Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Total Synthesis of (±)-*epi*-Stemodan-13α, 17-diol

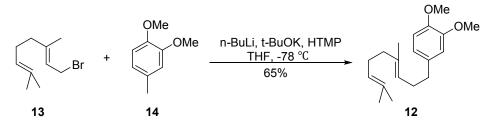
Song Chen, Ting Chen, Guanggen Liu, Guili Zhu, Xiao Wang, Yongjiang Liu,

Shaomin Fu* and Bo Liu*

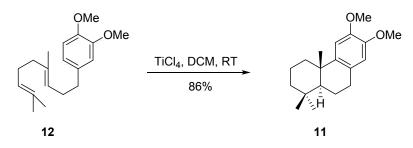
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

E-mail: chembliv@scu.edu.cn; fsm09@aliyun.com

Contents

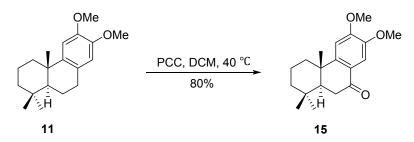

General Information	.\$3
Experimental Procedures	S4
References	.S15
X-ray Crystal Structure of compound 7	S16
Spectra for the Synthesized Compounds	S17

General Information

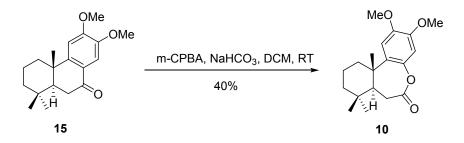

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. DCM and toluene were distilled from calcium hydride under argon; THF were distilled from sodium-benzophenone under argon. All the other chemicals were purchased commercially and used without further purification, unless otherwise stated. Flash chromatography was performed using silica gel (200-300 mesh). Reactions were monitored by thin layer chromatography (TLC). Visualization was achieved under a UV lamp (254 nm and 365 nm), I_2 and by developing the plates with *p*-anisaldehyde or phosphomolybdic acid. ¹H and ¹³C NMR were recorded on Bruker DRX-400 MHz NMR spectrometer with TMS as the internal standard and were calibrated using residual undeuterated solvent as an internal reference (CDCl₃: ¹H NMR = 7.26, ¹³C NMR = 77.16). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded by using FTMS-7 spectrometers. Infrared (IR) spectra were recorded on a NEXUS 670 FT-IR Fourier transform infrared spectrophotometer and are reported in wavenumbers (cm⁻¹).

Experimental Procedures

Procedure for the preparation of Compound 12



To a solution of t-BuOK (20.11 g, 179.20 mmol) in dry THF (600 ml) at room temperature was added 1, 2-dimethoxy-4-methylbenzene (**14**, 17.15 mL, 119.45 mmol) and HTMP (1.00 mL, 5.97 mmol). The solution was allowed to cool down at - 78 °C. Then was added n-BuLi (2.5 M in hexane, 71.68 mL, 179.20 mmol) dropwise slowly at -78 °C. The solution became wine red. After the addition of n-BuLi, the solution was stirred for 30 min. Then geranyl bromide (**13**, 26.10 mL, 131.40 mmol) was added dropwsie into the reaction system to get a yellow solution. After completion of addition of geranyl bromide, the mixture was quenched with saturated NH₄Cl solution (400 mL) at -78 °C. The aqueous layer was extracted with EtOAc (200 mL × 4). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:10) to afford the corresponding compound **12** (22.38 g, 65%) as a yellow oil. Note that all NMR data matched that reported by Snyder and co-workers.¹



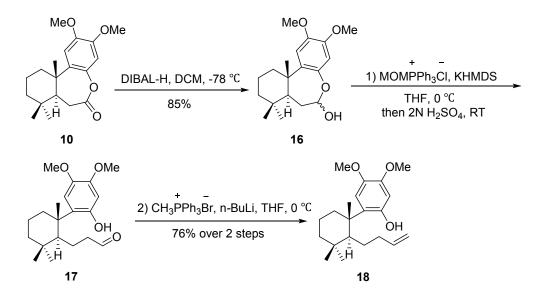
To a solution of compound **12** (8.68 g, 30.11 mmol) in dry DCM (100 mL) at room temperature was slowly added TiCl₄ (3.30 mL, 30.11 mmol). The solution became deep red. The solution was stirred for 2 days at room temperature. The reaction was quenched with saturated NaHCO₃ solution (500 mL). The aqueous layer was extracted with DCM (200 mL × 1) and EtOAc (100 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:10) to afford the corresponding compound **11** (7.47 g, 86%) as a yellow oil. Note that all NMR data matched that reported by Tada and coworkers.²

