Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Carboxylated Pillar[n]arene (n = 5-7) Host Molecules: High

Affinity and Selective Binding in Water

Yamin Liu, Fang Zhou, Fan Yang, and Da Ma* Department of Chemistry, Fudan University

Table of Contents

Determination of binding constant	S2
Job plot of WP <i>n</i> s and dyes	S56
¹ H NMR spectra	
Self-assembly	S61

Determination of binding constant

Method for direct titration assay.

Binding constants K_a were calculated by nonlinear fitting with Origin 9 software based on 1:1 binding stoichiometry as the following equation:

[H]₀: initial host concentration; [G]₀: initial guest concentration; ΔA : change of Fluorescence intensity; $\Delta \epsilon$: change of coefficiency; K_a : binding constant.

$$\Delta_A = \Delta_{\varepsilon} \cdot \{\frac{1}{2}([H]^0 + [G]^0 + \frac{1}{K_a}) - \sqrt{\frac{1}{4}([H]^0 + [G]^0 + \frac{1}{K_a})} - [H]^0 \cdot [G]^0\}$$

Method for indicator displacement assay.

Binding constants were measured with displacement assay and fitted with ScientistTM software based on the following model. // MicroMath Scientist Model File IndVars: ConcAntot DepVars: Absorb Params: ConcHtot, ConcGtot, Khg, Kha, AbsorbMax, AbsorbMin Khg = ConcHG / (ConcH * ConcG) Kha = ConcHAn / (ConcH * ConcAn) Absorb = AbsorbMin + (AbsorbMax-AbsorbMin)*(ConcHG/ConcGtot) ConcHtot = ConcH + ConcHG + ConcHAnConcGtot = ConcHG + ConcGConcAntot = ConcAn + ConcHAn0 < ConcHG < ConcHtot 0 < ConcH < ConcHtot 0 < ConcG < ConcGtot0 < ConcAn < ConcAntot

Direct Titration

Figure S1. (a) UV-Vis spectra from the titration of dye 2 (10.0 μ M) with **WP5** (0 – 718 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Abs (A-A₀) at 475 nm as a function of the concentration of **WP5**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (4.1 \pm 0.2) \times 10^3 \text{ M}^{-1}$).

Figure S2. (a) UV-Vis spectra from the titration of dye 2 (15.0 μ M) with **WP7** (0 – 196 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Abs (A-A₀) at 480 nm as a function of the concentration of **WP7**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (1.1 \pm 0.2) \times 10^5 \text{ M}^{-1}$).

Figure S3. (a) Fluorescence spectra from the titration of guest **14** (10.0 μ M) with **WP5** (0 – 476 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 460 nm as a function of the concentration of **WP5**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (3.3 \pm 0.5) \times 10^3 \text{ M}^{-1}$).

Figure S4. (a) Fluorescence spectra from the titration of guest **14** (5.0 μ M) with **WP6** (0 – 426 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 460 nm as a function of the concentration of **WP6**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (1.4 \pm 0.3) \times 10^3 \text{ M}^{-1}$).

Figure S5. (a) Fluorescence spectra from the titration of guest **14** (1.0 μ M) with **WP7** (0 – 96.5 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 460 nm as a function of the concentration of **WP7**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (6.3 \pm 1.1) \times 10^3 \text{ M}^{-1}$).

Figure S6. (a) Fluorescence spectra from the titration of guest **15** (10.0 μ M) with **WP5** (0 – 445 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 390 nm as a function of the concentration of **WP5**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (3.9 \pm 0.5) \times 10^3 \text{ M}^{-1}$).

Figure S7. (a) Fluorescence spectra from the titration of guest **15** (5.0 μ M) with **WP6** (0 – 418 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 390 nm as a function of the concentration of **WP6**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (2.7 \pm 0.2) \times 10^3 \text{ M}^{-1}$).

Figure S8. (a) Fluorescence spectra from the titration of guest **15** (1.0 μ M) with **WP7** (0 – 86.1 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I- I₀)/(I_{end} -I₀) at 390 nm as a function of the concentration of **WP7**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (7.1 \pm 0.7) \times 10^3 \text{ M}^{-1}$).

