1, 135.5, 143.3, 162.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₅H₂₁BrN₂O 325.0910 and 327.0890, found 325.0914 and 327.0892.

5-bromo-2-(tert-butyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-benzo[d]imidazole (13e)

Was prepared from *N*-(5-bromo-2-(((tetrahydro-2*H*-pyran-4-yl)methyl)amino)phenyl)pivalamide (2.01 g, 5.43 mmol) using *p*-TsOH monohydrate (1.03 g, 4.08 mmol) in DMF according to the general method v. Purification on silica gel using eluent mixture Hex:DCM:MeOH (9:9:0.25) afforded the product as off-white solid (1.01 g, 58%).

Melting range 78-80°C; ¹H NMR (300 MHz, CDCl₃): δ 1.50 (4H, m), 1.56 (9H, s), 2.26 (1H, m), 3.31 (2H, m), 3.96 (2H, d, *J* = 11.4 Hz), 4.18 (2H, d, *J* = 7.5 Hz), 7.19 (1H, d, *J* = 8.7 Hz), 7.33 (1H, d, *J* = 8.4 Hz), 7.87 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 30.4 (3xC), 31.2 (2xC), 34.7, 36.8, 51.0, 67.6 (2xC), 111.5, 114.7, 122.5, 125.0, 135.9, 143.1, 162.3; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₃BrN₂O 351.1067 and 353.1046, found 351.1063 and 353.1043.

2-(5-bromo-2-(tert-butyl)-1H-benzo[d]imidazol-1-yl)-N,N-dimethylethan-1-amine (13f)

Was prepared from *N*-(5-bromo-2-((3-(dimethylamino)propyl)amino)phenyl)pivalamide (2.40 g, 6.72 mmol) using *p*-TsOH monohydrate (2.57 g, 13.5 mmol) according to the general method v with DMF as solvent. Purification on silica gel using MeOH (sat. with NH₃) in DCM (2%) afforded the title compound as light brown crystalline solid (1.35 g, 60%).

m.p. 90.2 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.53 (9H, s), 1.95 (2H, m), 2.25 (6H, s), 2.39 (2H, t, J = 6.6 Hz), 4.31 (2H, m), 7.17 (1H, d, J = 8.7 Hz), 7.30 (1H, d, J = 8.4 Hz), 7.86 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 28.2, 30.0 (3xC), 34.5, 44.3, 45.9 (2xC), 57.2, 110.9, 114.9, 122.7, 125.3, 135.7, 143.5, 162.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₆H₂₄BrN₃ 338.1226 and 340.1206, found 338.1226 and 340.1206.

Methyl 4-(5-bromo-2-(tert-butyl)-1H-benzo[d]imidazol-1-yl)butanoate (13h)

Was prepared from methyl 4-((4-bromo-2-pivalamidophenyl)amino)butanoate (5.07 g, 13.7 mmol) using *p*-TsOH monohydrate (1.3 g, 6.9 mmol) in DMF according to the general method v. The crude product was recrystallized from Et₂O/hexane, which afforded the product as colourless crystalline solid (2.93 g, 60%).

m.p. 113.8 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 2.14 (2H, m), 2.51 (2H, t, J = 6.6 Hz), 3.75 (3H, s), 4.34 (2H, m), 7.26 (1H, d, J = 8.4 Hz), 7.34 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz), 7.87 (1H, d, J = 1.8 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.6, 29.8 (3xC), 31.0, 34.3, 45.0, 52.0, 110.8, 114.8, 122.6, 125.3, 135.4, 143.3, 161.8, 173.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₆H₂₁BrN₂O₂ 375.0679 and 377.0658, found 375.0684 and 377.0664.

2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1-(3-methoxypropyl)-1H-benzo[d]imidazole (7d)

General method xii: A two-necked flask and a condenser were dried under vacuum with a heatgun and the system was left to cool down to room temperature under N_2 atmosphere. Dioxane (10 mL, dry) was added to the flask and degassed. Xantphos® (0.23 g, 14 mol-%) and Pd₂(dba)₃ (0.23 g, 9 mol-%) were added to the flask and the mixture was degassed. 5-bromo-2-(*tert*-butyl)-1-(3-methoxypropyl)-1*H*-

benzo[d]imidazole (0.90 g, 2.78 mmol) was dissolved in dioxane (10 mL) and added to the reaction flask, after which (4-methoxyphenyl)methanethiol (90%, 0.87 mL, 5.60 mmol) and di-isopropylethylamine (0.95 mL, 5.6 mmol) were added at room temperature. The reaction mixture was heated to reflux at 100 °C for 18 h. After completion of the reaction, the mixture was diluted with MeOH and filtered through a pad of silica and Celite® with MeOH. Purification on silica gel using EtOAc:Hex (1:6) afforded the title compound (**7d**) as light yellow solid (0.96 g, 86%).

m.p. 95.6 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 2.08 (2H, m), 3.39 (3H, s), 3.50 (2H, t, *J* = 5.4 Hz), 3.77 (3H, s), 4.05 (2H, s), 4.39 (2H, m), 6.78 (2H, d, *J* = 8.7 Hz), 7.16 - 7.19 (4H, m), 7.82 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 29.9 (3xC), 30.2, 34.3, 40.8, 43.2, 55.4, 59.0, 69.8, 109.7, 114.0 (2xC), 123.0, 126.5, 128.5, 130.1 (2xC), 130.3, 136.0, 142.5, 158.8, 161.5; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₃H₃₀N₂O₂S 399.2101, found 399.2096.

2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1Hbenzo[d]imidazole (7e)

Was synthesised from 5-bromo-2-(*tert*-butyl)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1H-benzo[d]imidazole (0.96 g, 2.73 mmol) and (4-methoxyphenyl)methanethiol (90%, 0.85 mL, 5.47 mmol) according to the general method *xii*. Purification on silica gel using EtOAc:Hex gradient (1:4 \rightarrow 1:3 \rightarrow 1:2) gave the title compound (7e) as light yellow solid (0.51 g, 44%).

m.p. 104.6 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.47 - 1.51 (4H, m), 1.55 (9H, s), 2.18 - 2.31 (1H, m), 3.25 - 3.34 (2H, m), 3.76 (3H, s), 3.95-3.98 (2H, m), 4.06 (2H, s), 4.16 (2H, d, *J* = 7.5 Hz), 6.77 (2H, d, *J* = 8.7 Hz), 7.07 - 7.24 (4H, m), 7.80 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 30.5 (3xC), 31.3, 34.7, 36.8, 40.5, 51.0, 55.3, 67.7, 110.5, 113.9 (2xC), 122.7, 126.1, 128.6, 130.0 (2xC), 130.3, 136.3, 142.3, 158.7, 161.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₅H₃₂N₂O₂S 425.2257, found 425.2252.

3-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)-N,Ndimethylpropan-1-amine (7f) Was synthesised from 2-(5-bromo-2-(*tert*-butyl)-1*H*-benzo[d]imidazol-1-yl)-*N*,*N*dimethylethan-1-amine (1.02 g, 3.04 mmol) and (4-methoxyphenyl)methanethiol (90%, 0.94 mL, 6.07 mmol) according to the general method *xii*. Purification of the crude material on silica gel using gradient from DCM \rightarrow MeOH (saturated with NH₃) in DCM (2% \rightarrow 4%) gave the title compound **7f** as yellow solid (1.20 g, >99%). m.p. 105 °C; ¹H NMR (200 MHz, CDCl₃): δ 1.54 (9H, s), 2.09 (2H, m), 2.41 (6H, s), 2.63 (2H, t, *J* = 6.9 Hz), 3.77 (3H, s), 4.05 (2H, s), 4.36 (2H, m), 6.79 (2H, d, *J* = 8.7 Hz), 7.16 (2H, d, *J* = 8.6 Hz), 7.21 (2H, m), 7.80 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 28.1, 29.9 (3xC), 34.3 (<u>C</u>(CH₃)₃), 40.9, 44.0, 45.8 (2xC), 55.3, 57.0, 109.6, 114.0 (2xC), 122.9, 126.3, 128.4, 130.1 (2xC), 130.3, 136.1, 142.8, 158.6, 161.2; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₄H₃₃N₃OS 434.2237, found 434.2239.

Methyl4-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)butanoate (7h)

Was prepared from methyl 4-(5-bromo-2-(*tert*-butyl)-1*H*-benzo[d]imidazol-1yl)butanoate (2.0 g, 5.7 mmol) and and 4-methoxytoluene thiol (90%, 1.3 mL, 8.5 mmol) using the general method *xii*. Purification on silica gel chromatography using EtOAc:Hex (1:4) afforded the title product **7h** as light yellow solid (2.2 g, 91%).

m.p. 98.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 2.16 (2H, m), 2.51 (2H, t, J = 6.6 Hz), 3.74 (3H, s), 3.77 (3H, s), 4.05 (2H, s), 4.32 (2H, m), 6.78 (2H, d, J = 8.7 Hz), 7.16 - 7.27 (4H, m), 7.81 (1H, d, J = 0.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 29.8 (3xC), 31.1, 34.3, 40.7, 44.9, 52.0, 55.4, 109.7, 114.0 (2xC), 123.0, 126.6, 128.6, 130.0 (2xC), 130.2, 135.8, 142.5, 158.7, 161.3, 173.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₄H₃₀N₂O₃S 449.1869, found 449.1875.

4-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)butanoic acid (7k)

General method *xvii*: Methyl 4-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)-butanoate**7h**(0.78 g, 1.83 mmol) was dissolved in THF/MeOH/H₂O (3:1:1, 20 mL) at room temperature. Solution was treated with LiOH (4.0 M, 0.91 mL) and stirred at room temperature for 1 h. Reaction mixture was

concentrated, pH was adjusted to 7 (1 M HCl) and the residue was extracted with EtOAc. Organic phase was dried over MgSO₄ and concentrated to give title product 7k as yellow solid (0.73 g, 96%).

m.p. 140.3 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.62 (9H, s), 2.11 (2H, m), 2.59 (2H, t, J = 6.3 Hz), 3.70 (3H, s), 4.07 (2H, s), 4.43 (2H, m), 6.73 (2H, d, J = 8.4 Hz), 7.11 (2H, d, J = 8.4 Hz), 7.25 (1H, d, J = 8.4 Hz), 7.45 (2H, d, J = 8.4 Hz), 8.04 (1H, s), 10.3 (1H, bs); ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 29.4 (3xC), 31.2, 34.5, 39.3, 45.5, 55.3, 111.3, 114.0 (2xC), 118.4, 127.3, 129.1, 130.1 (2xC), 133.0, 133.1, 136.0, 158.8, 159.3, 174.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₃ClN₄OS 403.1354, found 403.1349.

4-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)butanamide (7j)

General procedure xiv: 4-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*benzo[d]imidazol-1-yl)butanoic acid (0.41 g, 1.0 mmol) was dissolved in anhydrous DMF (4 mL) under N₂ atmosphere at RT and DIPEA (0.15 mL, 1.0 mmol) was added to the solution. 1,1'-carbonyldimidazole (0.32 g, 2.0 mmol) was dissolved in DMF (2 mL) and added to the stirring solution gradually at RT. After 1 hour, NH₄Cl (0.16 g, 3.0 mmol) and DIPEA (0.55 mL, 3.0 mmol) were added to the solution, and the reaction was left to stir at RT over 24 h. Reaction was quenched by diluting with EtOAc (10 mL) and adding 5% KHSO₄ (5 mL). The organic phase was washed with 5% LiCl (2x10 mL) and dried over MgSO₄. Purification of the crude material on silica gel using 1% MeOH in DCM with 0.1% AcOH afforded the title product **7j** as off-white solid (0.21 g, 50%).

m.p. 183.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.53 (9H, s), 2.10 (2H, m), 2.35 (2H, t, J = 6.6 Hz), 3.75 (3H, s), 4.04 (2H, s), 4.32 (2H, m), 5.83 (1H, bs), 5.96 (1H, bs), 6.77 (2H, d, J = 8.7 Hz), 7.15 (2H, d, J = 8.7 Hz), 7.21 (1H, m), 7.29 (1H, m), 7.81 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 24.9, 29.8 (3xC), 32.2, 34.3, 40.7, 45.0, 55.4, 109.9, 114.0 (2xC), 122.8, 126.6, 128.6, 130.1 (2xC), 130.2, 135.8, 142.3, 158.7, 161.4, 173.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₃H₂₉N₃O₂S 412.2053, found 412.2057.

2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1-pentyl-1H-benzo[d]imidazole (8b)

Was prepared from 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-pentyl-1*H*-benzo[d]imidazole (0.14 g, 3.57 mmol) and 4-bromo-2-fluoropyridine (40 μ L, 0.36 mmol) according to the general methods *vi* and *vii*. The crude material was purified on silica gel using EtOAc:Hex (1:8 \rightarrow 1:6) to give the title product **8b** as colourless oil (82 mg, 62% over two steps).

¹H NMR (300 MHz, CDCl₃): δ 0.97 (3H, t, *J* = 6.9 Hz), 1.46 (4H, m), 1.58 (9H, s), 1.90 (2H, m), 4.30 (2H, m), 6.39 (1H, t, *J*=1.5 Hz), 6.82 (1H, dt, *J*₁ = 5.4 Hz, *J*₂ = 1.8 Hz), 7.36 (1H, dd, *J*₁ = 8.1 Hz, *J*₂ = 0.9 Hz), 7.40 (1H, dd, *J*₁ = 8.4 Hz, *J*₂ = 1.5 Hz), 7.91 (1H, d, *J*₁ = 5.4 Hz), 7.99 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.5, 29.3, 29.6, 29.8 (3xC), 34.4, 46.1, 105.3 (1C, d, *J* = 40.5 Hz), 111.2, 118.1 (1C, d, *J* = 3.8 Hz), 120.1, 127.7, 129.5, 137.8, 142.9, 146.8 (1C, d, *J* = 16.1 Hz), 157.8 (1C, d, *J* = 8.5 Hz), 164.3 (1C, d, *J* = 237 Hz), 162.4; ¹⁹F NMR (258 Hz): -68.8 (s); HRMS (ESI-TOF) *m/z*: calculated for C₂₁H₂₆FN₃S [M+H]⁺ 372.1904, found 372.1905.

2-(tert-butyl)-1-(cyclobutylmethyl)-5-((2-fluoropyridin-4-yl)thio)-1Hbenzo[d]imidazole (8c)

Was synthesised from 2-(*tert*-butyl)-1-(cyclobutylmethyl)-5-((4-methoxybenzyl)thio)-1*H*-benzo[d]imidazole (0.11 g, 0.28 mmol) and 4-bromo-2-fluoropyridine (30 μ L, 0.28 mmol) following the general methods *vi* and *vii*. Purification of the crude material on silica gel using EtOAc:Hex gradient (1:6 \rightarrow 1:4 \rightarrow 1:2) afforded the product **8c** as light yellow oil (70 mg, 66% over two steps).

¹H NMR (300 MHz, CDCl₃): δ 1.57 (9H, s), 1.83 - 2.04 (4H, m), 2.06 - 2.17 (2H, m), 2.75 - 2.83 (1H, m), 4.36 (2H, d, *J* = 6.3 Hz), 6.40 (1H, s), 6.81 (1H, d, *J* = 5.4 Hz), 7.34 (1H, d, *J* = 8.4 Hz), 7.41 (1H, d, *J* = 8.4 Hz), 7.90 (1H, d, *J* = 5.4 Hz), 7.95 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 18.5, 28.3 (2xC), 30.1 (3xC), 34.6, 37.4, 51.1, 105.3 (1C, d, *J* = 40.7 Hz), 111.7, 118.1 (1C, d *J* = 3.5 Hz), 119.9, 127.6, 129.2, 138.2, 143.0, 146.8 (1C, d, *J* = 16.1 Hz), 157.8 (1C, d, *J* = 8.5 Hz), 162.6, 164.2 (1C, d, *J* = 236.9 Hz); ¹⁹F NMR (282 MHz): -68.8 (s); HRMS (ESI-TOF) *m/z*: calculated for C₂₁H₂₄FN₃S [M+H]⁺ 370.1748, found 370.1748.

2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1-(3-methoxypropyl)-1Hbenzo[d]imidazole (8d)

Was prepared from 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-(3-methoxypropyl)-1*H*-benzo[d]imidazole (0.50 g, 1.26 mmol) and 2-fluoro-4-bromopyridine (0.14 mL, 1.40 mmol) according to the general methods *vi* and *vii*. Purification on silica gel using EtOAc:Hex (1:4) afforded the title product **8d** as light yellow solid (0.43 g, 92% over two steps).

m.p. 85.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.59 (9H, s), 2.15 (2H, m), 3.42 (3H, s), 3.54 (2H, t, J = 5.4 Hz), 4.48 (2H, m), 6.40 (1H, s), 6.82 (1H, d, J = 5.4 Hz), 7.40 (1H, d, J = 8.4 Hz), 7.44 (1H, d, J = 8.4 Hz), 7.91 (1H, d, J = 5.7 Hz), 7.98 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 29.7, 30.3, 34.4, 43.4, 59.1, 69.7, 105.2 (1C, d, J =40.7 Hz), 111.2, 118.1 (1C, d, J = 3.6 Hz), 120.0, 127.6, 129.4, 137.9, 143.0, 146.8 (1C, d, J = 16.1 Hz), 157.8 (1C, d, J = 8.3 Hz), 162.7, 164.2 (1C, d, J = 237 Hz); ¹⁹F NMR (282 MHz): -68.8 (s); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₀H₂₄FN₃OS 374.1697, found 374.1704.

2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-benzo[d]imidazole (8e)

Was prepared from 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-benzo[d]imidazole (0.20 g, 0.47 mmol) and 2-fluoro-4-bromopyridine (60 μ L, 0.58 mmol) according to the general procedures *vi* and *vii*. Purification on silica gel using EtOAc:Hex gradient (1:4 \rightarrow 1:3 \rightarrow 1:2) yielded the product **8e** as light orange oil (0.12 g, 65%).