Procedure for the preparation of compound 15

To a solution of compound **11** (7.47 g, 25.91 mmol) in dry DCM (100 mL) at room temperature was added PCC (26.62 g, 123.45 mmol) in one-portion. The solution became black. After stirred for 12 hours at 40 $^{\circ}$ C, the reaction was filtered through a pad of silica gel and washed with EtOAc (50 mL × 5). The organic phase was concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:5) to afford the corresponding compound **15** (6.29 g, 80%) as a foam. Note that all NMR data matched that reported by Tada and co-workers.²

To a solution of compound **15** (3.84 g, 12.70 mmol) in dry DCM (0.01 M, 1.30 L) at room temperature, was added NaHCO₃ (5.87 g, 69.85 mmol) and m-CPBA (11.60 g, 57.15 mmol). The solution was stirred for 2 days at room temperature. Then was quenched with saturated NaS₂O₃ solution (200 mL) and NaHCO₃ (200 mL). The aqueous layer was extracted with DCM (100 mL × 1) and EtOAc (100 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:5) to afford the corresponding compound **10** (1.64 g, 40%) as a foam.

Compound **10**:


¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 1H), 6.65 (s, 1H), 3.89 (s, 3H), 3.85 (s, 3H), 2.64 – 2.52 (m, 2H), 1.98 – 1.87 (m, 1H), 1.85 (dd, *J* = 9.1, 3.4 Hz, 1H), 1.80 (dd, *J* = 9.4, 2.9 Hz, 2H), 1.74 – 1.66 (m, 1H), 1.55 – 1.49 (m, 1H), 1.48 (s, 3H), 1.20 (dd, *J* = 13.4, 4.5 Hz, 1H), 1.12 (s, 3H), 0.90 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 148.0, 146.0, 144.8, 132.4, 108.1, 104.8, 56.45, 56.2, 56.0, 41.2, 39.8, 39.1, 36.1, 33.3, 32.0, 21.5, 20.7, 18.9.

IR (neat, cm⁻¹): 2297, 2931, 2869, 2254, 1750, 1509, 1140, 1001, 772.

HRMS (ESI): *m*/*z* calcd for C₁₉H₂₆O₄ [M] ⁺: 318.1831; Found: 318.1831.

Procedure for the preparation of compound 16, 17 and 18

- 1) To a solution of compound **10** (761.5 mg, 2.39 mmol) in dry DCM (50 ml) at -78 $^{\circ}$ C was added DIBAL-H (1.5 M in toluene, 2.40 mL, 3.59 mmol) quickly. After stirred for 6 hours, the reaction was quenched with CH₃OH (2.00 ml) at -78 $^{\circ}$ C. Then it was added saturated potassium sodium tartrate solution (30 mL) and stirred for 1 hour at room temperature. The aqueous layer was extracted with DCM (30 mL × 1) and EtOAc (25 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:3) to afford the corresponding compound **16** (649.5 mg, 85%) as a foam.
- 2) To a suspension of methoxymethyltriphenylphosphonium chloride (3.48 g, 10.14 mmol) in dry THF (50 ml) at 0 $^{\circ}$ C was added KHMDS (1 M in THF, 9.95 mL, 9.95 mmol) dropwise. The solution became wine red. After the addition of KHMDS, the solution was stirred for 30 min at 0 $^{\circ}$ C. The compound **16** (649.5 mg, 2.03 mmol) in THF (10 mL) was added into the solution. After stirred for 2 hours, the mixture was treated with H₂SO₄ (2 M, 10 mL) and stirred for overnight at room temperature. The aqueous layer was extracted with EtOAc (30 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by

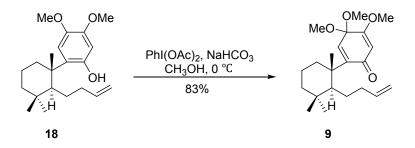
column chromatography (EtOAc/petroleum ether = 1:2) to afford the corresponding compound **17** as a foam.