Figure S9. (a) Fluorescence spectra from the titration of guest **16** (1.0 μ M) with **WP6** (0 – 57.3 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 378 nm as a function of the concentration of **WP6**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (1.8 \pm 0.3) \times 10^5 \text{ M}^{-1}$).

Figure S10. (a) Fluorescence spectra from the titration of guest **16** (1.0 μ M) with **WP7** (0 – 54.6 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 378 nm as a function of the concentration of **WP7**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (3.3 \pm 0.5) \times 10^5 \text{ M}^{-1}$).

Figure S11. (a) Fluorescence spectra from the titration of guest **17** (5.0 μ M) with **WP5** (0 – 687 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 378 nm as a function of the concentration of **WP5**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (2.0 \pm 0.3) \times 10^3 \text{ M}^{-1}$).

Figure S12. (a) Fluorescence spectra from the titration of guest **17** (5.0 μ M) with **WP6** (0 – 416 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 378 nm as a function of the concentration of **WP6**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (2.2 \pm 0.7) \times 10^3 \text{ M}^{-1}$).

Figure S13. (a) Fluorescence spectra from the titration of guest **17** (2.0 μ M) with **WP7** (0 – 358 μ M) in sodium phosphate buffer (pH 7.4, 20 mM); (b) plot of the Δ Intensity (I₀-I)/(I₀-I_{end}) at 378 nm as a function of the concentration of **WP7**. The solid line represents the best non-linear fitting of the data based on a 1:1 binding model ($K_a = (2.6 \pm 0.3) \times 10^3 \text{ M}^{-1}$).

Indicator Displacement Assay

Figure S14. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **4** (0 – 220 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **4** with ScientistTM. *K*_a was calculated to be (6.3 ± 1.7) × 10⁵ M⁻¹.

Figure S15. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **5** (0 – 163 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **5** with ScientistTM. *K*_a was calculated to be (1.8 ± 0.6) × 10⁶ M⁻¹.

Figure S16. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **6** (0 – 130 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **6** with ScientistTM. *K*_a was calculated to be (1.1 ± 0.6) × 10⁷ M⁻¹.

Figure S17. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **7** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **7** with ScientistTM. *K*_a was calculated to be (3.0 ± 0.7) × 10⁶ M⁻¹.

Figure S18. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **8** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **8** with ScientistTM. *K*_a was calculated to be (4.3 ± 1.5) × 10⁶ M⁻¹.

Figure S19. Displacement titration of a solution of dye **1** (50 μ M) and **WP5** (50 μ M) solution with guest **9** (0 – 978 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 575 nm *versus* concentration for the displacement titration of guest **9** with ScientistTM. *K*_a was calculated to be (7.4 ± 0.7) × 10³ M⁻¹.

Figure S20. Displacement titration of a solution of dye 1 (30 μ M) and WP5 (35 μ M) solution with guest 10 (0 – 1411 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 540 nm *versus* concentration for the displacement titration of guest 10 with ScientistTM. *K*_a was calculated to be (2.0 ± 0.4) × 10⁴ M⁻¹.

Figure S21. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **11** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A - A₀) at 650 nm *versus* concentration for the displacement titration of guest **11** with ScientistTM. *K*_a was calculated to be (2.1 ±1.3) × 10⁶ M⁻¹.

Figure S22. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **12** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A - A₀) at 650 nm *versus* concentration for the displacement titration of guest **12** with ScientistTM. *K*_a was calculated to be (2.7 ± 0.5) × 10⁶ M⁻¹.

Figure S23. Displacement titration of a solution of dye **1** (30 μ M) and **WP5** (30 μ M) solution with guest **13** (0 – 1841 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 440 nm *versus* concentration for the displacement titration of guest **13** with ScientistTM. *K*_a was calculated to be calculated to be (1.5 ± 0.6) × 10³ M⁻¹.

Figure S24. Displacement titration of a solution of dye **3** (10 μ M) and **WP5** (10 μ M) solution with guest **18** (0 – 206 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **18** with ScientistTM. *K*_a was calculated to be (2.9 ± 1.0) × 10⁶ M⁻¹.

