Supporting Information

Silver-mediated three-component cycloaddition reaction for direct

synthesis of 1-N-vinyl-substituted 1,2,3-triazoles

Jinpeng Chen,^a Taoyuan Liang,^a He Zhao,^a Chuyuan Lin,^b Lu Chen,^b and Min Zhang*^a

^aSchool of Chemistry & Chemical Engineering, South China University of Technology, Wushan

Rd-381, Guangzhou 510641 People's Republic of China

^bSchool of Chemical & Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province 529090, China.

Table of contents

Substrates employed for the reaction	S2
Single Crystal X-ray Diffraction of 4aa'	S2-S3
NMR spectra of obtained compounds	S14-S25

Substrates employed for the reaction

Scheme S1. Phenylacetylenes employed for the synthesis of 1-N-vinyl-1,2,3-triazoles.

Scheme S2. 1,3-Dicarbonyls employed for the synthesis of 1-N-vinyl-1,2,3-triazoles.

Single Crystal X-ray Diffraction of 4aa'

White block-like single crystals of **4aa'** were grown by layering a dichlormethane solution with n-hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a Bruker SMART. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 296 (2) K, using the phi and 2

omega scans to a maximum θ value of 25.027°. The data were refined by full-matrix least-squares techniques on F² with SHELXL-2014. And the structures were solved by direct methods SHELXL-2014. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. An ORTEP representation of the structure is shown below.

Figure S1. ORTEP drawing of 4aa' with the numbering scheme

Table S5. Crystal data and structure refinement for 4aa'

Identification code	4aa'	
Empirical formula	$C_{18}H_{15}N_{3}O$	
Formula weight	289.33	
Temperature	296 (2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.405(7) Å	a= 84.218(8)°.
	b = 9.471(7) Å	b= 63.798(7)°.
	c = 9.815(7) Å	g = 78.437(8)°.
Volume	768.5(10) Å ³	
Z	2	
Density (calculated)	1.250 Mg/m ³	
Absorption coefficient	0.080 mm ⁻¹	
F(000)	304	
Crystal size	0.21 x 0.2 x 0.19 mm ³	
Theta range for data collection	2.992 to 25.027°.	
Index ranges	-11<=h<=11, -11<=k<=11, -11<=l<=11	
Reflections collected	7291	

NMR spectra of the obtained compounds

¹H-NMR spectrum of 4aa

¹³C-NMR spectrum of 4aa

¹H-NMR spectrum of 4aa'

¹³C-NMR spectrum of 4aa'

¹H-NMR spectrum of 4ab

¹³C-NMR spectrum of 4ab

¹H-NMR spectrum of 4bb

¹³C-NMR spectrum of 4bb

¹H-NMR spectrum of 4cb

¹³C-NMR spectrum of 4cb

¹H-NMR spectrum of 4db

¹³C-NMR spectrum of 4db

¹H-NMR spectrum of 4eb

¹³C-NMR spectrum of 4eb

¹⁹F-NMR spectrum of 4eb

¹H-NMR spectrum of 4fb

¹³C-NMR spectrum of 4fb

¹H-NMR spectrum of 4gb

¹³C-NMR spectrum of 4gb

¹H-NMR spectrum of 4hb

¹³C-NMR spectrum of 4hb

¹⁹F-NMR spectrum of 4hb

¹H-NMR spectrum of 4ib

¹³C-NMR spectrum of 4ib

¹H-NMR spectrum of 4jb

¹³C-NMR spectrum of 4jb

¹H-NMR spectrum of 4kb

¹³C-NMR spectrum of 4kb

¹H-NMR spectrum of 4ac

¹³C-NMR spectrum of 4ac

¹H-NMR spectrum of 4ad

¹³C-NMR spectrum of 4ad

¹H-NMR spectrum of 4ae

¹³C-NMR spectrum of 4ae

¹H-NMR spectrum of 4af

¹³C-NMR spectrum of 4af

¹H-NMR spectrum of 4ag

¹H-NMR spectrum of 4ah

¹³C-NMR spectrum of 4ah

¹H-NMR spectrum of 4ai

¹³C-NMR spectrum of 4ai

¹H-NMR spectrum of 4aj

¹³C-NMR spectrum of 4aj

¹H-NMR spectrum of 4ak

¹³C-NMR spectrum of 4ak

¹H-NMR spectrum of 4al

¹³C-NMR spectrum of 4al

¹⁹F-NMR spectrum of 4al

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)