3) To a suspension of methoxymethyltriphenylphosphonium bromide (3.65 g, 10.15 mmol) in dry THF (50 ml) at 0 $^{\circ}$ C was added n-BuLi (2.5 M in hexane, 3.65 mL, 9.14 mmol) dropwise slowly. The solution became wine red. After the addition of *n*-BuLi, the solution was stirred for another 30 min. The compound **17** (2.03 mmol) in THF (10 mL) was added dropwise into the solution. After stirred for overnight, the reaction was quenched with saturated NH₄Cl solution (20 mL) at 0 $^{\circ}$ C. The aqueous layer was extracted with EtOAc (20 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:8) to afford the corresponding compound **18** (495.5 mg, 76% for 2 steps) as a white solid.

Compound **18**:

m.p. 136-142.5 ℃.

¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 1H), 6.26 (s, 1H), 5.48 (dq, *J* = 10.3, 6.4 Hz, 1H), 4.69 (dd, *J* = 24.1, 6.2 Hz, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 2.62 (s, 1H), 2.18 (s, 1H), 1.81 – 1.64 (m, 2H), 1.57 – 1.45 (m, 1H), 1.43 (s, 1H), 1.39 (dd, *J* = 13.0, 3.5 Hz, 1H), 1.33 (s, 3H), 1.32 – 1.23 (m, 3H), 1.08 (d, *J* = 14.5 Hz, 1H), 0.94 (s, 3H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.0, 147.8, 142.5, 140.0, 127.9, 114.3, 113.6, 102.5,

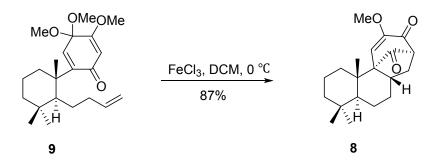

57.3, 56.0, 47.9, 42.5, 41.7, 36.4, 36.3, 34.9, 34.1, 27.7, 22.7, 21.5, 19.6.

IR (neat, cm⁻¹): 3447, 2933, 2867, 2360, 1520, 1299.

HRMS (ESI): *m*/*z* calcd for C₂₁H₃₂O₃ [M] ⁺: 332.2351; Found: 332.2344.

Procedure for the preparation of compound 9

8


To a solution of compound **18** (495.6 mg, 1.54 mmol) in CH₃OH (30 mL) at 0 $^{\circ}$ C, was added NaHCO₃ (385.8 mg, 4.61 mmol) at 0 $^{\circ}$ C and stirred for 10 min. Then PhI(OAc)₂ (993.4 g, 3.07 mmol) was added in one-portion. After stirred for 30 min, the reaction was quenched with saturated NaHCO₃ solution (20 mL) at 0 $^{\circ}$ C. The aqueous layer was extracted with EtOAc (30 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:6) to afford the corresponding compound **9** (462.6 mg, 83%) as a white solid. Compound **9**:

m.p. 75.2-78.9 ℃.

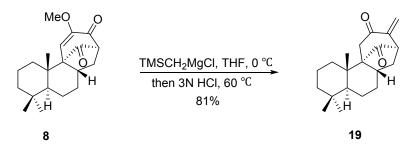
¹H NMR (400 MHz, CDCl₃) δ 6.32 (s, 1H), 5.63 (ddt, *J* = 16.8, 10.3, 6.4 Hz, 1H), 5.54 (s, 1H), 4.87 – 4.77 (m, 2H), 3.79 (s, 3H), 3.26 (s, 3H), 3.25 (s, 3H), 2.48 (s, 1H), 2.25 (t, *J* = 4.1 Hz, 1H), 1.95 – 1.80 (m, 1H), 1.74 – 1.55 (m, 2H), 1.52 – 1.35 (m, 3H), 1.36 – 1.23 (m, 1H), 1.12 (s, 4H), 1.06 – 0.94 (m, 1H), 0.91 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 186.7, 166.6, 148.8, 139.2, 137.9, 113.9, 106.7, 95.2, 56.1, 51.7, 51.6, 47.0, 43.9, 41.1, 36.4, 36.3, 34.6, 34.2, 27.0, 22.6, 20.8, 19.1.
IR (neat, cm⁻¹): 2936, 2360, 1656, 1610, 1460, 1260, 1072, 750.