Figure S25. Displacement titration of a solution of dye **1** (30 μ M) and **WP5** (35 μ M) solution with guest **21** (0 – 1921 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 540 nm *versus* concentration for the displacement titration of guest **21** with ScientistTM. *K*_a was calculated to be (6.1 ± 2.1) × 10² M⁻¹.

Figure S26. Displacement titration of a solution of dye **3** (15 μ M) and **WP6** (15 μ M) solution with guest **4** (0 – 314 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **4** with ScientistTM. *K*_a was calculated to be (2.3 ± 0.3) × 10⁵ M⁻¹.

Figure S27. Displacement titration of a solution of dye **3** (15 μ M) and **WP6** (15 μ M) solution with guest **5** (0 – 243 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 620 nm *versus* concentration for the displacement titration of guest **5** with ScientistTM. K_a was calculated to be $(1.6 \pm 0.2) \times 10^6$ M⁻¹.

Figure S28. Displacement titration of a solution of dye **3** (15 μ M) and **WP6** (15 μ M) solution with guest **6** (0 – 143 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **6** with ScientistTM. *K*_a was calculated to be (1.5 ± 0.5) × 10⁷ M⁻¹.

Figure S29. Displacement titration of a solution of dye **3** (10 μ M) and **WP6** (10 μ M) solution with guest **7** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **7** with ScientistTM. *K*_a was calculated to be (8.4 ± 2.8) × 10⁶ M⁻¹.

Figure S30. Displacement titration of a solution of dye **3** (10 μ M) and **WP6** (10 μ M) solution with guest **8** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **8** with ScientistTM. *K*_a was calculated to be (1.7 ± 1.2) × 10⁷ M⁻¹.

Figure S31. Displacement titration of a solution of dye **1** (30 μ M) and **WP6** (40 μ M) solution with guest **9** (0 – 2089 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 560 nm *versus* concentration for the displacement titration of guest **9** with ScientistTM. *K*_a was calculated to be (1.4 ± 0.1) × 10⁴ M⁻¹.

Figure S32. Displacement titration of a solution of dye **3** (10 μ M) and **WP6** (10 μ M) solution with guest **11** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A - A₀) at 650 nm *versus* concentration for the displacement titration of guest **11** with ScientistTM. *K*_a was calculated to be (5.6 ±1.6) × 10⁶ M⁻¹.

Figure S33. Displacement titration of a solution of dye **3** (10 μ M) and **WP6** (10 μ M) solution with guest **12** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A - A₀) at 650 nm *versus* concentration for the displacement titration of guest **12** with ScientistTM. *K*_a was calculated to be (3.8 ± 0.5) × 10⁶ M⁻¹.

Figure S34. Displacement titration of a solution of dye **1** (30 μ M) and **WP6** (30 μ M) solution with guest **13** (0 – 1689 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 560 nm *versus* concentration for the displacement titration of guest **13** with ScientistTM. *K*_a was calculated to be calculated to be (3.2 ± 0.8) × 10³ M⁻¹.

Figure S35. Displacement titration of a solution of dye **3** (15 μ M) and **WP6** (15 μ M) solution with guest **18** (0 – 181 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 660 nm *versus* concentration for the displacement titration of guest **18** with ScientistTM. *K*_a was calculated to be (7.7 ± 1.7) × 10⁶ M⁻¹.

Figure S36. Displacement titration of a solution of dye **3** (15 μ M) and **WP6** (15 μ M) solution with guest **21** (0 – 252 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 660 nm *versus* concentration for the displacement titration of guest **21** with ScientistTM. K_a was calculated to be (8.9 ± 0.8) × 10⁵ M⁻¹.

Figure S37. Displacement titration of a solution of dye **3** (15 μ M) and **WP7** (15 μ M) solution with guest **4** (0 – 299 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **4** with ScientistTM. *K*_a was calculated to be (2.1 ± 0.2) × 10⁵ M⁻¹.

Figure S38. Displacement titration of a solution of dye **3** (15 μ M) and **WP7** (15 μ M) solution with guest **5** (0 – 299 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **5** with ScientistTM. *K*_a was calculated to be (1.2 ± 0.1) × 10⁶ M⁻¹.

Figure S39. Displacement titration of a solution of dye **3** (15 μ M) and **WP7** (15 μ M) solution with guest **6** (0 – 299 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **6** with ScientistTM. *K*_a was calculated to be (4.7 ± 0.3) × 10⁶ M⁻¹.