¹H NMR (300 MHz, CDCl₃): δ 1.55 (4H, m), 1.59 (9H, s), 2.31 (1H, m), 3.34 (2H, m), 4.00 (2H, d, J = 11.1 Hz), 4.25 (2H, d, J = 7.2 Hz), 6.41 (1H, s), 6.84 (1H, d, J = 5.4 Hz), 7.38 (1H, d, J = 8.7 Hz), 7.42 (1H, d, J = 8.4 Hz), 7.92 (1H, d, J = 5.4 Hz), 7.98 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 30.4 (3xC), 31.3 (2xC), 34.9, 36.9, 51.3, 67.7 (2xC), 105.3 (1C, d, J = 40.7 Hz), 111.9, 118.2 (1C, d, J = 3.7 Hz), 120.2, 127.7, 129.3, 138.4, 142.9, 146.9 (1C, d, J = 16.1 Hz), 157.6 (1C, d, J = 7.9 Hz), 164.2 (1C, d, J = 251.0 Hz), 163.0; ¹⁹F NMR (282 MHz, CDCl₃): δ -68.8 (s); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₇FN₂OS 351.1901, found 351.1897.

3-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-yl)-N,Ndimethylpropan-1-amine (8f)

Was prepared from 3-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*benzo[d]imidazol-1-yl)-*N*,*N*-dimethylpropan-1-amine (0.50 g, 1.22 mmol) and 2fluoro-4-bromopyridine (0.13 mL, 1.22 mmol) according to the general methods *vi* and *vii*. Purification of the crude material on silica gel using MeOH (saturated with NH₃) in DCM (1% \rightarrow 2% \rightarrow 5%) afforded the product **8f** as light yellow solid (0.12 g, 26% over two steps).

m.p. 107.5 °C. ¹H NMR (300 MHz, CDCl₃): δ 1.58 (9H, s), 2.03 (2H, m), 2.29 (6H, s), 2.45 (2H, t, J = 6.8 Hz), 4.40 (2H, m), 6.39 (1H, s), 6.81 (1H, dt, $J_1 = 5.4$ Hz; $J_2 = 1.6$ Hz), 7.38 (1H, m), 7.42 (1H, m), 7.90 (1H, d, J = 5.4 Hz), 7.97 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 28.1, 29.8 (3xC), 34.5, 44.3, 45.8 (2xC), 57.0, 105.2 (1C, d, J = 40.6 Hz), 111.2, 118.1 (1C, d, J = 3.8 Hz), 120.1, 127.7, 129.4, 137.9, 143.0, 146.8 (1C, d, J = 16.1 Hz), 157.8 (1C, d, J = 12.5 Hz), 163.4 (1C, d, $J_{CF} = 240.7$ Hz), 165.9; ¹⁹F NMR (282 MHz, CDCl₃): -68.8 (s); LRMS (ESI) m/z: estimated 387.20 [M+H]⁺, found 387.21; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₂₁H₂₇FN₄S 387.2013, found 387.2016.

Methyl4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-yl)butanoate (8h)

Was prepared from methyl 4-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*benzo[d]imidazol-1-yl)butanoate (2.00 g, 4.69 mmol) and 2-fluoro-4-bromopyridine (0.48 mL, 4.69 mmol) using the general methods *vi* and *vii*. Purification on silica gel using EtOAc:Hex (1:1 \rightarrow 2:1) afforded the title product **8h** as yellow solid (1.79 g, 86%).

m.p. 104.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.59 (9H, s), 2.21 (2H, m), 2.56 (2H, t, J = 6.6 Hz), 3.76 (3H, s), 4.42 (2H, m), 6.41 (1H, s), 6.82 (1H, d, J = 5.4 Hz), 7.42 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 7.53 (1H, d, J = 8.1 Hz), 7.91 (1H, d, J = 5.4 Hz), 7.99 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 29.7 (3xC), 30.9, 34.4, 45.1, 52.1, 105.3 (1C, d, J = 40.7 Hz), 111.3, 118.1 (1C, d, J = 3.6 Hz), 120.4, 127.6, 129.6, 137.8, 142.9, 146.8 (1xC, d, $J_{CF} = 16.2$ Hz), 157.8 (1C, d, J = 8.5 Hz), 162.5,

164.2 (1C, d, J = 236.9 Hz), 172.9; ¹⁹F NMR (282 MHz): -68.8 (s); HRMS (ESI-TOF) m/z: $[M+H]^+$ calculated for C₂₁H₂₄FN₃O₂S 402.1646, found 402.1651.

4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-yl)butan-1-ol (8i)

General procedure xvi: Methyl 4-(2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)thio)-1*H*benzo[d]imidazol-1-yl)butanoate **8h** (0.10 g, 0.25 mmol) was dissolved in anhydrous THF (5 mL) under N₂ atmosphere and cooled down to -78 °C. Di-isobutyl aluminium hydride (1.0 mL, 1.00 mmol, 1M in THF) was added dropwise to the stirring solution over 20 min at -78 °C, after which the reaction was left to stir at room temperature over night. Once the reaction was complete, the mixture was cooled to 0 °C and 0.5 mL EtOAc was added. Then, 40 µL of water was added dropwise, followed by addition of 40 µL of 15% NaOH, and finally 100 µL of water. The solution was taken to room temperature and stirred for 15 min, after which small amount of MgSO₄ was added. The resulting gel was filtered through a pad of silica and Celite® and washed with EtOAc. Concentration gave the title product **8i** as opaque oil (90 mg, >99%), which was used without purification for the next step.

¹H NMR (300 MHz, CDCl₃): δ 1.58 (9H, s), 1.77 (2H, m), 2.02 (2H, m), 2.18 (1H, bs), 3.79 (2H, t, *J* = 6 Hz), 4.39 (2H, m), 6.40 (1H, s), 6.82 (1H, d, *J* = 5.4 Hz), 7.40 (2H, m), 7.90 (1H, d, *J* = 6 Hz), 7.97 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 26.7, 29.8 (3xC), 29.8, 34.4, 45.9, 62.1, 105.3 (1C, d, *J* = 40.6 Hz), 111.3, 118.2 (1C, d, *J* = 3.5 Hz), 120.1, 127.7, 129.5, 137.8, 143.0, 146.8 (1C, d, *J*_{CF} = 16.0 Hz), 157.9 (1C, d, *J* = 7.4 Hz), 162.5, 164.3 (1C, d, *J* = 237 Hz); ¹⁹F NMR (282 MHz): -68.8 (s); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₄FN₃OS 374.1697, found 374.1702.

Rac-2-(tert-butyl)-5-((2-fluoroethyl)thio)-1-(2-methylpentyl)-1H-benzo[d]imidazole (9a)

General procedure vi: *rac-2-(tert-*butyl)-5-((4-methoxybenzyl)thio)-1-(2-methylpentyl)-1*H*-benzo[d]imidazole (0.17 g, 0.41 mmol) was dissolved in trifluoroacetic acid (5 mL) and was refluxed at 80 °C for over night under N_2 atmosphere. The mixture was cooled down to room temperature and concentrated under N_2 flow to give the crude thiol that was used directly for the next step.

General method viii: Cs₂CO₃ (0.20 g, 0.62 mmol) was weighed into a two-necked flask and degassed dioxane (4 mL) was added under N₂ atmosphere. Crude thiol was dissolved in dioxane (4 mL, degassed) and added to the reaction flask. 2-fluoro-1-bromoethane (34 μ L, 0.45 mmol) was added at room temperature, after which the reaction mixture was heated to 65 °C for 18 h. Reaction mixture was cooled down to room temperature, diluted with EtOAc and washed with saturated NH₄Cl and brine (2 x 10 mL). Organic phase was dried over anhydrous MgSO₄, filtered and concentrated. Purification of the crude material on silica gel using EtOAc:Hex gradient (1:10 \rightarrow 1:8) gave the product **9a** as a colourless viscous oil (89 mg, 64% over two steps).

¹H NMR (300 MHz, CDCl₃): δ 0.89 (3H, d, J = 6.6 Hz), 0.90 (3H, t, J = 6.3 Hz), 1.21 - 1.50 (4H, m), 1.57 (9H, s), 2.27 - 2.38 (1H, m), 3.17 (2H, dt, $J_1 = 16.8$ Hz, $J_2 = 6.9$ Hz), 4.10 (1H, dd, $J_1 = 14.4$ Hz, $J_2 = 8.7$ Hz), 4.21 (1H, dd, $J_1 = 14.7$ Hz, $J_2 = 6.9$ Hz), 4.44 - 4.60 (1H, dt, $J_1 = 47.1$ Hz; $J_2 = 6.9$ Hz), 7.24 - 7.34 (m, 2H), 7.87 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 14.3, 17.6, 20.2, 30.5 (3xC), 33.6, 34.7, 35.55 (1C, d, J = 20.9 Hz), 37.1, 51.8, 81.8 (1C, d, J = 171 Hz), 111.2, 123.3, 126.3, 126.4, 136.7, 142.5, 162.4; ¹⁹F NMR (282 MHz): δ -212.6 (tt, $J_1 = 47$ Hz, $J_2 = 17$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₉FN₂S 337.2108, found 337.2108.

2-(tert-butyl)-5-((2-fluoroethyl)thio)-1-pentyl-1H-benzo[d]imidazole (9b)

Was prepared from 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-pentyl-1*H*benzo[d]imidazole (0.15 g, 0.39 mmol) and 2-fluoro-1-bromoethane (30 μ L, 0.39 mmol) according to the general methods *vi* and *viii*. The crude product was purified on silica gel using EtOAc:Hex gradient (1:8 \rightarrow 1:6) to give the title product **9b** as a colourless oil (82 mg, 65% over two steps).

¹H NMR (300 MHz, CDCl₃): δ 0.95 (3H, t, J = 6.9 Hz), 1.44 (4H, m), 1.55 (9H, s), 1.85 (2H, m), 3.14 (2H, dt, $J_1 = 16.5$ Hz, $J_2 = 6.9$ Hz), 4.24 (2H, m), 4.41 - 4.57 (2H, dt, $J_1 = 46.8$ Hz; $J_2 = 6.9$ Hz), 7.20 (1H, d, J = 8.1 Hz), 7.34 (1H, dd, $J_1 = 8.4$ Hz, $J_2 =$ 1.8 Hz), 7.88 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 22.4, 29.3, 29.5, 29.8 (3xC), 34.3, 35.7 (1C, d, J = 20.9 Hz), 45.9, 81.7 (1C, d, J = 171.1 Hz), 110.1, 123.4, 126.7, 126.9, 136.1, 142.2, 161.5; ¹⁹F NMR (282 MHz): δ -212.8 (tt, $J_1 =$ 47 Hz, $J_2 = 34$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₈H₂₇FN₂SH 323.1952, found 323.1953.

2-(tert-butyl)-1-(cyclobutylmethyl)-5-((2-fluoroethyl)thio)-1H-benzo[d]imidazole (9c)

Was prepared from 2-(*tert*-butyl)-1-(cyclobutylmethyl)-5-((4-methoxybenzyl)thio)-1*H*-benzo[d]imidazole (0.11 g, 0.28 mmol) and 2-fluoro-1-bromoethane (23 μ L, 0.30 mmol) according to the general methods *vi* and *viii*. Purification on silica gel using EtOAc:Hex (1:8 \rightarrow 1:6) afforded the product **9c** as a colourless oil (56 mg, 61% over two steps).

¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 1.83 - 2.00 (4H, m), 2.06 - 2.15 (2H, m), 2.72 -2.84 (1H, m), 3.16 (2H, dt, $J_1 = 16.5$ Hz, $J_2 = 6.9$ Hz), 4.33 (2H, d, J = 6.3 Hz), 4.44 - 4.59 (2H, dt, $J_1 = 47.1$ Hz, $J_2 = 6.9$ Hz), 7.27 (1H, d, J = 8.1 Hz), 7.33 (1H, d, J = 8.4 Hz), 7.86 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 18.5, 28.2 (2xC), 30.2 (3xC), 34.5, 35.6 (1C, d, J = 21 Hz), 37.4, 51.0, 81.8 (1C, d, J = 171.2 Hz), 110.6, 123.3, 126.4, 126.6, 136.6, 142.5, 161.8; ¹⁹F NMR (282 MHz): δ -212.7 (tt, $J_1 = 47$ Hz, $J_2 = 16$ Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₅FN₂S 321.1795, found 321.1796.

2-(tert-butyl)-5-((2-fluoroethyl)thio)-1-(3-methoxypropyl)-1H-benzo[d]imidazole (9d)

Was prepared from 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-(3-methoxypropyl)-1*H*-benzo[*d*]imidazole (0.25 g, 0.63 mmol) and 2-fluoro-1-bromoethane (52 µL, 0.69 mmol) using the general methods *vi* and *viii*. Purification on silica gel using EtOAc:Hex (1:5) gave the product **9d** as colourless oil (0.11 g, 55% over two steps). ¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 2.09 (2H, m), 3.14 (2H, dt, *J*₁ = 16.5 Hz, *J*₂ = 6.9 Hz), 3.41 (3H, s), 3.51 (2H, t, *J* = 5.4 Hz), 4.39 (2H, m), 4.42 - 4.57 (2H, dt, *J*₁ = 47 Hz, *J*₂ = 6.9 Hz), 7.27 (1H, d, *J* = 8.1 Hz), 7.34 (1H, d, *J* = 8.4 Hz), 7.89 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 29.8 (3xC), 30.2, 34.3, 35.7 (1C, d, *J* = 20.9 Hz), 43.2, 59.0, 69.8, 81.7 (1C, d, *J* = 171.2 Hz), 110.1, 123.5, 126.6, 126.9, 136.3, 142.6, 161.9; ¹⁹F NMR (282 MHz, CDCl₃): -212.8 (tt, *J*₁ = 43.0 Hz, *J*₂ = 15.2 Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₇H₂₅FN₂OS 325.1744, found 325.1741.

2-(tert-butyl)-5-((2-fluoroethyl)thio)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1Hbenzo[d]imidazole (9e)

Was prepared from 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-benzo[d]imidazole (0.31 g, 0.73 mmol) and 2-fluoro-1bromoethane (60 μ L, 0.73 mmol) according to the general procedures *vi* and *viii*. Purification on silica gel using EtOAc:Hex (1:3 \rightarrow 1:2) yielded the product **9e** as colourless oil (99 mg, 38%).

¹H NMR (300 MHz, CDCl₃): δ 1.51 (4H, m), 1.56 (9H, s), 2.28 (1H, m), 3.13 – 3.19 (2H, dt, $J_1 = 16.5$ Hz, $J_2 = 7.2$ Hz), 3.31 (2H, m), 3.98 (2H, m), 4.19 (2H, d, J = 7.2 Hz), 4.43 – 4.59 (2H, dt, J = 47.1 Hz), 7.19 (1H, m), 7.33 (1H, m), 7.86 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 30.5 (3xC), 31.3 (2xC), 34.7, 35.5 (1C, d, J = 21.2 Hz), 36.9, 51.1, 67.7 (2xC), 81.8 (1C, d, J = 172.9 Hz), 110.8, 123.3, 126.6, 130.2, 136.5, 142.6, 162.1; ¹⁹F NMR (282 MHz, CDCl₃): δ -212.6 (tt, $J_1 = 46.8$ Hz, $J_2 = 16.6$ Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₉H₂₇FN₂OS 351.1901, found 351.1897.

Methyl 4-(2-(tert-butyl)-5-((2-fluoroethyl)thio)-1H-benzo[d]imidazol-1-yl)butanoate (9h)

Was prepared from methyl 4-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*benzo[d]imidazol-1-yl)butanoate (1.8 g, 4.2 mmol) and 2-fluoro-1-bromoethane (0.35 mL, 4.6 mmol) according to the general procedures *vi* and *viii*. Purification on silica gel using EtOAc:Hex (1:4 \rightarrow 1:3) afforded the title compound **9h** as light yellow oil (1.12 g, 75% over 2 steps).

¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 2.15 (2H, m), 2.50 (2H, t, J = 6.6 Hz), 3.13 (2H, t, J = 6.9 Hz, J = 16.5 Hz), 3.73 (3H, s), 4.33 (2H, m), 4.50 (2H, t, J = 6.9 Hz, J = 47.1 Hz), 7.31 (1H, m), 7.34 (1H, m), 7.85 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 29.7 (3xC), 31.0, 34.3, 35.7 (1C, d, J = 21 Hz), 45.0, 52.0, 81.7 (1C, d, J = 171.3 Hz), 110.1, 123.6, 126.8, 127.0, 136.2, 142.6, 161.7, 172.9; ¹⁹F NMR (282 MHz, CDCl₃): δ -212.8 (tt, $J_1 = 63.5$ Hz, $J_2 = 16.6$ Hz); HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₂₅FN₂O₂S 375.1513, found 375.1518.

4-(2-(tert-butyl)-5-((2-fluoroethyl)thio)-1H-benzo[d]imidazol-1-yl)butan-1-ol (9i)

Was prepared from methyl 4-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1*H*-benzo[d]imidazol-1-yl)butanoate **9h** (0.30 g, 0.85 mmol) using DIBAL-H (3.42 mL, 3.4 mmol, 1M in THF) according to the general method *xvi*. Purification of the crude material on silica gel using EtOAc:Hex (1:1) as eluent afforded the title product **9i** as clear oil (94 mg, 34%).