HRMS (ESI): m/z calcd for $C_{22}H_{35}O_4$ [M+H]⁺: 363.2350; Found: 363.2528.

To a suspension of FeCl₃ (418.7 mg, 2.55 mmol) in dry DCM (0.01 M, 120 mL) at 0 $^{\circ}$ C was added compound **9** (462.6 mg, 1.28 mmol) in DCM (15 mL) dropwise, and it was stirred for 10 hours at the same temperature. Then reaction concentrated under reduced pressure, then the crude product was purified by column chromatography (EtOAc/petroleum ether = 1:3) to afford the corresponding compound **8** (353.4 mg, 87%) as a white solid.

Compound 8:


m.p. 174.5-177.8 ℃.

¹H NMR (400 MHz, CDCl₃) δ 6.12 (s, 1H), 3.68 (s, 3H), 3.42 (dd, *J* = 6.2, 4.2 Hz, 1H), 2.19 (ddd, *J* = 12.8, 9.3, 5.6 Hz, 1H), 2.11 (td, *J* = 13.0, 3.9 Hz, 1H), 2.06 – 1.98 (m, 1H), 1.75 (dd, *J* = 6.1, 3.8 Hz, 2H), 1.70 (dd, *J* = 12.6, 2.6 Hz, 1H), 1.61 – 1.49 (m, 2H), 1.48 – 1.42 (m, 1H), 1.42 – 1.27 (m, 4H), 1.20 (s, 3H), 1.05 (qd, *J* = 13.4, 4.5 Hz, 1H), 0.88 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 201.8, 192.6, 152.8, 119.2, 63.4, 61.8, 55.6, 46.6, 41.1,
37.7, 36.6, 33.6, 33.5, 33.3, 33.2, 30.1, 22.4, 21.3, 18.6, 18.3.

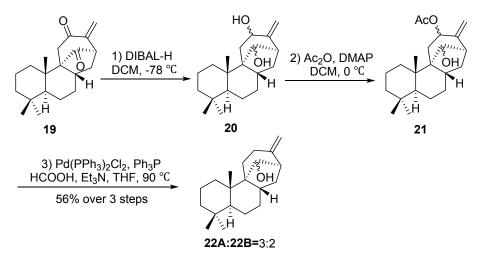
IR (neat, cm⁻¹): 2947, 2360, 1756, 1693, 1698, 1458, 1276.

HRMS (ESI): *m*/*z* calcd for C₂₀H₂₈O₃ [M] ⁺: 316.2038; Found: 316.2038.

To a solution of compound **8** (353.4 mg, 1.12 mmol) in dry THF (40 mL) at 0 $^{\circ}$ C was added TMSCH₂MgCl (1.3 M in THF, 4.30 mL, 5.59 mmol) dropwise. After stirred for 2 hours, the reaction was treated with HCl (3N, 30 mL) and stirred for 30 min at 0 $^{\circ}$ C, then stirred for 3 hours at 60 $^{\circ}$ C. It was allowed to cool down to room temperature and diluteed with H₂O (20 mL). The aqueous layer was extracted with EtOAc (30 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:20) to afford the corresponding compound **19** (271.7 mg, 81%) as a white solid.

Compound **19**:

m.p. 126.1-132.1 ℃.


