Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Photorearrangement of dihetarylethenes as tool for

benzannulation of heterocycles

Andrey G. Lvov, ¹*Alexey M. Kavun,^{1,2} Vadim V. Kachala,¹ Konstantin A. Lyssenko,³

Valerii Z. Shirinian¹

¹ N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prospect, Moscow, Russian Federation, e-mail: <u>lvov-andre@yandex.ru</u>

² Higher Chemical College, D. I. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow, Russian Federation

³ Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russian Federation

Table of contents

I. General methods	S2
II. Synthesis	S3
II.1. Synthesis of dihetarylethenes	S3
II.2. Photoreactions of dihetarylethenes	S17
II.3. Gram-scale experiments	S39
III. Photochemical equipment and gram-scale benzannulation	S41
IV. Proposed mechanism for photorearrangement of dihetarylethenes	S43
V. Specific aspects of the photorearrangement	S47
V.1. Role of conformation for α-pyridine derivative	S47
V.2. Possible competition with 1,2-dyotropic rearrangement	S51
VI. NMR monitoring of photoreactions of dihetarylethenes	\$55
VII. X-ray crystallography	\$65
VIII. 2D NMR data and complete NMR assignment	\$72
IX. Copies of NMR spectra for all new compounds	S96
X. References	S192

I. General methods

General. Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹³C{¹H} NMR) were recorded in deuterated solvents on spectrometers working at 300.13 or 600.13 MHz for ¹H and 75.47 or 150.90 MHz for ¹³C{¹H}. Data are represented as follows: chemical shift, multiplicity (s, singlet; d, doublet; m, multiplet; br, broad), coupling constant in hertz (Hz), integration, and assignment. Mass spectra were recorded using electron impact ionization (EI, 70 eV, direct inlet probe). High-resolution mass spectra were obtained from a TOF mass spectrometer with an ESI source. All chemicals and solvents were purchased from commercial sources and used without further purification. Silica column chromatography was performed using silica gel 60 (70–230 mesh); TLC analysis was conducted on silica gel 60 F₂₅₄ plates.

Photochemical synthesis. Photochemical reactions were performed with stirring in commercial 12 mL flat-bottomed glass vessels (borosilicate glass). The irradiation was carried out by two 365 nm UV lamps (8W; Vilber Lourmat, model VL-8.LC) without additional filters. The distance between two UV lamps was 3.5 cm, and the vessels were located midway between them.

¹H NMR monitoring. Experiments were performed by irradiation with one or two 8W 365 nm UV lamps.

X-ray crystallography. Suitable for X-ray crystallography single crystals were obtained by slow recrystallization from DMSO-d₆/DCM solutions. X-ray diffraction data for all studied complexes were collected on a SMART APEX II area-detector diffractometer (graphite monochromator, ω -scan technique), using Mo_{Ka}-radiation (0.71073 Å). The intensity data were integrated by the SAINT program¹ and were corrected for absorption and decay using SADABS.² All structures were solved by direct methods using SHELXS³, and were refined on F² using SHELXL-2014/2017.⁴ All non-hydrogen atoms were refined with anisotropic displacement parameters. All C-H hydrogen atoms were placed in ideal calculated positions while NH and OH ones were located from the Fourier density synthesis. All hydrogen atoms were refined as riding atoms. Crystal data, data collection and structure refinement details are summarized in Tables S1-7. Crystal structures were analyzed by OLEX2 program.⁵

S2

II. Synthesis

II.1. Synthesis of dihetarylethenes

Dihetarylethene 24 were synthesized according literature method⁶ from ethyl 3-oxo-4-(thiophen-3-yl)butanoate.

Synthesis of dihetarylethenes 3, 6-12. To the solution of 3-hetarylacetic acid 1 (4.3 mmol) in DMF (7 ml) potassium carbonate K₂CO₃ (0.89 g, 6.4 mmol) was added. The suspension was stirred for 10 min and corresponding 2-bromo-1-(hetaryl)ethanone 2 (4.7 mmol) was added. Argon was passed through the reaction mixture for 30 min and then the suspension was heated at 80 °C until reaction completion (TLC control). The reaction mixture was poured into water (150 mL), and extracted with ethyl acetate (3×50 mL). The combined organic phases were washed with water (2 x 100 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography by gradient system petroleum ether/ethyl acetate ($3:1 \rightarrow 1:1$).

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(thiophen-3-yl)furan-2(5H)-one (3a).

Yellow powder, 59% yield (819 mg); mp 161-163 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.05 (s, 3H), 5.20 (s, 2H), 7.30-7.39 (m, 2H),

7.45-7.55 (m, 3H), 7.87-7.92 (m, 1H), 7.99-8.06 (m, 2H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.1, 70.8, 121.0, 125.5, 126.3 (2C), 126.6 (2C), 127.4, 128.9 (2C), 129.1, 130.3, 130.8, 147.2, 148.8, 161.1, 173.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₄NO₃S 324.0689; Found 324.0701.

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(thiophen-2-yl)furan-2(5H)-one (3b).