¹H NMR (300 MHz, CDCl₃): δ 1.51 (9H, s), 1.71 (2H, m), 1.93 (2H, m), 2.72 (1H, br s), 3.10 (2H, dt, $J_1 = 17.1$ Hz, $J_2 = 6.9$ Hz), 3.73 (2H, t, J = 6.3 Hz), 4.29 (2H, m), 4.45 (2H, dt, $J_1 = 47.1$ Hz, $J_2 = 6.9$ Hz), 7.22 (1H, d, J = 8.1 Hz), 7.34 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 7.85 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 26.6, 29.7 (3xC), 29.8, 34.3, 35.7 (1C, d, J = 21 Hz), 45.7, 61.9, 81.7 (1C, d, J = 171.0), 110.2, 123.4, 126.6, 126.9, 136.1, 142.4, 161.7; ¹⁹F NMR (282 MHz, CDCl₃): δ - 212.8 (tt, $J_1 = 47.1$ Hz, $J_2 = 16.6$ Hz); LRMS (ESI) *m/z*: estimated 325.17 [M+H]⁺, found 325.18; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₇H₂₅FN₂OS 347.1564, found 347.1568.

4-(2-(tert-butyl)-5-((2-fluoroethyl)thio)-1H-benzo[d]imidazol-1-yl)butanamide (9j)

Was prepared from 4-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*benzo[d]imidazol-1-yl)butanamide **7j** (0.31 g, 0.74 mmol) and 2-fluoro-1bromoethane (0.14 mL, 1.9 mmol) following the general procedures *vi* and *viii*. Purification on silica gel using MeOH in DCM (2.5% \rightarrow 5%) afforded the product **9j** as colourless oil (0.2 g, 80% over 2 steps).

¹H NMR (300 MHz, CDCl₃): δ 1.54 (9H, s), 2.15 (2H, m), 2.39 (2H, t, J = 6.6 Hz), 3.12 (2H, dt, $J_1 = 17.1$ Hz, $J_2 = 6.9$ Hz), 4.35 (2H, m), 4.40 (2H, dt, $J_1 = 47.1$ Hz, $J_2 = 6.9$ Hz), 5.70 (2H, br s), 7.32 (1H, d, J = 8.7 Hz), 7.36 (1H, d, J = 8.7 Hz), 7.84 (1H, m); ¹³C NMR (75 MHz, CDCl₃): δ 24.9, 29.8 (3xC), 32.1, 34.3, 35.7 (1C, d, J = 20.8 Hz), 45.0, 81.7 (1C, d, J = 171 Hz) 110.3, 123.4, 126.7, 127.0, 136.2, 142.5, 161.8, 173.7; ¹⁹F NMR (282 MHz): δ -212.8 (tt, $J_1 = 46.8$ Hz, $J_2 = 16.9$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₄FN₃OS 338.1697, found 338.1696.

4-(2-(tert-butyl)-5-((2-fluoroethyl)thio)-1H-benzo[d]imidazol-1-yl)butanenitrile (9g)

General procedure xv: 4-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1*H*-benzo[d]imidazol-1-yl)butanamide (0.19 g, 0.55 mmol) was dissolved in dry DCM (8 mL) under N₂ atmosphere and cooled down to 0 °C. Triethyl amine (0.61 mL, 8 equiv) was added to the solution, after which trifluoroacetic anhydride (0.39 mL, 5 equiv) was added dropwise. The solution was stirred at room temperature for 12 h. The reaction mixture was diluted with DCM and washed with water (5 mL) and sat. NaHCO₃ (5 mL). The organic phase was dried over anhydrous MgSO₄. Filtered and concentrated crude product was purified on silica gel using EtOAc:Hex gradient (1:4 \rightarrow 1:2), which afforded the title product **9g** as clear oil (0.17 g, 94%).

¹H NMR (300 MHz, CDCl₃): δ 1.54 (9H, s), 2.18 (2H, m), 2.54 (2H, t, *J* = 6.9 Hz), 3.12 (2H, dt, *J*₁ = 17.1 Hz, *J*₂ = 6.9 Hz), 4.42 (2H, m), 4.37 - 4-58 (2H, dt, *J*₁ = 47.1 Hz, J2 = 6.9 Hz), 7.20 (1H, d, *J* = 8.4 Hz), 7.34 (1H, d, *J* = 8.4 Hz), 7.85 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 15.0, 25.3, 29.8 (3xC), 34.3, 35.6 (1C, d, *J* = 21.1 Hz), 44.1, 81.6 (1C, d, *J* = 171.1 Hz), 109.7, 118.3, 123.5, 127.1, 127.3, 137.5, 142.4, 161.5; ¹⁹F NMR (282 MHz): -212.9 (tt, *J*₁ = 47.1 Hz, *J*₂ = 16.9 Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₂FN₃S 320.1591, found 320.1586.

2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-pentyl-1H-benzo[d]imidazole (1b)

Was prepared from 2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)thio)-1-pentyl-1*H*benzo[d]imidazole (70 mg, 0.19 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex gradient (1:4 \rightarrow 1:2) gave the title product **1b** as colourless oil (58 mg, 76%).

¹H NMR (300 MHz, CDCl₃): δ 0.92 (3H, t, *J* = 6.9 Hz), 1.41 (4H, m), 1.53 (9H, s), 1.82 (2H, m), 4.28 (2H, m), 7.38 (1H, m), 7.40 (1H, m), 7.63 (1H, dt, *J*₁ = 5.1 Hz, *J*₂ = 1.5 Hz), 7.79 (1H, dd, *J*₁ = 8.7 Hz, *J*₂ = 1.8 Hz), 8.32 (1H, d, *J* = 5.1 Hz), 8.36 (1H, d, *J* = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.4, 29.2, 29.6, 29.59 (3xC), 34.6, 46.2, 107.9 (1C, d, *J* = 40.1 Hz), 110.8, 118.7 (1C, d, *J* = 5 Hz), 121.0, 121.8, 132.0, 140.5, 141.7, 149.5 (1C, d, *J* = 14.4 Hz), 156.1 (1C, d, *J* = 6.7 Hz), 163.9 (1C, d, *J* = 239 Hz), 164.3; ¹⁹F NMR (282 Hz): -221.7 (tt, *J*₁ = 46.5 Hz, *J*₂ = 20.9 Hz); HRMS (ESI-TOF) *m/z*: [M+H]⁺ calculated for C₁₈H₂₇FN₂O₂S 355.1850, found 355.1850; HPLC-purity: >98%, RT = 21.8 min.

2-(tert-butyl)-1-(cyclobutylmethyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1Hbenzo[d]imidazole (1c)

Was prepared from 2-(*tert*-butyl)-1-(cyclobutylmethyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazole (70 mg, 0.19 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex (1:6 \rightarrow 1:3 \rightarrow 1:2) afforded the product 1c as colourless viscous oil (60 mg, 80%).

¹H NMR (300 MHz, CDCl₃): δ 1.54 (9H, s), 1.83 - 1.95 (4H, m), 2.04 - 2.13 (2H, m), 2.68 - 2.78 (1H, m), 4.35 (2H, d, J = 6.3 Hz), 7.41 (1H, s), 7.45 (1H, d, J = 8.4 Hz), 7.65 (1H, d, J = 5.1 Hz), 7.78 (1H, d, J = 8.7 Hz), 8.34 (1H, s), 8.36 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 18.5, 28.3 (2xC), 30.0 (3xC), 34.8, 37.3, 51.2, 108.0 (1C, d, J =40.3 Hz), 111.3, 118.7 (1C, d, J = 5 Hz), 121.0, 121.7, 131.9, 140.9, 141.8, 149.5 (1C, d, J = 14.4 Hz), 156.1 (1C, d, J = 6.5 Hz), 163.9 (1C, d, J = 242 Hz), 164.4; ¹⁹F NMR (376 MHz): δ -63.4 (s); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₁H₂₄FN₃O₂S 424.1466, found 424.1465; HPLC-purity: >99%, RT = 25.8 min.

2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(3-methoxypropyl)-1Hbenzo[d]imidazole (1d)

Was prepared from 2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)thio)-1-(3-methoxypropyl)-1*H*-benzo[d]imidazole (0.11 g, 0.30 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex gradient (1:5 \rightarrow 1:3 \rightarrow 1:2) afforded the product **1d** as light yellow thick oil (0.10 g, 0.26 mmol, 87%).

¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 2.08 (2H, m), 3.41 (3H, s), 3.51 (2H, t, J = 5.4 Hz), 4.46 (2H, m), 7.41 (1H, s), 7.49 (1H, d, J = 8.4 Hz), 7.64 (1H, d, J = 3.9 Hz), 7.82 (1H, d, J = 8.4 Hz), 8.35 (1H, d, J = 5.4 Hz), 8.38 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 29.6, 30.3, 34.6, 43.5, 59.1, 69.4, 108.0 (1C, d, J = 40.1 Hz), 110.8, 118.7 (1C, d, J = 5.3 Hz), 121.1, 121.9, 132.0, 140.7, 141.9, 149.5 (1C, d, J = 6.5 Hz), 156.2 (1C, d, J = 25.8 Hz) 163.9 (1C, d, J = 244 Hz), 164.5; ¹⁹F NMR (282 MHz): δ - 63.5 (s); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₀H₂₄FN₃O₃S 428.1415, found 428.1409; HPLC purity >95%, RT = 18.9 min.

2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-((tetrahydro-2H-pyran-4yl)methyl)-1H-benzo[d]imidazole (1e)

Was prepared from 2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-benzo[d]imidazole (0.12 g, 0.31 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex (1:1) gave the title product **1e** as white solid (73 mg, 55%).

m.p. 171.1 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.51 (4H, m), 1.57 (9H, s), 2.26 (1H, m), 3.30 (2H, m), 3.96 (2H, m), 4.25 (2H, d, J = 7.5 Hz), 7.43 (1H, d, J = 1.8 Hz), 7.49 (1H, d, J = 8.7 Hz), 7.67 (1H, d, J = 5.1 Hz), 7.80 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 8.36 (1H, m), 8.38 (1H, m); ¹³C NMR (75 MHz, CDCl₃): δ 30.2 (3xC), 31.1 (2xC), 35.0, 36.9, 51.3, 67.5 (2xC), 108.0 (1C, d, J = 40.1 Hz), 111.5, 118.7 (1C, d, J = 4.8 Hz), 121.0, 121.6, 132.0, 141.0, 141.6, 149.5 (1C, d, J = 14.5 Hz), 155.9 (1C, d, J = 6.7 Hz), 163.9 (1C, d, J = 233.6 Hz), 164.8; ¹⁹F NMR (282 MHz): δ -63.4 (s); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₂H₂₆FN₃O₃S 454.1571, found 454.1566. HPLC purity >98%, RT = 18.3 min.

3-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1-yl)-N,Ndimethylpropan-1-amine (1f)

3-(2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-yl)-*N*,*N*dimethylpropan-1-amine (0.10 g, 0.26 mmol) was dissolved in 7 mL of methanol in a round bottom flask and solution was cooled to 0 °C. Oxone® (0.24 g, 0.78 mmol) was dissolved in 4 mL of H₂O, cooled to 0 °C, and added dropwise to a stirring solution of the starting material over 20 min. Suspension was left to stir at 0 °C for an hour, after which the reaction was left to warm to room temperature. The formation and disappearance of the sulfoxide intermediate was monitored on TLC, after which the reaction mixture was concentrated, diluted with water and the pH was adjusted to 9. The water phase was extracted with EtOAc (3 x 10 mL) and combined organic phase was dried over MgSO₄. Concentrated crude product was purified on silica gel with MeOH (sat. with NH₃) in DCM (2% \rightarrow 5%), which gave the product **1f** as clear sticky oil (58 mg, 54%). ¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 1.95 (2H, m), 2.26 (6H, s), 2.40 (2H, t, *J* = 6.6 Hz), 4.39 (2H, m), 7.40 (1H, d, *J* = 2.4 Hz), 7.47 (1H, d, *J* = 8.7 Hz), 7.64 (1H, d, *J* = 5.1 Hz), 7.81 (1H, dd, *J*₁ = 8.7 Hz, *J*₂ = 1.8 Hz), 8.34 (1H, d, *J* = 5.1 Hz), 8.36 (1H, d, *J* = 1.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 28.1, 29.6 (3xC), 34.6, 44.4, 45.7 (2xC), 56.8, 108.0 (1C, d, *J* = 40.1 Hz), 110.8, 118.7 (1C, d, *J* = 5 Hz), 121.1, 121.9, 132.0, 140.7, 141.9, 149.5 (1C, d, *J* = 14.5 Hz), 156.1 (1C, d, *J* = 6.8 Hz), 163.9 (1C, d, *J*_{CF} = 242.4 Hz), 164.5; ¹⁹F NMR (282 MHz): -63.4 (s); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₂₁H₂₇FN₄O₂S 441.1730, found 441.1733; HPLC-purity: >98%, RT = 19.1 min.

4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butan-1-ol (1i)

Was prepared from 4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-yl)butan-1-ol (0.19 g, 0.51 mmol) using the general method <math>x. The crude product was purified on silica gel using MeOH in DCM (2.5%), which gave the title product **1i** as white solid (0.17 g, 81%).

m.p. 145.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 1.63 (1H, bs), 1.74 (2H, m), 1.96 (2H, m), 3.77 (2H, t, *J* = 6 Hz), 4.38 (2H, m), 7.40 (1H, d, *J* = 2.7 Hz), 7.45 (1H, d, *J* = 8.7 Hz), 7.64 (1H, d, *J* = 5.1 Hz), 7.81 (1H, dd, *J*₁ = 8.7 Hz, *J*₂ = 1.8 Hz), 8.34 (1H, d, *J* = 5.4 Hz), 8.37 (1H, d, *J* = 1.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 26.7, 29.61, 29.67 (3xC), 34.7, 46.1, 62.1, 108.1 (1C, d, *J* = 37.5 Hz), 110.8, 118.7 (1C, d, *J* = 6.2 Hz), 121.2, 121.9, 132.1, 140.6, 141.9, 149.5 (1C, d, *J* = 15 Hz), 156.2 (1C, d, *J* = 6.1 Hz), 164.0 (1C, d, *J* = 242.6 Hz), 164.4; ¹⁹F NMR (282 MHz): -63.4 (s); HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₄FN₃O₃S 428.1415, found 428.1420; HPLC-purity >98%, RT = 15.7 min.

Methyl 4-(2-(*tert-butyl*)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanoate (1h)

Was prepared from methyl 4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-yl)butanoate (0.51 g, 1.26 mmol) according to the general method <math>x. The purification on silica gel using EtOAc:Hex (1:2) gave the product **1h** as white solid (0.53 g, 98%).

m.p. 93.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 2.14 (2H, m), 2.53 (2H, t, J = 6.6 Hz), 3.75 (3H, s), 4.40 (2H, m), 7.41 (1H, d, J = 3.0 Hz), 7.60 (1H, d, J = 8.7

Hz), 7.65 (1H, dt, $J_1 = 5.4$ Hz, $J_2 = 1.2$ Hz), 7.85 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz), 8.35 (1H, d, J = 5.1 Hz), 8.38 (1H, d, J = 1.8 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.6, 29.6 (3xC), 30.7, 34.6, 45.3, 52.1, 108.0 (1C, d, J = 40.1 Hz), 110.9, 118.7 (1C, d, J = 4.9 Hz), 121.2, 122.1, 132.3, 140.6, 141.9, 149.5 (1C, d, J = 14.6 Hz), 156.1 (1C, d, J = 6.5 Hz), 164.3, 164.0 (1C, d, J = 242.7 Hz), 172.9; ¹⁹F NMR (282 MHz): -63.4 (s); HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₁H₂₄FN₃O₄S 456.1364, found 456.1369; HPLC-purity >98%, RT = 18.7 min.

4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanoic acid (1k)

General procedure xiii. Methyl 4-(2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1*H*-benzo[*d*]imidazol-1-yl)butanoate **1h** (0.25 g, 0.58 mmol) was dissolved in 1,2dichloroethane (15 mL) under N₂ atmosphere and trimethyltin hydroxide (0.40 g, 3.8 equiv.) was added to the stirring solution. Reaction mixture was heated to 100 °C for overnight. After completion, the reaction mixture was cooled down to RT and 1,2dichloroethane was evaporated off under N₂ flow. Residue was redissolved in EtOAc and washed with 5% KHSO₄ several times, dried over Na₂SO₄ and concentrated under reduced pressure to give crude product that was purified on silica gel using EtOAc:Hex gradient (1:2 \rightarrow 1:1) to get the title compound **1k** as white amorphous solid (0.22 g, 91%).

¹H NMR (300 MHz, CDCl₃): δ 1.57 (9H, s), 2.17 (2H, m), 2.61 (2H, t, *J* = 6.6 Hz), 4.44 (2H, m), 7.42 (1H, d, *J* = 2.4 Hz), 7.62 (1H, m), 7.65 (1H, m), 7.45 (1H, d, *J* = 8.7 Hz), 8.34 (1H, d, *J* = 5.1 Hz), 8.44 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 24.5, 29.6 (3xC), 30.7, 34.7, 45.3, 108.0 (1C, d, *J* = 40.1 Hz), 111.2, 118.7 (1C, d, *J* = 5.0 Hz), 121.0, 122.4, 132.5, 140.3, 141.3, 149.5 (1C, d, *J* = 14.3 Hz), 156.0 (1C, d, *J* = 6.7 Hz), 164.4, 163.9 (1C, d, *J* = 242.7 Hz), 176.0; ¹⁹F NMR (282 MHz): -63.4 (s); LRMS (ESI) *m/z*: Estimated 418.12 [M-H]⁻, found 418.11; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₂FN₃O₄S 420.1388, found 420.1392; HPLC-purity >99%, RT = 16.4 min.