¹H NMR (400 MHz, CDCl₃) δ 5.71 (s, 1H), 5.14 (s, 1H), 3.09 (dd, *J* = 7.7, 3.5 Hz, 1H), 2.74 (dd, *J* = 98.1, 19.3 Hz, 2H), 2.33 – 2.17 (m, 2H), 1.87 (tdd, *J* = 7.5, 5.7, 2.1 Hz, 3H), 1.60 – 1.43 (m, 4H), 1.42 – 1.25 (m, 4H), 0.97 (dd, *J* = 13.5, 4.3 Hz, 1H), 0.92 (s, 3H), 0.87 (s, 3H), 0.84 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 213.3, 199.3, 149.3, 118.5, 57.4, 50.5, 47.5, 47.2, 41.3, 39.0, 38.0, 34.0, 33.8, 33.4, 31.6, 31.5, 22.5, 21.5, 18.6, 17.0.

IR (neat, cm⁻¹): 3005, 2947, 2360, 2341, 1744, 1700, 1275.

HRMS (ESI): *m*/*z* calcd for C₂₀H₂₈O₂ [M] ⁺: 300.2089; Found: 300.2091.

Procedure for the preparation of compound 20, 21 and 22

- 1) To a solution of compound **19** (179.8 mg, 0.60 mmol) in dry DCM (30 mL) at -78 $^{\circ}$ C was added DIBAL-H (1.5 M in toluene, 2.00 mL, 2.99 mmol) dropwise. After stirred for 3 hours, the reaction was quenched with CH₃OH (2 ml) at -78 $^{\circ}$ C. Then added saturated potassium sodium tartrate solution (30 mL) to the reaction system. And it was stirred for 1 hours at 0 $^{\circ}$ C. The aqueous layer was extracted with DCM (20 mL × 1) and EtOAc (30 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:4) to afford the corresponding mixture **20**.
- 2) To a solution of mixture 20 in dry DCM (25 mL) was added DMAP (81.2 mg, 0.65 mmol) and then added Ac₂O (0.06 mL, 0.65 mmol) dropwise at 0 °C. After stirred for 2 hours, the reaction was quenched with saturated NaHCO₃ solution (15 mL) at 0 °C. The aqueous layer was extracted with DCM (20 mL × 1) and EtOAc (20 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:40) to afford the corresponding mixture 21.
- 3) To a solution of Pd(PPh₃)₂Cl₂ (83.5 mg, 0.12 mmol) and PPh₃ (467.3 mg, 1.77 mmol) in dry THF (30 mL) at room temperature, was added Et₃N (0.57 mL, 4.13 mmol) and HCOOH (0.16 mL, 4.13 mmol), and it was stirred for 10 min. The mixture **21** in THF (5 mL) was added into the solution. After stirred 10 hours at 100 °C, it was allowed to cool down to room temperature and added H₂O₂ (0.20 mL) stirred for another 10 min. It was added H₂O (20 mL) to dilute the reaction. The aqueous layer was extracted with EtOAc (20 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography

(EtOAc/petroleum ether = 1:20) to afford the corresponding compound 22A and

22B as a colourless oil (97.1 mg, 56% for 3 steps, 22A:22B=3:2).

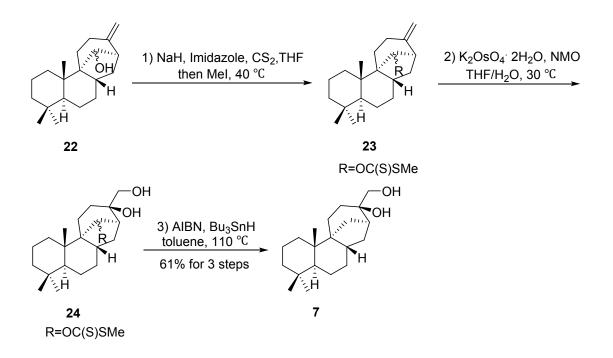
Compoud **22A**:

¹H NMR (400 MHz, CDCl₃) δ 4.52 (t, *J* = 2.0 Hz, 1H), 4.45 (d, *J* = 2.0 Hz, 1H), 3.76 (d, *J* = 3.6 Hz, 1H), 2.54 (d, *J* = 7.3 Hz, 1H), 2.23 – 2.02 (m, 3H), 1.99 (dd, *J* = 14.7, 6.3 Hz, 1H), 1.90 (d, *J* = 7.8 Hz, 1H), 1.88 – 1.82 (m, 1H), 1.67 (ddd, *J* = 11.1, 7.3, 3.7 Hz, 2H), 1.60 – 1.48 (m, 3H), 1.49 – 1.43 (m, 1H), 1.44 – 1.36 (m, 3H), 1.31 (d, *J* = 3.9 Hz, 1H), 1.28 – 1.16 (m, 3H), 0.93 (s, 3H), 0.88 (s, 3H), 0.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.1, 103.7, 85.8, 54.5, 54.0, 49.4, 41.9, 39.5, 38.9, 38.4, 38.1, 35.7, 35.2, 33.5, 31.7, 27.7, 23.5, 21.8, 20.3, 19.0.

IR (neat, cm⁻¹): 3462, 3005, 2934, 2360, 1654, 1275, 1260.

HRMS (ESI): *m*/*z* calcd for C₂₀H₃₃O [M+H] ⁺: 289.2528; Found: 289.2526.


Compoud **22B**:

¹H NMR (400 MHz, CDCl₃) δ 4.79 (t, *J* = 2.2 Hz, 1H), 4.68 (t, *J* = 2.1 Hz, 1H), 4.50 – 4.45 (t, *J*=6.8 Hz, 1H), 2.69 (t, *J* = 6.8 Hz, 1H), 2.38 – 2.25 (m, 1H), 2.08 (dd, *J* = 14.6, 6.9 Hz, 1H), 2.03 – 1.89 (m, 2H), 1.84 (dt, *J* = 12.1, 4.3 Hz, 2H), 1.75 (dt, *J* = 12.8, 6.5 Hz, 1H), 1.69 (d, *J* = 8.8 Hz, 1H), 1.54 – 1.46 (m, 2H), 1.46 – 1.40 (m, 2H), 1.41 – 1.35 (m, 2H), 1.36 – 1.33 (m, 1H), 1.32 – 1.29 (m, 1H), 1.24 (dd, *J* = 15.9, 13.0 Hz, 3H), 0.95 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.0, 109.2, 73.2, 50.5, 50.0, 47.6, 41.8, 39.5, 37.7,
37.0, 35.5, 34.7, 34.2, 33.6, 27.8, 26.3, 23.2, 22.8, 19.5, 18.8.

IR (neat, cm⁻¹): 3554, 3005, 2941, 2360, 1652, 1276, 1261.

HRMS (ESI): *m*/*z* calcd for C₂₀H₃₃O [M+H] ⁺: 289.2528; Found: 289.2525.

- 1) To a suspension of NaH (60.0 mg, 1.50 mmol) in dry THF (3 mL) at room temperature, was added imidazole (2.30 mg, 0.02 mmol), followed by addition of the compound **22** (43.3 mg, 0.15 mmol) in THF (5 mL). It was stirred for 10 min. Then CS₂ (0.50 mL) was added into the solution. After stirred for 1 hour at 40 $^{\circ}$ C, it was allowed to cool down to room temperature, and MeI (0.20 mL) was added stirred for 10 hours at 40 $^{\circ}$ C, it was allowed to cool down to room temperature addition (10 mL) at 0 $^{\circ}$ C. The aqueous layer was extracted with EtOAc (25 mL × 3). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether) to afford the corresponding mixture **23**.
- 2) To a solution of compound 23 in THF/H₂O (5/1 mL) at room temperature, was added NMO (0.20 mL) followed by the addition of K₂OsO₄•2H₂O (12.3 mg, 0.03 mmol) with carefully. After stirred for 10 hours at 30 °C, it was allowed to cool down to room temperature and quenched with saturated Na₂S₂O₃ solution (20 mL). The aqueous layer was extracted with EtOAc (20 mL × 4). The combined

organic extracts were dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:2) to afford the corresponding mixture **24**.