Figure S40. Displacement titration of a solution of dye **3** (15 μ M) and **WP7** (15 μ M) solution with guest **7** (0 – 103 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **7** with ScientistTM. *K*_a was calculated to be (2.5 ± 0.6) × 10⁷ M⁻¹.

Figure S41. Displacement titration of a solution of dye **3** (15 μ M) and **WP7** (15 μ M) solution with guest **8** (0 – 63 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **8** with ScientistTM. *K*_a was calculated to be (4.0 ± 2.4) × 10⁷ M⁻¹.

Figure S42. Displacement titration of a solution of dye **1** (40 μ M) and **WP7** (40 μ M) solution with guest **9** (0–6147 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 550 nm *versus* concentration for the displacement titration of guest **9** with ScientistTM. *K*_a was calculated to be (1.7 ± 0.2) × 10³ M⁻¹.

Figure S43. Displacement titration of a solution of dye **3** (10 μ M) and **WP7** (10 μ M) solution with guest **11** (0 – 93 μ M) in sodium phosphate buffer (pH 7.4, 20 mM) : (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A - A₀) at 650 nm *versus* concentration for the displacement titration of guest **11** with ScientistTM. *K*_a was calculated to be (4.5 ± 0.4) × 10⁶ M⁻¹.

Figure S44. Displacement titration of a solution of dye **1** (20 μ M) and **WP7** (20 μ M) solution with guest **13** (0 – 1732 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 490 nm *versus* concentration for the displacement titration of guest **13** with ScientistTM. *K*_a was calculated to be calculated to be (3.4 ± 0.8) × 10⁴ M⁻¹.

Figure S45. Displacement titration of a solution of dye **3** (15 μ M) and **WP7** (15 μ M) solution with guest **18** (0 – 195 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of normalized Δ Abs (A₀ - A) at 675 nm *versus* concentration for the displacement titration of guest **18** with ScientistTM. *K*_a was calculated to be (1.2 ± 0.2) × 10⁷ M⁻¹.

Figure S46. Displacement titration of a solution of guest **19** (200 μ M) and **WP7** (200 μ M) solution with guest **5** (0 – 1593 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀- A) at 475 nm *versus* concentration for the displacement titration of guest **5** with ScientistTM. *K*_a was calculated to be (8.9 ± 1.2) × 10¹⁰ M⁻¹.

Figure S47. Displacement titration of a solution of dye **3** (10 μ M) and **WP7** (10 μ M) solution with guest **20** (0 – 360 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 650 nm *versus* concentration for the displacement titration of guest **20** with ScientistTM. *K*_a was calculated to be (6.9 ± 1.0) × 10⁵ M⁻¹.

Figure S48. Displacement titration of a solution of guest **19** (200 μ M) and **WP7** (200 μ M) solution with guest **21** (0 – 1124 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀- A) at 450 nm *versus* concentration for the displacement titration of guest **5** with ScientistTM. *K*_a was calculated to be (3.8 ± 0.9) × 10¹¹ M⁻¹.

Figure S49. Displacement titration of a solution of dye **1** (30 μ M) and **WP7** (30 μ M) solution with guest **21** (0 – 441 μ M) in sodium phosphate buffer (pH 7.4, 20 mM): (a) UV-Vis spectral change, (b) Nonlinear fitting plot of Δ Abs (A₀ - A) at 550 nm *versus* concentration for the displacement titration of guest **21** with ScientistTM. *K*_a was calculated to be (1.3 ± 0.3) × 10⁵ M⁻¹.

Association constant determination for guest 6, 12 and WP*n* by isothermal titration calorimetry (ITC) measurement.

Figure S50. Microcalorimetric titration of guest **6** with **WP5** in sodium phosphate buffer (pH 7.4, 20 mM) at 298.15 K. (Top) Raw ITC data for guest **6** solution (300 μ M) into a **WP5** solution (30 μ M). (Bottom) Net reaction heat obtained from the integration of the calorimetric traces.