4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1yl)butanamide (1j)

Was prepared from 4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanoic acid**1k**(0.14 g, 0.33 mmol) using the general method

xiv. Purification of the crude material on silica gel using MeOH in DCM (1%) and AcOH (0.1%) afforded the title product 1j as white solid (0.10 g, 70%).

m.p. 85 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.51 (9H, s), 2.09 (2H, m), 2.41 (2H, t, *J* = 6.3 Hz), 4.38 (2H, m), 5.97 (1H, bs), 6.19 (1H, bs), 7.40 (1H, d, *J* = 2.1 Hz), 7.60 (1H, d, *J* = 5.1 Hz), 7.64 (1H, d, *J* = 8.7 Hz), 7.77 (1H, d, *J* = 8.4 Hz), 8.31 (1H, d, *J* = 5.1 Hz), 8.33 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 24.7, 29.7, 31.8 (3xC), 34.7, 45.4, 108.0 (1C, d, *J* = 40.3 Hz), 111.2, 118.7 (1C, d, *J* = 4.95 Hz), 121.1, 122.1, 132.2, 140.7, 141.9, 149.5 (1C, d, *J* = 14.3 Hz), 156.1 (1C, d, *J* = 6.7 Hz), 164.0 (1C, d, *J* = 242.9 Hz), 164.4, 173.4; ¹⁹F NMR (282 MHz): -63.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₃FN₄O₃S 441.1367, found 441.1372; HPLC-purity >97%, RT = 15.0 min.

4-(2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanenitrile (1g)

Was prepared from 4-(2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1*H*benzo[*d*]imidazol-1-yl)butanamide **1j** (81 mg, 0.19 mmol) according to the general procedure *xv*. Purification of the crude product on silica gel using EtOAc:Hex (1:2 \rightarrow 1:1) as eluent gave the title product **1g** as white amorphous solid (67 mg, 87%).

¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 2.19 (2H, m), 2.41 (2H, t, *J* = 6.6 Hz), 4.50 (2H, m), 7.40 (1H, s), 7.44 (1H, d, *J* = 8.7 Hz), 7.65 (1H, d, *J* = 5.1 Hz), 7.70 (1H, d, *J* = 8.7 Hz), 8.36 (1H, d, *J* = 5.1 Hz), 8.39 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 15.1, 25.3, 29.7 (3xC), 34.7, 44.4, 108.1 (1C, d, *J* = 40.1 Hz), 110.2, 118.1, 118.7 (1C, d, *J* = 5.0 Hz), 121.4, 122.4, 132.7, 140.2, 141.9, 149.6 (1C, d, *J* = 14.6 Hz), 155.9 (1C, d, *J* = 6.7 Hz), 163.9 (1C, d, *J* = 242.8 Hz), 164.2; ¹⁹F NMR (282 MHz): -63.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₁FN₄O₂S 401.1442, found 401.1436; HPLC-purity >99%, RT = 18.0 min.

Rac-2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1-(2-methylpentyl)-1Hbenzo[d]imidazole (2a)

Was prepared from *rac-2-(tert-*butyl)-5-((2-fluoroethyl)thio)-1-(2-methylpentyl)-1*H*benzo[d]imidazole (89 mg, 0.26 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex gradient (1:6 \rightarrow 1:4 \rightarrow 1:2) afforded the product **2a** as colourless oil (80 mg, 82%). ¹H NMR (300 MHz, CDCl₃): δ 0.87 (3H, m), 0.89 (3H, m), 1.17 - 1.50 (4H, m, 2xCH₂), 1.57 (9H, s), 2.24 - 2.38 (1H, m), 3.51 (2H, dt, $J_1 = 20.7$ Hz, $J_2 = 6$ Hz), 4.19 (2H, 2xdd, $J_1 = 8.7$ Hz, $J_2 = 14.7$ Hz), 4.69 - 4.84 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 6$ Hz), 7.44 (1H, d, J = 8.7 Hz), 7.75 (1H, d, J = 9 Hz), 8.32 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 14.2, 17.6, 20.2, 30.4 (3xC), 33.7, 35.0, 37.1, 52.0, 57.2 (1C, d, J = 21.3 Hz), 76.4 (1C, d, J = 172 Hz), 111.3, 120.8, 121.5, 132.4, 140.7, 141.6, 164.7; ¹⁹F NMR (282 Hz): δ -221.8 (tt, $J_1 = 20.6$ Hz, $J_2 = 46.2$ Hz); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₁₉H₂₉FN₂O₂S 391.1826, found 391.1826; HPLC-purity: 98%, RT = 25.0 min.

2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1-pentyl-1H-benzo[d]imidazole (2b)

Was prepared from 2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1-pentyl-1*H*benzo[d]imidazole (81 mg, 0.25 mmol) using the general method x. Purification on silica gel using EtOAc:Hex (1:4 \rightarrow 1:2) afforded the product **2b** as colourless solid (48 mg, 54%).

m.p. 93.8 °C; ¹H NMR (300 MHz, CDCl₃): δ 0.94 (3H, t, J = 6.9 Hz), 1.43 (4H, m), 1.54 (9H, s), 1.85 (2H, m), 3.47 – 3.54 (2H, dt, $J_1 = 21$ Hz, $J_2 = 5.7$ Hz), 4.29 (2H, m), 4.66 – 4.81 (2H, t, $J_1 = 46.5$ Hz, $J_2 = 6.0$ Hz), 7.40 (1H, d, J = 8.4 Hz), 7.76 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 8.30 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 22.4, 29.2, 29.5, 29.6 (3xC), 34.5, 46.1, 57.2 (1C, d, J = 21.5 Hz), 77.3 (1C, d, J= 172 Hz), 110.2, 120.7, 121.7, 132.4, 140.2, 141.6, 163.9; ¹⁹F NMR (282 Hz): δ -221.7 (tt, $J_1 = 46.5$ Hz, $J_2 = 20.9$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₈H₂₇FN₂O₂S 355.1850, found 355.1850; HPLC-purity: >98%, RT = 19.4 min.

2-(tert-butyl)-1-(cyclobutylmethyl)-5-((2-fluoroethyl)sulfonyl)-1Hbenzo[d]imidazole (2c)

Was prepared from 2-(*tert*-butyl)-1-(cyclobutylmethyl)-5-((2-fluoroethyl)thio)-1*H*benzo[d]imidazole (56 mg, 0.17 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex (1:6 \rightarrow 1:4 \rightarrow 1:2) gave the product **2c** as white powder (45 mg, 74%).

m.p. 100.8 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 1.87 - 2.00 (4H, m), 2.03 - 2.14 (2H, m), 2.69 - 2.84 (1H, m), 3.52 (2H, dt, $J_1 = 21$ Hz, $J_2 = 6$ Hz), 4.37 (2H, d, J = 6.3 Hz), 4.68 - 4.84 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 6.0$ Hz), 7.46 (1H, d, J = 8.4 Hz),

7.77 (1H, d, J = 6 Hz), 8.31 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 18.5, 28.3 (2xC), 30.0 (3xC), 34.8, 37.4, 51.2, 57.2 (1C, d, $J_{CF} = 21.3$ Hz), 77.4 (1C, d, J = 171.9 Hz), 110.8, 120.7, 121.6, 132.4, 140.6, 141.6, 164.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -63.4 (s); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₁₈H₂₅FN₂O₂S 375.1513, found 375.1513; HPLC-purity >99%, RT = 23.1 min.

2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1-(3-methoxypropyl)-1Hbenzo[d]imidazole (2d)

Was prepared from 3-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1*H*-benzo[d]imidazol-1yl)-*N*,*N*-dimethylpropan-1-amine (92 mg, 2.8 mmol) according to the general method **x**. Purification on silica gel using EtOAc:Hex (1:2 \rightarrow 1:1) afforded the product 2d as white solid (0.11 g, >99%).

¹H NMR (300 MHz, CDCl₃): δ 1.58 (9H, s), 2.11 (2H, m), 3.41 (3H, s), 3.51 (2H, m), 3.53 (2H, m), 4.49 (2H, m), 4.69 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 6$ Hz), 7.49 (1H, d, J = 8.7 Hz), 7.79 (1H, d, J = 8.4 Hz), 8.33 (1H, s); ¹³C NMR (75 MHz, CDCl₃): 29.7 (3xC), 30.3, 43.5, 57.2 (1C, d, J = 21.3 Hz), 59.1, 69.5, 77.3 (1C, d, J = 172.5 Hz), 110.3, 120.7, 121.8, 132.5, 140.3, 141.6, 164.1; ¹⁹F NMR (282 MHz): δ -221.7 (tt, $J_1 = 46.8$ Hz, $J_2 = 20.9$ Hz); HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calculated for C₁₇H₂₅FN₂O₃S 379.1462, found 379.1458; HPLC purity > 95%, RT = 16.7 min.

2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1Hbenzo[d]imidazole (2e)

Was prepared from 2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1H-benzo[d]imidazole (99 mg, 0.28 mmol) using the general method x. Purification on silica gel using EtOAc:Hex (1:1) afforded the title compound **2e** as amorphous white solid (80 mg, 74%).

Melting range 40 - 58 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.52 (4H, m), 1.59 (9H, s), 2.28 (1H, m), 3.31 (2H, m), 3.55 (2H, dt, $J_1 = 21$ Hz, $J_2 = 5.7$ Hz), 3.99 (2H, m), 4.26 (2H, d, J = 7.5 Hz), 4.80 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 5.7$ Hz), 7.48 (1H, d, J = 8.4 Hz), 7.79 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 8.33 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): 30.3 (3xC), 31.3 (2xC), 35.0, 37.0, 51.3, 57.2 (1C, d, J = 15.0 Hz), 67.6 (2xC), 77.5 (1C, d, J = 180.0 Hz), 111.0, 120.9, 121.7, 132.8, 140.8, 141.6, 164.6; ¹⁹F NMR (282 MHz): δ -221.7 (tt, $J_1 = 46.5$ Hz, $J_2 = 20.9$ Hz); HRMS (ESI-TOF) m/z:

 $[M+Na]^+$ calculated for C₁₉H₂₇FN₂O₃S 405.1619, found 405.1614; HPLC-purity >97%, RT = 14.9 min.

4-(2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanenitrile (2g)

Was prepared from 4-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1*H*-benzo[d]imidazol-1yl)butanenitrile (0.17 g, 0.52 mmol) according to the general method x. The crude product was purified on silica gel using EtOAc:Hex (1:1) and recrystallised from DCM and hexane to give the title product **2g** as white solid (90 mg, 47%).

m.p. 116.2 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 2.20 (2H, m), 2.59 (2H, t, J = 6.6 Hz), 3.50 (2H, dt, $J_1 = 21.9$ Hz, $J_2 = 4.8$ Hz), 4.49 (2H, m), 4.64 - 4.84 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 5.7$ Hz), 7.44 (1H, d, J = 8.4 Hz), 7.75 (1H, d, J = 8.7 Hz), 8.30 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 14.3, 25.2, 29.6 (3xC), 34.5, 44.3, 57.2 (1C, d, J = 21.3 Hz), 77.2 (1C, d, J = 67.5 Hz), 109.9, 118.3, 120.9, 122.2, 133.0, 139.8, 141.5, 163.8; ¹⁹F NMR (282 MHz): -221.4 (tt, $J_1 = 46.5$ Hz, $J_2 = 21.4$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₂FN₃O₂S 352.1490, found 352.1485; HPLC-purity >97%, RT = 15.9 min.

Methyl 4-(2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1H-benzo[d]imidazol-1yl)butanoate (2h)

Was prepared from methyl 4-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1Hbenzo[d]imidazol-1-yl)butanoate (0.40 g, 1.14 mmol) using the general method x. Purification of the crude material on silica gel using EtOAc:Hex gradient (1:3 \rightarrow 1:2) afforded the title product **2h** as light yellow oil (0.35 g, 79%).

¹H NMR (300 MHz, CDCl₃): δ 1.57 (9H, s,), 2.16 (2H, m), 2.54 (2H, t, J = 6.6 Hz), 3.52 (2H, t, $J_1 = 21$ Hz, $J_2 = 6$ Hz), 3.75 (3H, s), 4.41 (2H, m), 4.75 (2H, t, $J_1 = 6.9$ Hz, $J_2 = 46.5$ Hz), 7.57 (1H, d, J = 8.4 Hz), 7.34 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 8.32 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.6, 29.7 (3xC), 30.8, 34.6, 45.2, 52.1, 57.3 (1C, d, J = 21.4 Hz), 77.4 (1C, d, J = 172.5 Hz), 110.4, 120.8, 122.0, 132.6, 140.2, 141.6, 163.9, 172.9; ¹⁹F NMR (282 MHz, CDCl₃): δ -221.7 (tt, $J_1 = 46.5$ Hz; $J_2 = 20.9$ Hz); HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₁₈H₂₅FN₂O₄S 407.1411, found 407.1416; HPLC-purity >95%, RT = 17.7 min.

4-(2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butan-1-ol (2i)

Was prepared from 4-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1*H*-benzo[d]imidazol-1yl)butan-1-ol (91 mg, 0.28 mmol) according to the general method x. Purification on silica gel using EtOAc:Hex (1:1) \rightarrow EtOAc as eluent afforded the title product **2i** as opaque oil (71 mg, 71%).

¹H NMR (300 MHz, CDCl₃): δ 1.52 (9H, s), 1.72 (2H, m), 1.94 (2H, m), 2.66 (1H, br s), 3.47 (2H, dt, $J_1 = 21.3$ Hz, $J_2 = 5.7$ Hz), 3.73 (2H, t, J = 6.0 Hz), 4.36 (2H, m), 4.71 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 5.7$ Hz), 7.44 (1H, d, J = 8.4 Hz), 7.71 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 8.27 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 26.6, 29.6 (3xC), 29.8, 34.5, 45.9, 57.2 (1C, d, J = 21.3 Hz) 61.8, 77.2 and 78.3 (1C, d, J = 172.0), 110.5, 120.5, 121.7, 132.3, 140.1, 141.4, 163.9; ¹⁹F NMR (282 MHz, CDCl₃): δ - 221.6 (tt, $J_1 = 46.8$ Hz, $J_2 = 21.2$ Hz); HRMS (ESI-TOF) m/z: [2M+Na]⁺ calculated for C₁₇H₂₅FN₂O₃S 735.3032, found 735.3044; HPLC-purity >97%, RT = 12.7 min.

4-(2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanamide (2j)

Was prepared from 4-(2-(*tert*-butyl)-5-((2-fluoroethyl)thio)-1*H*-benzo[d]imidazol-1yl)butanamide (30 mg, 0.09 mmol) according to the general procedure x. Purification on silica gel using MeOH in DCM (4% \rightarrow 5%) afforded the title product **2j** as white solid (28 mg, 84%).

m.p. 175.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.56 (9H, s), 2.16 (2H, m), 2.43 (2H, t, J = 6.6 Hz), 3.52 (2H, dt, $J_1 = 21$ Hz, $J_2 = 5.7$ Hz), 4.43 (2H, m), 4.40 (2H, dt, $J_1 = 46.5$ Hz, $J_2 = 5.7$ Hz), 5.60 (2H, br s), 7.62 (1H, d, J = 8.4 Hz), 7.78 (1H, d, J = 8.4 Hz), 8.32 (1H, m); ¹³C NMR (75 MHz, CDCl₃): δ 24.8, 29.7 (3xC), 31.9, 34.6, 45.3, 57.3 (1C, d, J = 21.3 Hz), 77.3 and 78.4 (1C, d, J = 172 Hz), 110.7, 120.7, 121.9, 132.5, 140.4, 141.6, 164.0, 173.4; ¹⁹F NMR (282 MHz): δ -221.6 (tt, $J_1 = 46.5$ Hz, $J_2 = 20.9$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₄FN₃O₃S 370.1595, found 370.1591; HPLC purity >95%, RT = 12.9 min.

4-(2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanoic acid (2k)

Was prepared from methyl 4-(2-(tert-butyl)-5-((2-fluoroethyl)sulfonyl)-1H-benzo[d]imidazol-1-yl)butanoate (0.25 g, 0.65 mmol) using trimethyltin hydroxide (0.58 g, 3.23 mmol) according to the general method*xiii*. Purification of the crude

material was done on silica gel using EtOAc:Hex (1:1) with 0.1% acetic acid as eluent, which gave the title compound 2k as white crystalline solid.

m.p. 97.3 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.59 (9H, s), 2.13 (2H, m), 2.58 (2H, t, J = 6.6 Hz), 3.65 (2H, t, $J_1 = 24$ Hz, $J_2 = 5.4$ Hz), 4.55 (2H, m), 4.75 (2H, t, $J_1 = 5.1$ Hz, $J_2 = 46.8$ Hz), 7.81 (1H, dd, $J_1 = 8.7$ Hz, $J_2 = 1.5$ Hz), 7.90 (1H, d, J = 8.7 Hz), 8.18 (1H, d, J = 1.5 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 25.8, 29.6 (3xC), 31.5, 35.5, 46.5, 59.0 (1C, d, J = 20.9 Hz), 78.5 (1C, d, J = 169.8 Hz), 112.9, 119.9, 123.6, 135.0, 140.4, 140.7, 165.2, 177.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -222.17 (tt, $J_1 = 46.8$ Hz; $J_2 = 24$ Hz); LRMS (ESI) *m/z*: estimated 393.13 [M+Na]⁺, found 393.11; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₃FN₂O₄S 371.1435, found 371.1440; HPLC purity >95%, RT = 14.6 min.

Isopropyl (4-bromo-2-pivalamidophenyl)glycinate (12m)

Was prepared in three steps in a telescoped process from the starting material (11b).