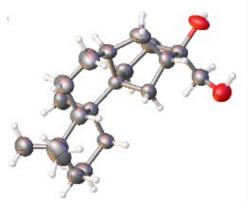
3) To a solution of compound **24** in toluene (20 mL) at room temperature was added AIBN (50.3 mg, 0.30 mmol) and Bu₃SnH (0.12 mL, 0.30 mmol) with carefully. After stirred for 5 hours at 110 °C, it was allowed to cool down to room temperature, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/petroleum ether = 1:1) to afford the corresponding compound **7** (28.5 mg, 61% for 3 steps) as a white solid.

Compound 7:

m.p. 141.0-144.5℃.

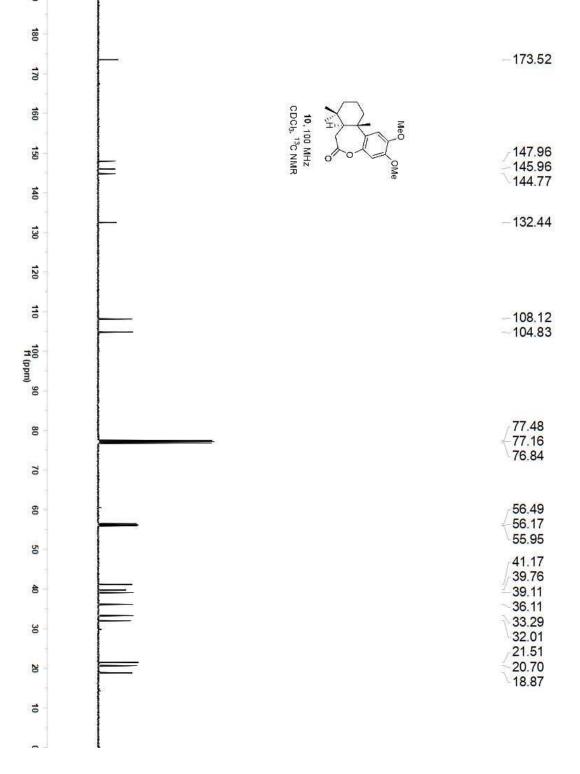
¹H NMR (400 MHz, CDCl₃) δ 3.62 – 3.53 (dd, *J*=11.2, 2H), 2.17 – 2.05 (m, 2H), 1.93 (ddd, *J* = 13.3, 7.5, 3.2 Hz, 1H), 1.84 (ddd, *J* = 11.8, 5.9, 2.9 Hz, 1H), 1.75 (t, *J* = 8.2 Hz, 1H), 1.63 (dt, *J* = 4.8, 3.8 Hz, 1H), 1.57 (dd, *J* = 8.7, 6.5 Hz, 1H), 1.49 – 1.40 (m, 2H), 1.40 – 1.32 (m, 5H), 1.28 – 1.21 (m, 3H), 1.19 (t, *J* = 3.8 Hz, 1H), 1.18 – 1.16 (m, 1H), 1.14 – 1.07 (m, 2H), 0.94 (s, 3H), 0.87 (s, 3H), 0.86 (s, 3H).

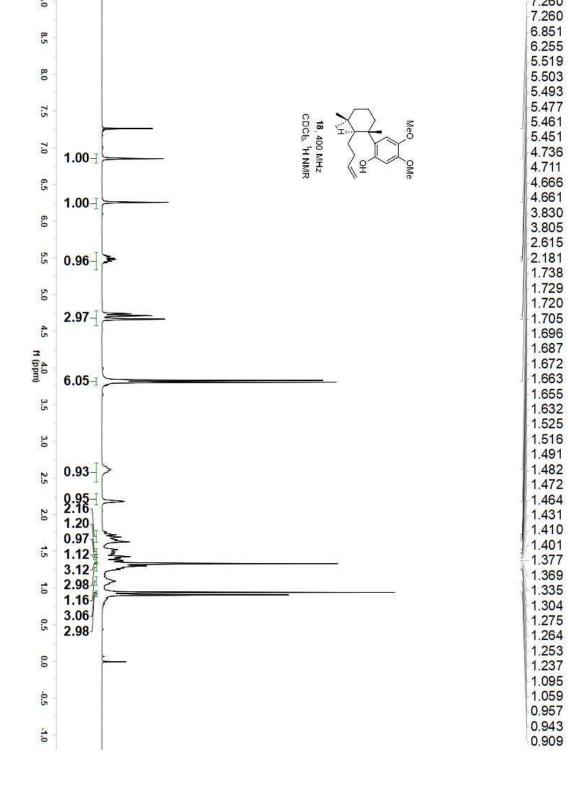
¹³C NMR (101 MHz, CDCl₃) δ 74.8, 66.7, 50.4, 47.5, 42.3, 42.0, 38.4, 37.8, 36.7, 36.3, 35.5, 34.7, 33.3, 31.9, 29.0, 28.9, 22.9, 22.4, 19.2, 18.9.