Figure S51. Microcalorimetric titration of guest **6** with **WP6** in sodium phosphate buffer (pH 7.4, 20 mM) at 298.15 K. (Top) Raw ITC data for guest **6** solution (300 μ M) into a **WP6** solution (30 μ M). (Bottom) Net reaction heat obtained from the integration of the calorimetric traces.

Figure S52. Microcalorimetric titration of guest **6** with **WP7** in sodium phosphate buffer (pH 7.4, 20 mM) at 298.15 K. (Top) Raw ITC data for guest **6** solution (300 μ M) into a **WP7** solution (10 μ M). (Bottom) Net reaction heat obtained from the integration of the calorimetric traces.

Figure S53. Microcalorimetric titration of guest **12** with **WP7** in sodium phosphate buffer (pH 7.4, 20 mM) at 298.15 K. (Top) Raw ITC data for guest **12** solution (150 μ M) into a **WP7** solution (10 μ M). (Bottom) Net reaction heat obtained from the integration of the calorimetric traces.

Job Plot for WPn and dyes

Figure S54. Job plot for **WP5** and dye **1** derived from UV-Vis absorbance in sodium phosphate buffer (pH 7.4, 20 mM) ([dye **1**] + [**WP5**] = 30 μ M). χ : neutral red mole fraction; Δ A: absorbance change at 450 nm.

Figure S55. Job plot for **WP6** and dye **1** derived from UV-Vis absorbance in sodium phosphate buffer (pH 7.4, 20 mM) ([dye **1**] + [**WP6**] = 30 μ M). χ : neutral red mole fraction; Δ A: absorbance change at 450 nm.

Figure S56. Job plot for **WP7** and dye **1** derived from UV-Vis absorbance in sodium phosphate buffer (pH 7.4, 20 mM) ([dye **1**] + [**WP7**] = 20 μ M). χ : neutral red mole fraction; Δ A: absorbance change at 450 nm.

Figure S57. Job plot for **WP5** and dye **3** derived from UV-Vis absorbance in sodium phosphate buffer (pH 7.4, 20 mM) ([dye **3**] + [**WP5**] = 10 μ M). χ : methyl green mole fraction; Δ A: absorbance change at 630 nm.

Figure S58. Job plot for **WP6** and dye **3** derived from UV-Vis absorbance in sodium phosphate buffer (pH 7.4, 20 mM) ([dye **3**] + [**WP6**] = 10 μ M). χ : methyl green mole fraction; Δ A: absorbance change at 630 nm.

Figure S59. Job plot for **WP7** and dye **3** derived from UV-Vis absorbance in sodium phosphate buffer (pH 7.4, 20 mM) ([dye **3**] + [**WP7**] = 10 μ M). χ : methyl green mole fraction; Δ A: absorbance change at 630 nm.

¹H NMR Spectra

Figure S60. ¹H NMR spectra record for (a) guest **9**; (b) 1:1 **WP5·9**; (c) 1:1 1-butylamine and **WP6·9**; (d) 1:1 **WP7·9** ([**9**] = [**WP5**] = [**WP6**] = [**WP7**] = 1 mM, 400 MHz, 20 mM NaD₂PO₄).

Figure S61. ¹H NMR spectra record for (a) guest **4**; (b) 1:1 **WP7·4**; (c) 1:1 **WP6·4**; (d) 1:1 **WP5·4** ([**4**] = [**WP5**] = [**WP6**] = [**WP7**] = 1 mM, 400 MHz, 20 mM NaD₂PO₄).

Figure S62. ¹H NMR spectra record for (a) guest **7**; (b) 1:1 **WP5·7**; (c) 1:1 **WP6·7**; (d) 1:1 **WP7·7** ([**7**] = [**WP5**] = [**WP6**] = [**WP7**] = 1 mM, 400 MHz, 20 mM NaD₂PO₄).

Figure S63. ¹H NMR spectra record for (a) guest **16**; (b) 1:1 **WP5·16**; (c) 1:1 **WP6·16**; (d) 1:1 **WP7·16** ([**16**] = [**WP5**] = [**WP6**] = [**WP7**] = 1 mM, 400 MHz, 20 mM NaD₂PO₄).

Self-assembly

Figure S64. Tyndall effect for **WP5·16** in sodium phosphate buffer (20 mM, pH 7.4).