4-bromo-1-fluoro-2-nitrobenzene (11b) (3.36 mL, 27.2 mmol) and glycine (2.25 g, 1.1 equiv) were reacted according to the general procedure xi. After completion of the reaction, ethanol was evaporated off and the residue was dissolved in EtOAc (100 mL) and water (30 mL). HCl (1M) was added until all the carboxylic acid was free of the di-isopropylamine salt. The organic layer was separated and dried over anhydrous MgSO₄. Filtration and concentration under reduced pressure gave yellow solid (7.6 g, >99%) that was used without purification in the next step. (4-bromo-2nitrophenyl)glycine (4.21 g, 15.3 mmol) was dissolved in isopropanol (60 mL) and treated with H₂SO₄ (0.16 mL, 20 mol%). After refluxing the solution overnight, the solution was concentrated to get isopropyl (4-bromo-2-nitrophenyl)glycinate as bright orange solids. The crude material was dissolved in ethanol (80 mL), treated with Fe powder (5 equiv, 4.27 g) and aqueous NH₄Cl (5 equiv, 4.09 g/20 mL H₂O) and placed in a sonicator for 2 hours. The resulting mixture containing isopropyl (2-amino-4bromophenyl)glycinate was neutralised with saturated NaHCO₃ and filtered through a pad of basic alumina and Celite®. The organic layer was separated from the aqueous phase, washed with brine and dried over anhydrous MgSO₄. Concentration of the filtered solution gave the crude aniline as brown solid that was dissolved in dry DCM under N₂ atmosphere and cooled down to 0 °C. Pyridine (1.2 equiv., 1.48 mL) and

DMAP (5 mol%, 93 mg) were added to the solution. Pivaloyl chloride (1.1 equiv, 2.07 mL) was added dropwise to the solution at 0°C. The reaction was stirred at room temperature for 1 hour, after which it was diluted with DCM. The organic phase was washed with saturated NH₄Cl, NaHCO₃ and brine, and dried over anhydrous MgSO₄. The solution was filtered and concentrated to give crude product that was purified on silica gel using hexane \rightarrow EtOAc:Hex (1:8 \rightarrow 1:4). The title product (12m) was collected as white solid (3.36 g, 61% over three steps).

m.p. 112.7 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.28 (6H, d, J = 6.3 Hz), 1.35 (9H, s), 3.79 (2H, s), 4.22 (1H, bs), 5.10 (1H, m), 6.51 (1H, d, J = 8.4 Hz), 7.50 (1H, dd, $J_1 = 2.1$ Hz, $J_2 = 8.7$ Hz), 7.44 (1H, bs), 7.56 (1H, d, J = 2.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 21.9 (2xC), 27.8 (3xC), 39.7, 47.0, 69.5, 111.2, 115.6, 126.7, 128.3, 129.7, 140.3, 170.5, 177.6; LRMS (ESI) *m/z*: Estimated 393.08 and 395.08, found 393.05 and 395.04.

2-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)ethan-1-ol (7n)

Was prepared from isopropyl (4-bromo-2-pivalamidophenyl)glycinate (12m) in three steps *v*, *xii* and *xvi*: Intermediate 12m (1.87 g, 5.06 mmol) was treated with *p*-TsOH monohydrate in DMSO according to the general method *v*. Purification of the crude material on silica gel using EtOAc:Hex (1:10) as the eluent afforded isopropyl 2-(5bromo-2-(*tert*-butyl)-1*H*-benzo[d]imidazol-1-yl)acetate **13m** as yellow oil (1.78 g, 79%).

¹H NMR (300 MHz, CDCl₃): δ 1.19 (6H, d, J = 6.3 Hz), 1.49 (9H, s), 4.97 (2H, s), 4.22 (1H, bs), 5.07 (1H, m), 7.00 (1H, d, J = 8.4 Hz), 7.31 (1H, d, J = 8.4 Hz), 7.88 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 21.7 (2xC), 29.5 (3xC), 34.1, 47.2, 70.3, 110.0, 115.1, 122.7, 125.7, 136.0, 142.9, 161.8, 166.9; LRMS (ESI) *m/z*: estimated 375.07 and 377.07 [M+H]⁺, found 375.04 and 377.02.

Isopropyl 2-(5-bromo-2-(*tert*-butyl)-1*H*-benzo[d]imidazol-1-yl)acetate **13m** (0.42 g, 1.23 mmol) was reacted with 4-methoxy- α -toluenethiol (90%, 0.29 mL, 1.85 mmol) according to the general procedure *xii*. Purification of the crude material on silica gel using EtOAc:Hex (1:6) gave isopropyl 2-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*-benzo[d]imidazol-1-yl)acetate **7m** as light yellow solid (0.45 g, 85%).

m.p. 101.1 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.19 (6H, d, J = 6.3 Hz), 1.51 (9H, s), 3.75 (3H, s), 4.04 (2H, s), 4.97 (2H, s), 5.07 (1H, m), 6.76 (2H, d, J = 8.4 Hz), 7.00 (1H, d, J = 8.4 Hz), 7.15 (2H, d, J = 8.1 Hz), 7.19 (1H, dd, $J_1 = 8.4$ Hz, $J_2 = 1.5$ Hz), 7.82 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 21.7 (2xC), 29.5 (3xC), 34.0, 40.6, 47.2, 55.3, 70.1, 109.0, 113.9 (2xC), 123.1, 127.0, 128.9, 130.0 (2xC), 130.1, 136.3, 142.1, 158.7, 161.3, 167.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₄H₃₀N₂O₃S 427.2050, found 427.2044.

Isopropyl 2-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*-benzo[d]imidazol-1yl)acetate **7m** (0.45 g, 1.05 mmol) was treated with DIBAL-H (4.2 mL, 1M, 4.2 mmol) according to the general procedure *xvi*. Purification of the crude material on silica gel using EtOAc:Hex (1:2 \rightarrow 1:1) gave the title compound **7n** as white solid (0.34 g, 86%).

m.p. 114.6 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.48 (9H, s), 3.71 (3H, s), 3.95 (2H, s), 3.95 (2H, t, J = 6.6 Hz), 4.02 (2H, s), 4.43 (2H, t, J = 6.6 Hz), 4.97 (2H, s), 5.07 (1H, m), 6.73 (2H, d, J = 8.1 Hz), 7.14 (2H, d, J = 8.1 Hz), 7.15 (1H, m), 7.20 (1H, d, J = 8.4 Hz), 7.75 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 29.9 (3xC), 34.3, 40.6, 47.4, 55.3, 60.8, 110.2, 114.0 (2xC), 122.4, 126.5, 128.9, 130.0 (3xC), 136.0, 142.0, 158.7, 161.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₁H₂₆N₂O₂S 371.1788, found 371.1781.

2-(tert-butyl)-5-(ethylsulfonyl)-1-(2-(2-fluoroethoxy)ethyl)-1H-benzo[d]imidazole (31)

Was prepared in four steps *xvii*, *vi*, *ix* and *x* from the intermediate 7n:

Compound **7n** (0.33 g, 0.90 mmol) was reacted with 2-fluoroethylbromide (0.34 mL, 4.50 mmol) according to the general procedure *xvii*. The crude product was purified on silica gel using EtOAc:Hex (1:3) as eluent, which afforded 2-(*tert*-butyl)-1-(2-(2-fluoroethoxy)ethyl)-5-((4-methoxybenzyl)thio)-1*H*-benzo[d]imidazole **7l** as light yellow oil (0.35 g, 94%).

¹H NMR (300 MHz, CDCl₃): δ 1.57 (9H, s), 3.62 – 3.72 (2H, dt, $J_1 = 29.7$ Hz, $J_2 = 3.6$ Hz), 3.78 (3H, s), 3.88 (2H, t, J = 6.3 Hz), 4.07 (2H, s), 4.44 - 4.59 (2H, dt, $J_1 = 47.7$ Hz, $J_2 = 3.9$ Hz), 4.56 (2H, t, J = 6.3 Hz), 6.79 (2H, d, J = 8.4 Hz), 7.19 (2H, d, J = 8.4 Hz), 7.22 - 7.29 (2H, m), 7.84 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 29.8

(3xC), 34.2, 40.4, 45.1, 55.2, 69.6, 70.6 (1C, d, J = 19.5 Hz), 83.0 (1C, d, J = 169 Hz), 110.0, 113.8 (2xC), 122.6, 126.3, 128.6, 129.9 (2xC), 130.0, 135.9, 142.2, 158.6, 161.4; ¹⁹F NMR (282 MHz): δ -223.0 (tt, $J_1 = 47.7$ Hz, $J_2 = 29.3$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₃H₂₉FN₂O₂S 417.2007, found 417.2001.

Intermediate **71** (0.19 g, 0.45 mmol) was deprotected and the free thiol was substituted with ethyl bromide (0.08 mL, 1.13 mmol) according to the general methods *vi* and *ix*. The crude material was purified on silica gel with EtOAc:Hex (1:2) to afford 2-(*tert*-butyl)-5-(ethylthio)-1-(2-(2-fluoroethoxy)ethyl)-1*H*-benzo[d]imidazole **101** as light yellow oil (0.15 g, >99%).

¹H NMR (300 MHz, CDCl₃): δ 1.12 (3H, t, J = 7.5 Hz), 1.41 (9H, s), 2.76 (2H, q, J = 7.5 Hz), 3.47 - 3.57 (dt, $J_1 = 29.7$ Hz, $J_2 = 4.2$ Hz), 3.73 (2H, t, J = 6.3 Hz), 4.28 - 4.44 (dt, $J_1 = 47.7$ Hz, $J_2 = 3.9$ Hz), 4.39 (2H, t, J = 6.6 Hz), 7.15 (2H, m), 7.66 (1H, s); ¹³C NMR (75 MHz, CDCl₃): 14.6, 29.6, 29.9, 34.2, 45.1, 69.6, 70.6 (1C, d, J = 19.5 Hz), 83.0 (1C, d, J = 168.7 Hz), 110.1, 121.9, 125.9, 128.6, 135.7, 142.3, 161.4; ¹⁹F NMR (282 MHz): δ -223.0 (tt, $J_1 = 47.7$ Hz, $J_2 = 29.6$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₅FN₂OS 325.1744, found 325.1739.

Sulfide 101 (0.15 g, 0.45 mmol) was oxidised according to the general method x. Purification of the crude material on silica gel using EtOAc:Hex gradient (1:3 \rightarrow 1:2 \rightarrow 1:1) afforded the title product 31 as white crystalline solid (0.12 g, 72%).

m.p. 133.2 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.25 (3H, t, J = 7.5 Hz), 1.59 (9H, s), 3.12 (2H, q, J = 7.5 Hz), 3.63 - 3.73 (2H, dt, $J_1 = 29.7$ Hz, $J_2 = 4.2$ Hz), 3.92 (2H, t, J = 6.3 Hz), 4.44 - 4.54 (2H, dt, $J_1 = 47.4$ Hz, $J_2 = 3.9$ Hz), 4.62 (H, t, J = 6.0 Hz), 7.55 (1H, d, J = 8.4 Hz), 7.76 (1H, dd, $J_1 = 8.7$ Hz, $J_2 = 1.8$ Hz), 8.30 (1H, d, J = 1.2 Hz); ¹³C NMR (75 MHz, CDCl₃): 7.86, 29.9 (3xC), 34.7, 45.7, 51.2, 70.0, 70.8 (1C, d, J = 19.4 Hz), 83.1 (1C, d, J = 168.9 Hz), 110.9, 120.8, 122.1, 132.1, 140.3, 141.4, 163.9; ¹⁹F NMR (282 MHz): δ -222.9 (tt, $J_1 = 47.4$ Hz, $J_2 = 29.6$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₅FN₂O₃S 357.1643, found 357.1638; HPLC-purity 98%, RT = 17.5 min.

Radiolabelling precursors:

4-((2-(tert-butyl)-1-(3-methoxypropyl)-1H-benzo[d]imidazol-5-yl)sulfonyl)-N,N,Ntrimethylpyridin-2-aminium iodide (14d) Was prepared in two steps: 2-(*tert*-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(3methoxypropyl)-1*H*-benzo[d]imidazole (0.23 g, 0.57 mmol) and dimethylamine (2M in THF, 0.43 mL, 1.5 equiv) were first reacted using the general method *xi*. The crude material was purified on silica gel using EtOAc:Hex (1:1.5) \rightarrow (1:1), which afforded 4-((2-(*tert*-butyl))-1-(3-methoxypropyl)-1*H*-benzo[d]imidazol-5-yl)sulfonyl)-*N*,*N*dimethylpyridin-2-amine as white solid (0.21 g, 84%).

m.p. 161.6 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.54 (9H, s), 2.08 (2H, m), 3.10 (6H, s), 3.39 (3H, s), 3.49 (2H, t, J = 5.4 Hz), 4.43 (2H, m), 6.86 (1H, d, J = 5.1 Hz), 7.02 (1H, s), 7.42 (1H, d, J = 8.7 Hz), 7.82 (1H, dd, $J_1 = 8.7$ Hz, $J_2 = 1.8$ Hz), 8.19 (1H, d, J = 5.1 Hz), 8.33 (1H, d, J = 0.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.7, 30.3, 34.6, 38.2 (2xC), 43.5, 59.1, 69.6, 102.8, 107.8, 110.3, 120.7, 121.7, 133.8, 140.1, 142.0, 149.5, 151.5, 159.6, 164.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₂H₃₀N₄O₃S 453.1931, found 453.1935; HPLC-purity >97%, RT = 17.9 min.

Procedure *xix*: 4-((2-(*tert*-butyl)-1-(3-methoxypropyl)-1H-benzo[d]imidazol-5yl)sulfonyl)-N,N-dimethylpyridin-2-amine (40 mg, 0.093 mmol) was dissolved in methanol (2 mL) and methyl iodide (1.5 mL) and heated to 40 °C in a sealed pressure tube. After 27 h, the reaction mixture was evaporated to dryness and the solid residue was dried under high vacuum. The dried residue was triturated with DCM and hexane several times to give the product **14d** as orange solid (41 mg, 77%).

m.p. 139.5 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.78 (9H, s), 2.22 (2H, m), 3.41 (3H, s), 3.58 (11H, s and t) 4.72 (2H, m), 7.05 (1H, dd, $J_1 = 6.9$ Hz, $J_2 = 1.2$ Hz), 7.65 (1H, s), 8.00 (1H, d, J = 9.0 Hz), 8.18 (1H, dd, $J_1 = 8.7$ Hz; $J_2 = 1.8$ Hz), 8.28 (1H, d, J = 6.6 Hz), 9.23 (1H, s); HRMS (ESI-TOF) m/z: [M]+ calculated for C₂₃H₃₃N₄O₃S 445.2268, found 445.2263.

2-(tert-butyl)-5-((2-chloropyridin-4-yl)sulfonyl)-1-(3-methoxypropyl)-1Hbenzo[d]imidazole (15d)

Was prepared in three steps following the general methods *vi*, *vii* and *x*: 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-(3-methoxypropyl)-1*H*-benzo[d]imidazole (0.26 g, 0.65 mmol) was deprotected and then reacted with 4-bromo-2-chloropyridine (80 μ L, 0.71 mmol) according to the general methods *vi* and *vii*. Purification of the crude material on silica gel using EtOAc:Hex (1:4 \rightarrow 1:3) gave 2-(*tert*-butyl)-5-((2-chloropyridin-4-
yl)thio)-1-(3-methoxypropyl)-1*H*-benzo[d]imidazole as light yellow solid (0.22 g, 87%).

m.p. 102.0 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.59 (9H, s), 2.15 (2H, m), 3.41 (3H, s), 3.54 (2H, t, J = 5.4 Hz), 4.47 (2H, m), 6.83 (1H, m), 6.84 (1H, m), 7.37 (1H, d, J = 8.4 Hz), 7.43 (1H, d, J = 8.4 Hz), 7.97 (1H, s), 8.05 (1H, d, J = 5.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.8, 30.3, 34.5, 43.4, 59.1, 69.7, 111.3, 119.1, 119.88, 119.96, 127.7, 129.4, 138.0, 143.1, 148.8, 151.9, 155.5, 162.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₄ClN₃OS 390.1401, found 390.1405.

2-(tert-butyl)-5-((2-chloropyridin-4-yl)thio)-1-(3-methoxypropyl)-1H-

benzo[d]imidazole was oxidised to give (15d) according to the general method x. Purification of the crude material on silica gel using the eluent EtOAc:Hex (1:3) gave the title product as clear viscous oil (0.20 g, 90%).

¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 2.07 (2H, m), 3.40 (3H, s), 3.50 (2H, t, *J* = 5.4 Hz), 4.46 (2H, m), 7.49 (1H, d, *J* = 8.4 Hz), 7.67 (1H, d, *J* = 5.1 Hz), 7.78 (1H, s), 7.81 (1H, d, *J* = 8.7 Hz), 8.37 (1H, s), 8.51 (1H, d, *J* = 5.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.7, 30.3, 34.7, 43.5, 59.1, 69.5, 110.8, 119.4, 121.1, 121.8, 121.9, 132.2, 140.7, 142.0, 153.7, 164.6; HRMS (ESI-TOF) m/z: [M+Na]⁺ calculated for C₂₀H₂₄ClN₃O₃S 444.1119, found 444.1124; HPLC-purity >99%, RT = 18.9 min.

2-(tert-butyl)-5-((2-chloropyridin-4-yl)sulfonyl)-1-((tetrahydro-2H-pyran-4yl)methyl)-1H-benzo[d]imidazole (15e)

Was prepared in three steps following the general methods *vi*, *vii* and *x*: 2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-benzo[d]imidazole (0.20 g, 0.47 mmol) was deprotected, followed by a coupling reaction with 2-chloro-4-bromopyridine (60 µL, 0.51 mmol) according to the methods *vi* and *vii*. Purification of the crude material on silica gel using EtOAc:Hex (1:3 \rightarrow 1:2) afforded 2-(*tert*-butyl)-5-((2-chloropyridin-4-yl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-benzo[d]imidazole as light yellow solid (0.15 g, 79% over two steps). m.p. 146.3 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.54 (4H, m), 1.59 (9H, s), 2.31 (1H, m), 3.33 (2H, m), 4.00 (2H, m), 4.24 (2H, d, *J* = 7.2 Hz), 6.84 (2H, m), 7.37 (1H, d, *J* = 8.4 Hz), 7.41 (1H, d, *J* = 8.4 Hz), 7.96 (1H, s), 8.06 (1H, m); ¹³C NMR (75 MHz, CDCl₃): δ 30.4 (3xC), 31.4 (2xC), 34.9, 37.0, 51.3, 67.7 (2xC), 112.0, 119.1, 119.9, 121.0, 127.7, 129.3, 138.4, 142.9, 148.8, 151.8, 155.3, 163.1; HRMS (ESI-TOF) m/z: $[M+Na]^+$ calculated for $C_{22}H_{26}CIN_3OS$ 416.1558, found 416.1552.