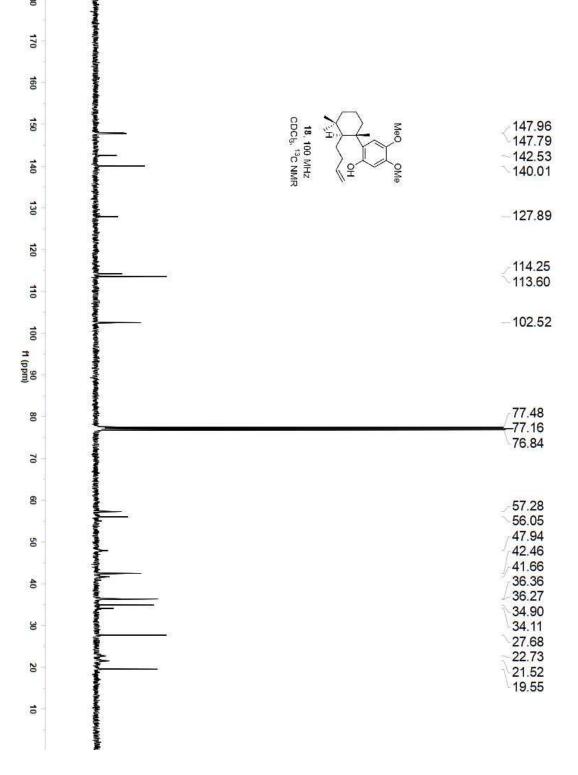

IR (neat, cm⁻¹): 3281, 2928, 2866, 2360, 2341, 1449, 1357.

HRMS (ESI): *m*/*z* calcd for C₂₀H₃₄NaO₂ [M+Na] ⁺: 329.2453; Found: 329.2451.


References


- 1) S. A. Snyder, D. S. Treitler and A. P. Brucks, J. Am. Chem. Soc. 2010, **132**, 14303.
- M. Tada, J. Kurabe, T. Yoshida, T. Ohkanda and Y. Matsumoto, *Chem. Pharm.* Bull. 2010, 58, 818.


X-ray Crystal Structures of compound 7 (CCDC1900612)



Crystal data and structure refinement for 7 .		
Identification code	7	
Empirical formula	$C_{20}H_{34}O_2$	
Formula weight	306.47	
Temperature/K	293.15	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.1145(5)	
b/Å	18.1803(17)	
c/Å	18.6882(17)	
α/°	115.886(9)	
β/°	99.779(6)	
γ/°	99.493(6)	
Volume/ų	2643.8(4)	
Z	6	
$\rho_{calc}g/cm^3$	1.155	
µ/mm⁻¹	0.072	
F(000)	1020.0	
Crystal size/mm ³	0.35 × 0.3 × 0.25	
Radiation	ΜοΚα (λ = 0.71073)	
20 range for data collection/	° 5.916 to 52.742	
Index ranges	$-11 \le h \le 9$, $-21 \le k \le 22$, $-23 \le l \le 22$	
Reflections collected	20338	
Independent reflections	10807 [R_{int} = 0.0455, R_{sigma} = 0.0967]	
Data/restraints/parameters	10807/1/619	
Goodness-of-fit on F ²	1.284	
Final R indexes [I>=2o (I)]	$R_1 = 0.1359$, $wR_2 = 0.3946$	
	17	