2-(*tert*-butyl)-5-((2-chloropyridin-4-yl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*-benzo[d]imidazole (0.18 g, 0.44 mmol) was oxidised using the general method x. Purification of the crude material on silica gel using EtOAc:Hex (1:2 \rightarrow 1:1) gave (15e) as off-white solid (0.15 g, 74%).

m.p. 202.2 °C; ¹H NMR (300 MHz, CDCl₃): δ 1.49 (4H, m), 1.56 (9H, s), 2.24 (1H, m), 3.29 (2H, m), 3.98 (2H, m), 4.25 (2H, d, *J* = 7.5 Hz), 7.46 (2H, d, *J* = 8.7 Hz), 7.68 (1H, d, *J* = 5.1 Hz), 7.78 (2H, m), 8.37 (1H, s), 8.53 (1H, d, *J* = 4.8 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 30.3 (3xC), 31.2 (2xC), 35.1, 37.0, 51.4, 67.6 (2xC), 111.5, 119.5, 121.2, 121.7, 121.9, 132.3, 141.0, 141.7, 151.2, 152.9, 153.5, 164.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₂H₂₆ClN₃O₃S 448.1456, found 448.1453; HPLC-purity >99%, RT = 19.8 min.

4-(2-(tert-butyl)-5-((2-chloropyridin-4-yl)sulfonyl)-1H-benzo[d]imidazol-1yl)butanenitrile (15g)

Was prepared in four steps following the general methods *vi*, *vii*, *xv* and *v*: 4-(2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1*H*-benzo[d]imidazol-1-yl)butanamide (0.26 g, 0.62 mmol) was deprotected and reacted with 4-bromo-2-chloropyridine (76 μ L, 0.68 mmol) according to the general methods *vi* and *vii*. Purification of the crude material on silica gel using MeOH in DCM (2% \rightarrow 3%) gave 4-(2-(*tert*-butyl)-5-((2-chloropyridin-4-yl)thio)-1*H*-benzo[*d*]imidazol-1-yl)butanamide as opaque oil (0.11 g, 43%).

¹H NMR (300 MHz, CDCl₃): δ 1.53 (9H, s), 2.16 (2H, m), 2.41 (2H, t, *J* = 6.6 Hz), 4.38 (2H, m), 6.08 (2H, bs), 6.76 - 6.79 (2H, m), 7.33 (1H, dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz), 7.53 (1H, d, *J* = 8.4 Hz), 7.90 (1H, d, *J* = 1.2 Hz), 7.98 (1H, d, *J* = 5.4 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 24.8, 29.6 (3xC), 32.0, 34.3, 45.2, 111.6, 119.0, 119.7 (2xC), 127.3, 129.4, 137.8, 142.8, 148.6, 151.6, 155.6, 162.4, 173.9; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₃ClN₄OS 403.1354, found 403.1349. 4-(2-(tert-butyl)-5-((2-chloropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-

yl)butanamide (100 mg, 0.27 mmol) was treated with trifluoroacetic anhydride and triethylamine according to the general method *xv*. Purification of the crude material on silica gel using the gradient EtOAc:Hex (1:2 \rightarrow 1:1 \rightarrow EtOAc) gave 4-(2-(*tert*-butyl)-5-((2-chloropyridin-4-yl)thio)-1*H*-benzo[d]imidazol-1-yl)butanenitrile as opaque viscous oil (85 mg, 82%).

¹H NMR (300 MHz, CDCl₃): δ 1.58 (9H, s), 2.25 (2H, m), 2.59 (2H, t, *J* = 6.9 Hz), 4.50 (2H, m), 6.81 (2H, m), 7.38 (1H, m), 7.39 (1H, m), 7.97 (1H, m), 8.04 (1H, d, *J* = 6.0 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 15.1, 25.3, 29.8 (3xC), 34.4, 44.3, 110.6, 118.2, 119.1, 119.8, 120.6, 127.9, 129.8, 137.5, 143.0, 148.8, 151.7, 155.1, 162.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₁ClN₄O₂S 417.1147, found 417.1141.

4-(2-(tert-butyl)-5-((2-chloropyridin-4-yl)thio)-1H-benzo[d]imidazol-1-

yl)butanenitrile (85 mg, 0.22 mmol) was oxidised to give (15g) according to the general method x. Purification of the crude material on silica gel using EtOAc:Hex (1:1 \rightarrow 2:1) as an eluent afforded the product as sticky oil (88 mg, 94%).

¹H NMR (300 MHz, CDCl₃): δ 1.55 (9H, s), 2.18 (2H, m), 2.57 (2H, t, *J* = 6.9 Hz), 4.49 (2H, m), 7.44 (1H, d, *J* = 8.4 Hz), 7.66 (1H, dd, *J*₁ = 1.5 Hz, *J*₂ = 5.1 Hz), 7.76 (1H, m), 7.80 (1H, dd, *J*₁ = 8.7 Hz, *J*₂ = 1.8 Hz), 8.35 (1H, d, *J* = 1.2 Hz), 8.51 (1H, dd, *J*₁ = 5.1 Hz, *J*₂ = 0.6 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 15.1, 25.3, 29.6, 34.6, 44.4, 110.3, 118.1, 119.3, 121.3, 121.8, 122.3, 132.6, 140.2, 141.9, 151.2, 152.9, 153.4, 164.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₀H₂₁ClN₄O₂S 417.1147, found 417.1141; HPLC-purity: >98%, RT = 21.2 min.

2-((2-(tert-butyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-benzo[d]imidazol-5yl)sulfonyl)ethyl 4-methylbenzenesulfonate (16e)

Was prepared in four steps *vi*, *ix*, *x* and *xx* from the intermediate (7e):

2-(*tert*-butyl)-5-((4-methoxybenzyl)thio)-1-((tetrahydro-2*H*-pyran-4-yl)methyl)-1*H*benzo[d]imidazole (7e) (0.19 g, 0.45 mmol) was first deprotected according to the general method *vi*.

General procedure ix: The crude material was evaporated to dryness under N_2 flow. The residue was dissolved in MeOH (10 mL) under N_2 atmosphere and cooled to 0 °C. 2-bromoethanol (56 µL, 0.68 mmol) and aqueous NaOH (1M, 1.35 mL, 3 equiv) were added at 0 °C, after which the solution was heated to 40 °C for overnight. Reaction mixture was cooled to RT, diluted with EtOAc (20 mL) and brine (5 mL). Organic phase was separated and aqueous phase extracted with EtOAc (2x10 mL). The combined organic phase was dried over anhydrous MgSO₄. Filtration and concentration under reduced pressure afforded the crude product that was purified on silica gel using EtOAc:Hex (1:2) \rightarrow (1:1), which gave 2-((2-(*tert*-butyl))-1-((tetrahydro-2H-pyran-4-yl)methyl)-1H-benzo[d]imidazol-5-yl)thio)ethan-1-ol as clear viscous oil (0.14 g, 88% over two steps).

¹H NMR (300 MHz, CDCl₃): δ 1.49 (4H), 1.54 (9H, s), 2.25 (1H, m), 3.06 (2H, t, *J* = 5.7 Hz), 3.29 (2H, m), 3.69 (2H, t, *J* = 5.7 Hz), 3.95 (2H, d, *J* = 11.4 Hz), 4.16 (2H, d, *J* = 7.5 Hz), 7.22 (1H, d, *J* = 9 Hz), 7.28 (1H, d, *J* = 8.4 Hz), 7.82 (1H, s); ¹³C NMR (75 MHz, CDCl₃): δ 30.4 (3xC), 31.2 (2xC), 34.7, 36.8, 38.9, 51.0, 60.3, 67.6 (2xC), 110.8, 122.6, 126.4, 127.2, 136.3, 142.0, 162.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₉H₂₈NO₂S 349.1944, found 349.1940.

2-((2-(*tert*-butyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1*H*-benzo[d]imidazol-5yl)thio)ethan-1-ol (70 mg, 0.2 mmol) was oxidised to 2-((2-(*tert*-butyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1*H*-benzo[d]imidazol-5-yl)sulfonyl)ethan-1-ol according to the general method x. The product was isolated as light yellow solid (86 mg, >99%) and used without purification for the next step.

General procedure xx: 2-((2-(tert-butyl)-1-((tetrahydro-2H-pyran-4-yl)methyl)-1*H*benzo[d]imidazol-5-yl)sulfonyl)ethan-1-ol (80 mg) was dissolved in DCM (6 mL) under N₂ atmosphere. Tosyl chloride (62 mg, 0.33 mmol, in 2 mL of DCM) and pyridine (30 μ L, 2 equiv) were added dropwise to a stirring solution of alcohol. The reaction mixture was heated to mild reflux. After the reaction was complete, the solution was diluted with DCM, washed with 5% CuSO₄ (2 x 5 mL) and dried over MgSO₄. Purification on silica gel using EtOAc:Hex (1:3 \rightarrow 1:1 \rightarrow EtOAc) afforded the product (16e) as opaque viscous oil (65 mg, 56%).

¹H NMR (300 MHz, CDCl₃): δ 1.54 (4H, m), 1.57 (9H, s), 2.27 (1H, m), 2.44 (3H, s), 3.29 (2H, m), 3.45 (2H, t, *J* = 6.9 Hz), 3.96 (2H, d), 4.25 (2H, d, *J* = 7.5 Hz), 4.28 (2H, t, *J* = 6.9 Hz), 7.32 (1H, d, *J* = 8.1 Hz), 7.47 (1H, d, *J* = 8.4 Hz), 7.64 (1H, d, *J* =

8.1 Hz), 7.70 (1H, dd, J = 8.4 Hz, J = 1.5 Hz), 8.18 (1H, d, J = 1.8 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 21.8, 30.3 (3xC), 31.2 (2xC), 35.0, 36.9, 51.3, 55.6, 63.8, 67.6 (2xC), 111.3, 120.7, 121.6, 128.1 (2xC), 130.1 (2xC), 132.0, 132.2, 140.8, 141.4, 164.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₆H₃₄N₂O₆S₂ 535.1931, found 535.1923; HPLC-purity >99%, RT = 20.0 min.

2-(2-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1yl)ethoxy)ethan-1-ol (17)

General procedure xxi. NaH dispersion (60%, 0.25 g, 6.2 mmol) was weighed in a two-necked flask and placed under N₂ atmosphere. Dry THF (10 mL) was added to the flask, followed by 2-bromoacetic acid (0.29 g, 2.1 mmol) and TBAI (51 mg, 10 mol-%). The solution was warmed to 50 °C and 2-(2-(tert-butyl)-5-((4methoxybenzyl)thio)-1H-benzo[d]imidazol-1-yl)ethan-1-ol (7n) (0.51 g, 1.4 mmol) in dry THF (10 mL) was added gradually to the warm solution. The reaction was left to proceed at 50 °C for overnight. The solution was cooled down, and EtOAc (2 mL) and water (2 mL) were added. The pH of the aqueous layer was adjusted to ~5 and was extracted with EtOAc. The combined organic phases were dried over anhydrous MgSO₄. After filtration, the concentrated crude material was dissolved in DCM and filtered through a silica plug with DCM/MeOH. The baseline fraction was collected and evaporated to dryness under reduced pressure. The collected material was dissolved in MeOH (10 mL) and H_2SO_4 (15 μ L, 20 mol%) was added. The solution was refluxed at 60 °C for overnight. Once complete, the reaction mixture was cooled down to RT and concentrated. The residue was dissolved in EtOAc and washed with sat. NaHCO3 and brine, and was dried over anhydrous MgSO4. Filtration and concentration gave methyl 2-(2-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1Hbenzo[d]imidazol-1-yl)ethoxy)acetate as colourless oil (0.53g, 87% over two steps). ¹H NMR (300 MHz, CDCl₃): δ 1.54 (9H, s), 3.70 (3H, s), 3.75 (3H, s), 3.88 (2H, t, J = 6.6 Hz), 4.04 (2H, s), 4.05 (2H, s), 4.55 (2H, t, J = 6.9 Hz), 6.76 (2H, d, J = 8.7 Hz), 7.15 (2H, d, J = 8.7 Hz), 7.20 (1H, d, J = 1.8 Hz), 7.26 (1H, d, J = 8.4 Hz), 7.79 (1H, d, J = 0.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 29.9 (3xC), 34.3, 40.6, 45.0, 52.0, 53.3,

68.5, 69.6, 109.9, 113.9 (2xC), 122.8, 126.5, 128.7, 130.0 (2xC), 130.1, 136.0, 142.4,

158.7, 161.5; HRMS (ESI-TOF) m/z: $[M+H]^+$ calculated for C₂₄H₃₀N₂O₄S 443.1999, found 443.1993.

Methyl 2-(2-(tert-butyl)-5-((4-methoxybenzyl)thio)-1H-benzo[d]imidazol-1yl)ethoxy)acetate (0.36 g, 0.82 mmol) was treated with DIBAL-H (3.3 mL, 1.0 M inhexane, 3.3 mmol) according to the general procedure*xvi*. The crude product**17** (light yellow oil, 0.31 g, 91%) was carried over to the next step without furtherpurification.

¹H NMR (300 MHz, CDCl₃): δ 1.53 (9H, s), 2.32 (1H, bs), 3.52 (2H, t, *J* = 4.8 Hz), 3.68 (2H, t, *J* = 4.8 Hz), 3.74 (3H, s), 3.82 (2H, t, *J* = 6.3 Hz), 4.03 (2H, s), 6.75 (2H, d, *J* = 8.7 Hz), 7.14 (2H, dd, *J*₁ = 8.1 Hz, *J*₂ = 1.5 Hz), 7.18 (1H, d, *J* = 1.8 Hz), 7.24 (1H, d, *J* = 8.4 Hz), 7.79 (1H, d, *J* = 0.9 Hz); ¹³C NMR (75 MHz, CDCl₃): 29.9 (3xC), 34.3, 40.6, 45.2, 55.3, 61.7, 69.6, 72.8, 110.0, 113.9 (2xC), 122.8, 126.4, 128.8, 130.0 (2xC), 130.1, 136.0, 142.2, 158.7, 161.4; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₃H₃₀N₂O₃S 415.2050, found 415.2043.

2-(2-(2-(tert-butyl)-5-(ethylsulfonyl)-1H-benzo[d]imidazol-1-yl)ethoxy)ethyl 4methylbenzenesulfonate (18)

Intermediate **17** (0.25 g, 0.61 mmol) was deprotected and reacted with ethyl bromide (0.11 mL, 1.5 mmol) according to the general methods *vi* and *ix*. Purification of the crude material on silica gel using EtOAc:Hex (1:1) afforded 2-(2-(2-(*tert*-butyl)-5-(ethylthio)-1*H*-benzo[*d*]imidazol-1-yl)ethoxy)ethan-1-ol as yellow oil (0.19 g, 97%). ¹H NMR (300 MHz, CDCl₃): δ 1.25 (3H, t, *J* = 7.5 Hz), 1.55 (9H, s), 2.90 (2H, q, *J* = 7.2 Hz), 3.54 (2H, m), 3.71 (2H, m), 3.85 (2H, t, *J* = 6.3 Hz), 4.52 (2H, t, *J* = 6.6 Hz), 7.28 (2H, m), 7.79 (1H, d); ¹³C NMR (75 MHz, CDCl₃): δ 14.8, 29.8, 30.1 (3xC), 34.4, 45.3, 61.9, 69.8, 72.9, 110.1, 122.5, 126.1, 128.9, 136.1, 142.6, 162.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₁₇H₂₆N₂O₂S 323.1788, found 323.1784.

2-(2-(2-(tert-butyl)-5-(ethylthio)-1H-benzo[d]imidazol-1-yl)ethoxy)ethan-1-ol (0.17 g, 0.53 mmol) was oxidised to the corresponding sulfone using the general procedure <math>x. The product was isolated as a crude material (light yellow oil 0.16 g, 86%) and carried over to the next step without purification. 2-(2-(2-(tert-butyl)-5-(ethylsulfonyl)-1H-benzo[d]imidazol-1-yl)ethoxy)ethan-1-ol (0.15 g, 0.42 mmol) was reacted with tosyl chloride (0.13 g, 0.68 mmol) according to the general method <math>xx.

The crude material was purified on silica gel using EtOAc:Hex (1:2 \rightarrow 1:1) to give the product **18** as clear, viscous oil (0.13 g, 54%).

¹H NMR (300 MHz, CDCl₃): δ 1.24 (3H, t, *J* = 7.5 Hz), 1.56 (9H, s), 2.45 (3H, s), 3.11 (2H, q, *J* = 7.5 Hz), 3.62 (2H, m), 3.84 (2H, t, *J* = 6.0 Hz), 4.08 (2H, m), 4.55 (2H, t, *J* = 6.0 Hz), 7.35 (2H, d, *J* = 8.1 Hz), 7.53 (1H, d, *J* = 8.7 Hz), 7.74 (1H, d, *J* = 8.1 Hz), 7.74 (1H, dd, *J*₁ = 8.4 Hz, *J*₂ = 1.5 Hz), 8.30 (1H, d, *J* = 1.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 7.8, 21.8, 29.9 (3xC), 34.6, 45.6, 51.1, 69.0 (2xC), 70.0, 111.1, 120.6, 122.0, 127.9 (2xC), 130.1 (2xC), 132.0, 132.9, 140.3, 141.1, 145.2, 163.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calculated for C₂₄H₃₂N₂O₆S 509.1775, found 509.1771; HPLC-purity >97%, RT = 21.5 min.

Radiochemistry

General

¹⁸F isotope was produced from $[^{18}O]H_2O$ using (p,n) reaction on a medical cyclotron (18 MeV, IBA, Netherlands) by running a current of 14 µA for the required time (0.25 - 0.5 h). The target water was then transferred into a hot-cell and trapped in an anion exchange cartridge (Light QMA carb, 45 mg or 130 mg, Waters, unless otherwise stated). The radiolabelling was either conducted manually on a heater block or on an automated synthesis module (Synthra RN_{plus}, Synthra GmbH, Hamburg, Germany). Quantification of radioactivity measurements was done using CRC-25PET (Capintec Inc., USA) or VDC-505 (Veenstra, Netherlands) dose calibrators. Radioactive yields are reported as non-decay corrected, isolated yields at the end of synthesis and are based on the starting activity that was measured with the dose calibrator at the end of transfer from cyclotron to the hot cell. High-performance liquid chromatography (HPLC) analysis was performed on a LabSolutions system (Shimadzu, LC-20AD and CTO-20A) connected to a PDA ultraviolet spectrometer (λ = 254 nm). The eluate was directed after passage of UV-detector through a scintillation detector (Bioscan, Eckert&Ziegler, Germany) connected to a (single or multi)channel analyser for the analysis of radioactive compounds.

Radiosynthesis

The [¹⁸F]fluoride was eluted from the QMA cartridge with a solution of Kryptofix® $K_{2.2.2}$ (4 mg) and K_2CO_3 (0.69 mg, 5 µmol) dissolved in 500 µL of water and 500 µL of acetonitrile. The mixture was dried under flow of helium and reduced pressure at 68 °C for 5 min and at 95 °C for 7 min. The required 2-Cl-pyridine precursor (1.5 mg/mL, DMSO) or tosylate precursor (1.5 mg/mL, MeCN) was added to the dried [¹⁸F]-[K(K_{2.2.2})]F complex. The reaction was carried out at 130 °C for 15 min (2-Cl-pyridine precursors) or at 100 °C for 10 min, after which the reaction mixture was cooled to RT, diluted with water (1 mL) and loaded onto a 5 mL HPLC-loop. The purification of the product was performed on preparative HPLC (Agilent Zorbax Eclipse XDB-C18 (9.4 × 250 mm, 5 µm) using the eluent conditions described in the supplementary information. The desired radioactive product was collected in a

reformulation vessel containing 40 mL of H₂O. The product solution was then trapped in Sep-pak Light C18 (Waters) that was preconditioned with ethanol (10 mL), H₂O (10 mL) and air (2 × 10 mL). The cartridge was washed with H₂O (10 mL), and the product was eluted out with ethanol (1 mL) to a sterile vial containing saline (0.9%, 9 mL). Na-ascorbate (5 mg/mL) was added to the formulation of the final product ([¹⁸F]-1e, ([¹⁸F]-1g and [¹⁸F]-3l), or additionally, in HPLC-eluent (0.5% w/v), reformulation vessel (5 mg/mL) and C18-SPE cartridge washing solution (5 mg/mL) ([¹⁸F]-3l). Non-decay corrected, isolated radioactive yields were 24 ± 5% [¹⁸F]-1d (n = 8), 26 ± 6% [¹⁸F]-1e (n = 3), 28% ([¹⁸F]-1g, n = 1) and 43 ± 4% ([¹⁸F]-3l, n = 4) at the end of synthesis. The molar activities were measured by using linear UVcalibration curves prepared from the ¹⁹F-standards. The average molar activities were 263 ± 56 GBq/µmol ([¹⁸F]-1d), 158 ± 32 GBq/µmol ([¹⁸F]-1e), 128 GBq/µmol ([¹⁸F]-1g) and 115 ± 64 GBq/µmol ([¹⁸F]-3l). Radiochemical purity was confirmed to be over 95% for all the radioligands produced.

Radiolabelling of tosylate precursor 16e

Analytical UV- and HPLC-chromatograms of the reaction mixtures highlighted significant degradation of the precursor. Attempts to improve radiolabelling by decreasing the quantities of base in the labelling reactions (entries 4 - 7) also failed to produce any of the desired product. In a few of these reactions, formation of some [¹⁸F]tosylfluoride was observed. The side product was identified by labelling a prosthetic group methyl bistosylate with [¹⁸F]F⁻, which is known to result in a mixture of product [¹⁸F]fluoromethyltosylate and [¹⁸F]tosylfluoride.¹

Table 1. Conditions tested in the							
Entry ^a	Cartridge	Base ^b	K _{2.2.2.} /µmol	Solvent	T/°C	RCY/%	
1	QMA-carb	K ₂ CO ₃	10	MeCN	150	0	
2	QMA-carb	K_2CO_3	10	DMSO	150	0	
3	QMA-carb	K_2CO_3	10	DMF	150	0	
4	QMA-carb	KHCO ₃	5	MeCN	86	0	
5 ^c	PS-HCO ₃ ⁻	KHCO ₃	40	t-BuOH	86	0	
6	not used	KHCO ₃	5	MeCN	86	0^d	
7	not used	KHCO ₃	5	<i>t</i> -BuOH	86	0^d	

Table 1. Conditions tested in the $[^{18}$ F]fluorination of tosylate precursor **16e**.

^a Reaction time 5 min; ^b 5 µmol of base; ^c Elution of $[^{18}F]F^{-}$ from PS-HCO₃⁻ (45 mg) cartridge with KOMs (0.2 M, 0.1 mL) in MeOH (0.8 mL) and azeotropic drying with MeCN; ^d $[^{18}F]$ tosylfluoride by-product observed.

HPLC conditions

The chemical and radiochemical purity of the products were analysed on analytical HPLC (Agilent Eclipse Plus, C18, 4.6×150 mm), and the purification of the radiotracers was carried out on a preparative scale column Zorbax Eclipse XDB-C18 (9.4 × 250 mm, 5 µm). The HPLC conditions used and the retention times of radioligands were the following:

Radioligand	Analytical HPLC	T _r (min)	Preparative HPLC	T _r (min)
[¹⁸ F]-1d	MeCN:H ₂ O	7.5	MeCN:H ₂ O (50:50),	14.5
	(50:50),		4 mL/min	
	1 mL/min			
[¹⁸ F]-1e	MeCN:H ₂ O	5.8	MeCN:H ₂ O (40:60),	21.5
	(50:50),		4 mL/min	
	1 mL/min			
[¹⁸ F]-1g	MeCN:H ₂ O	5.8	MeCN:H ₂ O (50:50),	12.0
	(50:50),		4 mL/min	
	1 mL/min			
[¹⁸ F]-31	MeCN: 0.1 M	6.1	MeCN:NH ₄ OAc (30:70), 0.5% Na-	25.5
	NH ₄ OAc (40:60),		ascorbate (w/v),	
	1 mL/min		4 mL/min	

The molar activites were determined from the following calibration curves:

Functional activity in fluorometric membrane potential assay

AtT20 neuroblastoma cells expressing CB1 or CB2 were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS), 100 U penicillin/streptomycin, 80 μ g/mL of hygromycin, as described previously.² Cells were plated for assay in black-walled, clear bottomed 96-well microplates (Corning) in a volume of 90 μ L of Leibovitz's L-15 media supplemented with 1% FBS, 100 U penicillin/streptomycin and 15 mM glucose and incubated overnight at 37 °C in ambient CO₂.

Membrane potential was measured using a FLIPR Membrane Potential Assay kit (blue) from Molecular Devices, as described previously.³ The dye was reconstituted with assay buffer (145 mM NaCl, 22 mM HEPES, 0.338 mM Na₂HPO₄, 4.17 mM NaHCO₃, 0.441 mM KH₂PO₄, 0.407 mM MgSO₄, 0.493 mM MgCl₂, 1.26 mM CaCl₂, 5.56 mM glucose (pH 7.4, osmolarity 315 ± 5 mOsm). Dye solution (90 µL/well) was added to the plates without removal of the L-15. Plates were then incubated at 37 °C at ambient CO₂ for 60 min. Fluorescence was measured using a FlexStation 3 (Molecular Devices) microplate reader with cells excited at a wavelength of 530 nm and emission measured at 565 nm. Baseline readings were taken every 2 s for at least 60s, at which time either drug or vehicle was added in a volume of 20 µL. The background fluorescence of cells without dye or dye without cells was negligible. Changes in fluorescence were expressed as a percentage of predrug fluorescence after subtraction of the changes produced by vehicle (DMSO, 0.1% final concentration) addition.

Data were analyzed with Prism, using four-parameter nonlinear regression to fit concentration-response curves. A full CP-55940 concentration response curve was done every day, and a maximally effective concentration of CP-55940 (1 μ M) was included in each column of each plate to facilitate comparisons between experiments.

Binding affinity measurement *Cell culture & compounds* CHO cells stably transfected with human CB1 and CB2 receptors (as in Grimsey *et al.*, 2010) were cultured in Dulbecco Modified Earl's Medium: Ham's F-12 Nutrient Mixture (Invitrogen, CA, U.S.A.) supplemented with 10% FBS (Invitrogen), penicillin-streptomycin (100U, 0.1mg/mL) and geneticin (0.5 mg/mL).⁴ All chemicals and solvents were obtained from Sigma-Aldrich (St Louis, MO, U.S.A) or Perkin Elmer (Beaconsfield, UK) unless indicated otherwise.

Radioligand binding assay

CHO cells were harvested by incubation in 0.04% EDTA in PBS, then by being scraped from flasks. After centrifugation, the supernatant was aspirated, and resulting cells homogenised in homogenisation buffer (15 mM Hepes, 0.3 mM EDTA, 1 mM EGTA, 2 mM MgCl₂, pH 7.4) using a hand-held Ultra-Turrax homogeniser (IKA Werke, Staufen, Germany) (3 x 10 second pulses). The homogenate was centrifuged three times (48,000 g) using an Avanti J-E centrifuge and resuspended in cold storage buffer (75 mM Tris, 0.3 mM EDTA, 1 mM EGTA, 12.5 mM MgCl₂, 250 mM sucrose, pH 7.4). A bicinchoninic acid assay (BCA) was performed (Thermo Scientific, IL, U.S.A.) according to the manufacturer's protocol, and the membrane was stored at -80°C. For saturation binding, 20 µg/well of membrane solution was diluted in binding buffer (50 mM Tris-HCl, 12 mM MgCl₂, 2.5 mM EGTA, and 2% fatty acid-free BSA, pH 7.4) and incubated with 0.06 - 2.6 nM of [³H]CP-55940 (Perkin Elmer, M.A., U.S.A.), in the presence of 0.1% DMSO control solution, or 25µM unlabelled CP-55940 to index non-specific binding. The reaction was incubated for 3 h at room temperature to achieve equilibrium. Termination of the reaction was achieved by washing eight times with wash buffer (50 mM Tris-HCl, 5 mM MgCl₂, 2.5 mM EGTA, pH 7.4) via rapid filtration using a Brandel 96-sample vacuum harvester (Gaithersburg, MD, U.S.A.) through a glass-fibre filter (GF/B; Millipore, Carrigtwonhill, Ireland) pre-soaked in 0.3% polyethylenimine. The filters were dried overnight, Microscint-0 scintillation liquid added, and radioactivity measured using a Microbeta² 2450 Microplate Counter (Perkin-Elmer). For competition binding, increasing concentrations of compounds were incubated with 20 μ g of CB1 or CB2 membrane and \sim K_d concentration of [³H]CP-55940 (3 nM and 2 nM respectively). Non-specific binding was measured at an unlabelled CP-55,940

concentration of 25 μ M. Incubation, harvesting and reading protocol follow that used in saturation binding.

Statistical Analysis

GraphPad Prism 7 (San Diego, CA, U.S.A.) was used for statistical analysis. Competition binding data were calculated by subtracting non-specific binding from total binding to give specific binding, and were expressed as a percentage of vehicle control. K_i values were calculated by comparing one- and two-site four-parameter non-linear regression fits, and are expressed as mean \pm SEM from at least three independent experiments.

In vitro Autoradiography

In Vitro Autoradiography with [¹⁸F]-1d and [¹⁸F]-3l was performed on 20 μ m rat spleen sections. The tissue sections were adsorbed to SuperFrost Plus slides. The tissue slices were pre-incubated with cold incubation buffer (50mM TRIS/HCL, pH 7.4 containing 5% BSA) for 10 min. Some slides were incubated with 5 nM of [¹⁸F]-1d or 20 nM of [¹⁸F]-3l alone. Adjacent slides were incubated with a mixture of 5 nM of [¹⁸F]-1d or 20 nM of [¹⁸F]-3l together with specific CB2 agonist (GW-405833, 10 μ M) or respective ¹⁹F-standards of 1d (10 μ M) and 3l (10 μ M) in incubation buffer. After incubation for 30 minutes at room temperature, slides were washed three times with ice cold washing buffer (50mM TRIS/HCL, pH 7.4 containing 1% BSA) for 1 min each. The tissue sections were then washed in distilled water for three successive washes to remove excess of buffer salts. Dried slices were exposed to a phosphor imager plate overnight and the plate was scanned in an AmershamTyphoon Biomolecular Imager (GE Healthcare, USA).

The analysis of the autoradiograms was done using the ImageQuant TL image analysis software from GE HealthCare. For the quantification, regions-of-interest (ROI) were drawn on the spleen images (n=10 spleen sections for each group) using an irregular shaped drawing tool, to measure the amount of radioactivity in the whole spleen section. Similar ROIs were drawn in a background region (n=10 regions) to enable background subtraction.

Figure 1: Displacement of [3H]-CP55940 by fluorinated benzimidazole sulfones at CHO cell membranes expressing CB1 or CB2 receptors. Displacement of 2 nM [3H]-CP55940 at (A) 1e, (B) 2e and (C) 1d, 1g and 3l at CB1-transfected CHO cell membranes. Displacement of 3 nM [3H]-CP55940 (D) 1d, (E) 1e, (F) 1g, (G) 2e and (H) 3l at CB2-transfected CHO cell membranes. Data are represented as mean ± S.E.M. of one experiment performed in duplicate that are representative of overall data from at least 3 experiments All compounds preferred a 1-site fit with a Hill slope of -1.

SHIMADZU

abSolutions Analysis Report

<Sample Information>

Sample Name Sample ID	: 18F-AKB103 :	18F-1d		
Data Filename	: 20180220 QC3	.lcd		
Method Filename	: analytical 50 iso	.lcm		
Batch Filename	:			
Vial #	: 1-1		Sample Type	: Unknown
Injection Volume	: 20 uL			
Date Acquired	: 20/02/2018 3:27	:30 PM	Acquired by	: System Administrator
Date Processed	: 20/02/2018 3:54	:32 PM	Processed by	: System Administrator

<Chromatogram>

mAU

Radiodetector

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	1.385	17322	3190	0.196		М	
2	2.400	36515	5808	0.413		М	
3	7.546	8786279	664212	99.391		М	
Total		8840115	673209				

PDA Ch1 254nm

	_						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.474	32706	3092	0.000		М	
Tota		32706	3092				

SHIMADZU

abSolutions Analysis Report

<Sample Information>

Sample Name Sample ID	: 01_QC1 :	18F-1e		
Data Filename	: 01_QC1.lcd			
Method Filename	: analytical 50	iso.lcm		
Batch Filename	:			
Vial #	: 1-1		Sample Type	: Unknown
Injection Volume	: 20 uL			
Date Acquired	: 22/05/2018 1	I:44:24 PM	Acquired by	: System Administrator
Date Processed	: 22/05/2018 2	2:11:27 PM	Processed by	: System Administrator

<Chromatogram>

Radiodetector

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	5.835	1576278	135133	100.000		Μ	
Total		1576278	135133				

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	1.306	31645945	3972701	0.000		М	
2	1.706	487401	106448	0.000		Μ	
3	3.144	436528	92325	0.000		Μ	
4	4.209	55505	10105	0.000		М	
5	5.762	88043	11214	0.000		М	
6	7.554	29599	2997	0.000		Μ	
Total		32743021	4195791				

SHIMADZU

abSolutions Analysis Report

<Sample Information>

Sample Name Sample ID Data Filename Method Filename	: 02_QC2_EOS : : 02_QC2.lcd : analytical 50 iso.	18F-1g Icm		
Batch Filename	:			
Vial #	: 1-1		Sample Type	: Unknown
Injection Volume	: 20 ul		- 1 - 71	
Date Acquired	· 24/05/2018 10·0	5:39 AM	Acquired by	· System Administrator
Date Processed	13/11/2018 2:42:	54 DM	Processed by	: System Administrator
Date Flocessed	. 13/11/2010 2.42.		FIDCESSED by	. System Auministrator

<Chromatogram>

Radiodetector

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	4.908	1759259	167246	100.000		Μ	
Total		1759259	167246				

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	1.306	31959393	3971156	0.000		М	
2	4.223	20074	3425	0.000		М	
3	4.625	7392	1472	0.000		М	
4	4.844	39104	5673	0.000		М	
5	7.599	21765	2096	0.000		М	
Total		32047728	3983822				

abSolutions Analysis Report

<Sample Information>

Sample Name	: QC1			
Sample ID	:	105 21		
Data Filename	: QC1_18FAKE026.lcd	105-31		
Method Filename	: analytical 40 iso_20 min.lo	cm		
Batch Filename	: _			
Vial #	: 1-1		Sample Type	: Unknown
Injection Volume	: 20 uL			
Date Acquired	: 14/11/2018 12:27:51 PM		Acquired by	: System Administrator
Date Processed	: 14/11/2018 12:48:54 PM		Processed by	: System Administrator
			3	,

<Chromatogram>

mAU

Radiodetector

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	1.803	4920	427	0.619		М	
2	6.093	790469	66804	99.381		V	
Total		795390	67231				

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	1.338	31889382	3976094	0.000		S	
2	3.091	1049	230	0.000		Т	
3	5.171	30736	3643	0.000			
4	5.731	3077	355	0.000		V	
5	6.032	16884	1873	0.000			
Total		31941128	3982195				

$F \xrightarrow{O} S \xrightarrow{O} V \xrightarrow{N} \xrightarrow{V} V \xrightarrow{V} V \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V} \xrightarrow{V}$	

ppm -0 -20 -40 -60 -80 -100

-140

-120

ppm

4.289

		1	1					
nnm	220	200	180	160	140	120	100	80
ppm	220	200	100	100	1-10	120	100	00

60

-77.160

Ó

--63.420

-0

----63.435

n	nm	
N	NIII	

50

ppm 220 200 180 160 140 120 100

-63.457 -N ~°

ppm -56 -58 -60 -62

-64

-66

ppm	220	200	180	160	140	I	120	100	80	I	60
	ւ լուծելու է դինձի քերելու ու լուրդը նեկի	עז גע איז	ավ ըն քանցեր չեր են հայ են Դուս հայ են հ	┍╕┰┧ _{╘╍╍} ┧┧╺┠┎┍╪╸┅╡╕┟┩┧┫╘┧ _┝ ┙╖┉┷ _╋ ╣╺╡┠╡ฦ _╋ ╺╻╟╝┡╍	ני ארעד גערעדיי ארעד ארעד אייראדער אוידיער אייראדער איידי איידי איידי איידי איידי איידי איידי איידי איידי איידי איין אייראדער איידי א	ى . ئەيرامىلەر _{ىر} اپاير ئىغالەر ئىزىما	नमार पर क पर का दिवेस के सिंह	il i la col a col providence di col col a conset	ikonleterkedi, İrahteri kortedinin ge	ي <u>مار لم الم</u> الي ما يقل الم	
a dasle and best tible	a furfa persona da cara persona caring and de pedecidad	-the service and level of the second by assessed by second	a basilla di ja anta anta da siglis i ga da ji basa	l I I I I I I I I I I I I I I I I I I I		l Literature de la constance de la			المراكبون الفكان أناب المراجع تعارضون والجومعين مرا	n billion fa state di fatta di stata di	
		F、		Ţ ^N , ∧ o							
			171 305	165.555 164.609 162.323 156.093	149.641 149.450 141.905 140.702		121.963 121.115 118.772 118.772	110.943 108.269 107.731	77.685	69.506	60.557 59.145

-63.403

		1			1				
ppm	-0	-20	-40	-60	-80	-100	-120	-140	-160

-63.249

ppm	

-40

-20

-0

-60

-80

-100

-120

-140

en ter en en en la finis en la construction de
-160

-180

-200

-220

3.729

-63.456

mag	-0	-20	-40	-60	-80	-100	-120	-140

ppm

Ó

₩, ₩,

لب ب 2.01 9

با 1.4

ц 1.9

Ż

0

	Γ			1			I			I
ppm		-0	-20	0	-4	-0	-6	50	-8	0

-100

-120

-140

ppm200 180 160 140 120 100

4.425

Ally de al esta political de la construction de La construction de la construction de	a de la la constante de la cons La constante de la constante de

-40

ppm

-20

-0

-60

-80

-100

-120

-140

Ó

-63.437

ppm

-0

-20

-40

-60

-80

-100

-120

-140

	175.948	165.519 164.375 162.283	156.037 155.948 149.612 149.421	141.311 140.321		122.390 120.384 118.742 118.675			77.1880 881		
	F										
				он							
					Ι	1					
de par pulandi e dan sekanaka karati pula di sina da <mark>dukana sukana sukana sukana kukana sukana dari kuna sukana</mark> kar	de locarde de jale y de sud a de sude a de sude	I I Musi bool areasiana areas	U Mart Markey & Land Daugh Back	r In a school provider of starting layout	144 Mar Herard & Jone 1919		ן ן נומננים <mark>ל גו, קר וו איזו הגל</mark> או	ithe fell participal datted prilipality in the other than	entrous and an actual of	eede ja de glanne de alle de little al a stariji.	lety and a start of the grant of the start o
ո ^ր ավքենկին որոստուհետու մինքարուկել է _ք ություննենություններին առաջանություններ	ayan da yara da yara na y	and ranker to the shelf of the	Y AMAY A CANY MANY AND UNADARY	nden for den	and and a long the shore of	an di kana angan nga kana angan nga kana kana		n para ang si pang ang ang ang ang ang ang ang ang ang	1997-1994 (1997) - 1997-1997 1997-1994 (1997) - 1997-1997 1997-1997 (1997) - 1997-1997	an da na fall an tal da	unarphorny Institution of the light

ppm

T

ppm	220	200	180	160	140	120		100	80	60
, <u>1186 1998 199</u>	م (این	ייין איז	مولي روي بلغ المرابع الله المالية المرابع المرابع من منه المرابع من منه المرابع المرابع من منه المرابع من منه م	ر مىلا يدىنى بىمىن ، بالىغانة دە يىغىنا ياغلىم ي	गोत्र र, विक्रील संस्थान स्वाय के प्रति क्षेत्र स्वाय के स्वाय	ىرىغەر بىر يەرمۇل قۇرىلىرى مىلغا خىلەرام	hik. shi liteatakta la alata	مها ماهدان بر الترق ، مراقع المرقع ، مراقع المرقع المرقع . معالم ماهدان بر الترق ، مراقع المرقع . مراقع المرقع	I.I. I	ىلىلىغىنىم بارىمىدىدىنى بىن يىنى بارىما بىر
		- And in the second spectrum provide spect								
			F S S	Ľ ^N ≻∕						
					141.570	121.455			76.159	57.341 57.057

.544 .425	958 935 912

6

Ż

ppm 10 9 8

5 4

2

I

1

Ó

	1
ppm	-200

-215

120.707	 78.411 77.160 76.119	57.322	46.140

					I	
			ј I			
		Li j				
						ľ
en se de la facture d'ant les de mais de les des mais de la se de provincie de la set d	والاحرار المراجع والمحمد والمحارك والمراجع والمراجع والمراجع والمراجع والمراجع والمحافظ والمحاف	ويتجاه لسبب فبالتحم مخاد بالتخالين والمروامي فيبا التلقان أ	المالية والعظماء والمريقة والمعالية	والمتلف المراجع والمراجع والمحاص	Martin and a station of the first dealer on the station of the	nalle degrade de company

-141.557-140.179 -132.366

			·					
ppm 220	200	180	160	140	120	100	80	60

40

20

	· · · · · ·	 	 	 	

I	I	I	
222 E	2240	224 5	2250
-//	-//4/0	-//4.0	-775.0

ppm

ppm	-202	-204	-206	-208	-210	-212	-214	-216	-218

		164.0	141.6 140.3 132.4	121.7	110.3	78.43	59.06	43.46
	0 ,,0 ,,,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,							
on Almada e Minitaine Incar	For the word of the states of the termine			1 1 1 1 1 1				
,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, Alfabela de la fabrica de Alfabela de la fabrica de la		In the first final providence in the second s		and a start of the	, Internet of the start

لل الكوري وأو عال الإنقاريل بن

220

i lai data di hasha i

ppm

	1	1		I	1		1	1
ppm	-204	-206	-208	-210	-212	-214	-216	-218

ppm	220	200	180	160	140	I	120	I	100	1	80	1	60	-
	. मेनन कर के कर राष्ट्र की राग की र वर्षकाल रही थी	सिरु र प्राप्त हैना, केंग्री कार्य संस्थातिक कि है।	مىسەنلىد بايە يەي يەرىغى يەرىغى يەيلىرى	a na da an da ana ang ng n	an ta ann airthne ann an	مەربا مەرايىد باي ىدىمەر	مى ھەللەرلىرىغى بىلەر يىلىرىلىغى يەلىرىلىغى بىلىغى يەلىيىلىغى يەلىيىلىغى يەلىيىلىغى يەلىيىلىغى يەلىيىلىغى يەلى		۱۰۰۰ میشکه این	Abala da angenera	dectanti su i dalla			
		k projeka dela filosona de la provi de la provi de la provi de la provi Januar de la filosona de la provi de la	lindefensites de la Victoria de la constante d La constante de la constante de							nika sejangan ingala sejangan ingala sejangan sejangan sejangan sejangan sejangan sejangan sejangan sejangan s				
			F S C	\downarrow_{N}^{N}										
					141.496		121.679				77.160	67.602	57.341 57.056 51.056	

Ó

Ż

		1	1		1	1	1	1	1		1
ppm	-210	-211	-212	-213	-214	-215	-216	-217	-218	-219	-220

$= \sum_{i=1}^{n} \sum_$	163.787 141.540 139.839 132.950 132.950 132.950 132.950 132.950	73.584 77.160 76.736 6.092	57.042 57.042
$F \rightarrow F \rightarrow$			
		nit y nit na ska je ka skolet stal skolet br>Na skolet skol	ji Laka ka kata Mangala ji uji she di k An Tina wa ka ka anga di sa ka

ppm 220

200

160

180

140

120

100

80

60

-14.989

-44.353

-34.543

-29.643 -25.247

		1	1 1	1	1 1			1			
ppm	-211	-212	-213	-214	-215	-216	-217	-218	-219	-220	

ppm	200	180	160	140	120	100	80	60
1 Lanarka Mar.	to or to for our normal to de			en e		يواس ريانيا الإليارين منهرين مالا	and a second of the design of the second	
	in the sector of	eran del ange de sen faith a thair a th Fri ha thair a t	gyrif a dwyn Martifu (hwy fwy far yw y ywydraef a gallan a far gwr y dan y far yw ar yw ar yw ar yw ar yw ar yw Y yr ddynau yw ywy gwlyn far yw ar yw a	hill a senis it is possible to deal to go a film to senis it is both to series a by to the The senis it is for senis to series to the film to series to series to series to series to series to series to se	j., célnej jestos jestos a dina dina jestos jestos kara jestos jestos jestos se s Nan se	Haylanın İı, İnnin sına delen kuldun markanın kundu ile şiştik türve men Man yakayı maş ile mananın sının markanın kundu kundu ku	talla, malitus arti, at anti-attanti di pila (k	and fair, see a position of the second state of the second state of the second state of the second state of the
		·						
		F		\succ				
		172.			121.	110.	78.4	57.3
		919	397	537 532 532 532	987 818 818	418	080000	2 2 2 3 3 8 5 4

ha a shekeriy da ya shi na Looki, a ta'dan dadidi bira ya ba ya ba shekeriya da ba sa baray a sa baryadi ya sh Maray 1 ya ya maya shi waxa mata ya ya ya sa balan ka ta ta shi ya wa da shi ba ya a ya ta ya shi ya da ya ya y

4.899 4.870 4.870 4.666 4.637 4.608 4.390

							- 1
ppm	-208	-210	-212	-214	-216	-218	

-110.538

	1
ppm	200

160

180

-163.947

140

120

100

80

60

-61.771

45.934

-34.502

-29.580 -26.621

40

-5.648 -5.566

-212

-214

-216

-210

ppm

-206

-208

-218

	60
$\sum_{k=1}^{N} \sum_{k=1}^{N} \sum_{k$	elas adversa la decida da da Venera programa de la decida da decida da decida da de la decida da de la decida de la decida da decida da decida Venera programa da decida da decida da decida da decida da decida da decida da decida da decida da decida da de
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	I
$ \begin{array}{c} \searrow & \bigoplus & \bigoplus & \bigoplus & \bigoplus & \bigoplus & \bigoplus & \bigoplus & \bigoplus & \bigoplus &$	
	57.400

45.348

34.603	31 858	029 00	010.07	24.795	

ان از من معن من المركز المركز المركز والملحظ المركز والمركز والمركز ويتوالم المركز ويتوافع والمركز والمراحط المندور ويتوافع المركز والمركز والم والمركز و

3.734 3.727 3.709 3.692	3.6130	3.3215	3.299

 210	·	214	216	219	220

6 0
80
ŝΝ
цор
M

-79.609 -77.345

-165.195

140.665	135.035	123.551 119.922	
V			

-112.863

-177.481

And and the second second second second second second second second second second second second second second s	ndy se da kiteka separan da se da pola a kana politik da po dan Manganda kiteka kang kang yang yang yang yang kana politik da politik da politik da politik da politik da politi	n har yn dyffillifan han blataniaf yn ann ha ba han yn de byg ban daina. Mafernau fernau y enwytef cigaf yn yn yn gan gan gan afw ar yn ar yn gan y	ana ya ka ka maka ka ma ka ma ka ma ka ma ka ka ka ka ka ka ka ka ka ka ka ka ka	ndela sultare dan a generara madel del tali de contra a la constante Naga pontamente a seguna fi y minutere des seus seus seus por generar	a a ban a shi a Manan ki a fa fa al fa an a shi ba di a sha ka ki ka m Manan a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a shi a s	katal site si yang dan katal mengengan site site katal site site site site site site site site	a shi kina ya na ya sa shara sha ku ku ku ku ku ku ku ku ku ku ku ku ku	to and the first of a state of the state of	na dia mina dia kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata Mangguna pangana kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata ang kata
ppm	220	200	180	160	140	120	100	80	60

∽F

	163.893	141.397	 122.067 120.812		84.227 84.227 81.975 77.583 77.160 76.736 69.983 69.983	51.211
	O S O N	<u>{</u>				
		F				
alan sala na shekara na sana ka ka ka ka sa da ka sa sa sa sa sa sa sa sa sa sa sa sa sa				- Marian and a state - Mark fire a general de la Bradenica de caração (de 1 de 1 general		te for the state

ppm 200 180 160 140 120 100 80

-45.722

34.687 29.929

7.858

-8.274

220	200	180	160	140	120)	100	80	60
aralayan hilin daharan ar	યું અને માં મુખ્યત્વે કે દેશમાં આવ્યું અને અને માં પ્રાથમિક છે. બુધ બે માં મુખ્યત્વે કે દેશમાં આવ્યું અને અને માં પ્રાથમિક અને મુખ્યત્વે છે. આ ગામ માં મુખ્યત્વે મુખ્યત્વે પ્રાથ માં માં માં માં માં માં માં માં માં માં	व्यायस् वित्यं कृत्यन् मेन विविधुरं प्रदेशिकास्त (प्रान्तव्य क्रिकेन) का स्व	ely de de la construction de la politique de la production de la construction de la construction de la constru La construction de la construction d	ldi i general de la como i ser sentem la facilitar (l	ייזין איזיאלי איזאן איזאן איזאן איזאן איזיאן איזאיזיאן איזאייזאע איזאיזיאן איזאיזיאן איזאיזיאע איזאא	tenne ofer the Low Spirit of the period	al na fara da ya Distanan yi Kapara (j. 1914)	la falighean, teologiachan, dala _{n a} sugara, dala	tel ben mellen han verbere her på oppender og her av oppender
, hen and astrones of side, can de biller	ela di La fili parte e calci da se banda na jinda parte ka	colocullus satespinisty in size like anod an babba dama	l I	I I I I I I I I I I I I I I I I I I I		l 44 # un 11,464 [at]]	en had po na fondetina kuna a kan kan kan kan kan kan kan	ht d., do., as at the control point last	l l
				_					
	o``s``					,			
				145.231 141.135 140.257	132.876 132.020 132.025 127.929 127.929			77.584	69.024

ppm

ppm	220	200	180	160	140	1	120	1	100	80	6	0
nak, menghangan di katalak di di Manendari yanangan di Penjar Kip	lansilaran kilanian karla kala kila dalar Nafarasina riyan yalar julanci pitang	eta Laga ^l a, astada partas ditabu, Anta dalah gantadak Kasar singun ajayan mangsang sing asta palijak ^s ina pal	alayan da wasan da ka ya sa da sa da ya sa sa sa sa sa sa sa sa sa sa sa sa sa	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ning of a transmission of a solution of the so	n a dalam da ang da ang da ang da ang da ang da ang da ang da ang da ang da ang da ang da ang da ang da ang da Ing da ang gawang da ang da	th food days and a second of a	ingen af skal stifter skar gode af Fregerig versjoner i server i server i server i server i server i server i se	sidina pinno ulika, kontra disina di kontra ku Ingin yang ulika, kontra dising u	a kan sa ka da da ka ka sa ka sa ka sa ka sa ka sa ka sa ka sa sa ka sa sa sa sa sa sa sa sa sa sa sa sa sa	Alaah, shialada il dhi i Mayara namaar Ngayyaa gog waxaa yaaqay ay ya	n a fear that ha said the fear a
		ς	=/ "									
		_	 	s S N N	· · ·							
						/132.180 131.953 130.139 128.073	121.635 120.736			77.584		

____21.788

for the first standing of an area of a bound to a sector of the

Ó

-67.570

77.583 77.1583 77.158

-121.911 -121.745 -121.745 -119.475

-111.503

-153.528-152.939-151.173

 \checkmark

`Ń

-141.749-141.039

-132.292

-164.887

CI

ppm

∬ N____

ppm	200	180	160		140		120	1	100	80	60	1
Nyydhadynudd	Harden Mar Balan of Marting a Defension of Mark Balanda	un bille son af feren for an an an an an an an an an an an an an	19499999444499999944444444444		nyayyan ya ya da ananya	nonkaphi (hit dalaan	Hereinen in the state of the st	he hand hander had the	999 (1- 199 (1-19) (1-19) (1-19)	Landisyn arwydd yn gall ynwydd y gyla	generation of the desired of the desired of the second of the second of the second of the second of the second	d state and a state of the stat
		C										
				153.396 152.903 151.183	141.918 140.186		122.258 121.756 121.756 121.277 19.342 118.106			77.584		

References

- T.R. Neal, S. Apana, M.S. Berridge, J. Labelled Compd. Radiopharm. 2005, 48, 557-568.
- S. Banister, M. Longworth, R. Kevin, S. Sachdev, M. Santiago, J. Stuart, J.B. Mack, M. Glass, I.S. McGregor, M. Connor and M. Kassiou, ACS Chem. Neurosci. 2016, 7, 1241-1254.
- A. Knapman, M. Santiago, Y.P. Du, P.R. Bennallack, M.J. Christie and M. Connor, *J. Biomol. Screen.* 2013, 18, 269-276.
- N.L. Grimsey, E.S. Graham, M. Dragunow, M. Glass *Biochem Pharmacol*. 2010, **80**, 1050–1062.