Yellow powder, 73% yield (1.01 g); mp 140-143 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.16 (s, 3H), 5.20 (s, 2H), 7.07-7.16 (m, 1H), 7.43 (d, *J* = 4.8 Hz, 1H), 7.46-7.54 (m, 3H), 7.57-7.63 (m, 1H), 8.00-8.08 (m, 2H).

 $[13C{^{1}H} NMR (75 MHz, CDCl_3): \delta = 12.4, 71.1, 120.2, 126.3 (2C), 126.7, 127.0, 127.7, 128.9 (3C), 129.0, 130.8, 130.9, 146.5, 148.8, 161.2, 172.3.$

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₄NO₃S 324.0689; Found 324.0687.

3-(1H-Indol-3-yl)-4-(5-methyl-2-phenyloxazol-4-yl)furan-2(5H)-one (3c).

Brown powder, 64% yield (0.98 g); mp 197-199 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.65 (s, 3H), 5.34 (s, 2H), 6.89 (t, *J* = 7.4 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.48 (d, *J* = 8.3 Hz, 1H), 7.51-7.57 (m, 3H), 7.75-7.78 (s, 1H), 7.88-7.95 (m, 2H), 11.60 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 11.7, 71.0, 105.3, 112.5, 119.7, 119.8, 119.9, 122.0, 125.6, 126.3 (2C), 126.6, 127.8, 129.6 (2C), 130.0, 131.3, 136.2, 145.2, 149.6, 160.1, 173.8. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₂H₁₇N₂O₃ 357.1234; Found 357.1230.

3-(1-Methyl-1H-indol-3-yl)-4-(5-methyl-2-phenyloxazol-4-yl)furan-2(5H)-one (3d).

¹H NMR (300 MHz, CDCl₃): δ = 1.61 (s, 3H), 3.89 (s, 3H), 5.32 (s, 2H), 6.98 (t, *J* = 7.4 Hz, 1H), 7.06 (d, *J* = 7.9 Hz, 1H), 7.24 (t, *J* = 7.4 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.46-7.54 (m, 3H), 7.73 (s, 1H), 8.00-8.09 (m, 2H).

¹³C{¹H} NMR (75 MHz, CDCl₃): $\delta = 11.7, 33.2, 71.3, 105.0, 109.7, 119.6, 120.1, 120.2, 122.1, 125.8, 126.3$ (2C), 126.9, 128.9 (2C), 130.0, 130.6, 131.0, 136.6, 144.1, 149.3, 160.8, 174.4.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₁₉N₂O₃ 371.1390; Found 371.1386.

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(pyridin-4-yl)furan-2(5H)-one (3e).

Yellow powder, 34% yield (465 mg); mp 231-234 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.01 (s, 3H), 5.30 (s, 2H), 7.45-7.53 (m, 3H), 7.54-7.63 (m, 2H) 7.94-8.01 (m, 2H), 8.60-8.90 (m, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.7, 70.8, 126.2 (2C), 126.3, 128.5,

129.0 (2C), 131.1, 131.3, 139.5 (2C), 149.1, 149.5, 151.8, 168.8.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₅N₂O₃ 319.1077; Found 319.1091.

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(pyridin-3-yl)furan-2(5H)-one (3f).

Pale brown powder, 55% yield (752 mg); mp 153-156 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.00 (s, 3H), 5.27 (s, 2H), 7.40 (dd, *J* = 7.8, 5.0 Hz, 1H), 7.43-7.50 (m, 3H), 7.89-8.00 (m, 3H), 8.63 (d, *J* = 4.1 Hz, 1H), 8.77 (s, 1H).

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(2-phenylthiazol-4-yl)furan-2(5H)-one (3g).

Pale yellow crystals, 54% yield (929 mg); mp 181-184 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.17 (s, 3H), 5.29 (s, 2H), 7.40-7.45 (m, 3H), 7.48-7.54 (m, 3H), 7.84-7.90 (m, 2H), 8.05-8.10 (m, 2H), 8.27 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.9, 71.3, 118.9, 120.7, 126.3 (2C), 126.4 (2C), 126.9, 128.8 (2C), 129.0 (2C), 129.3, 130.3, 130.6, 133.2, 146.2,

148.9, 150.6, 160.5, 167.2, 172.9.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₁₇N₂O₃S 401.0954; Found 401.0943. Anal. Calcd for C₂₃H₁₆N₂O₃S: C, 68.98; H, 4.03; N, 7.00. Found: C, 67.89; H, 3.82; N, 7.08.

3-(2-Aminothiazol-4-yl)-4-(5-methyl-2-phenyloxazol-4-yl)furan-2(5H)-one (3h).

Yellow powder, 23% yield (335 mg); mp 201-202 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.18 (s, 3H), 5.19 (s, 2H), 5.41 (br s, 2H), 7.33 (s, 1H), 7.43-7.55 (m, 3H), 7.93-8.08 (m, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.7, 71.0, 111.3, 119.0, 126.2 (2C), 126.8, 128.8 (2C), 129.0, 130.6, 140.7, 147.9, 150.5, 160.5, 167.2,

172.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₇H₁₄N₃O₃S 340.0750; Found 340.0745.

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(3-methylisoxazol-5-yl)furan-2(5H)-one (3i).

Yellow powder, 39% yield (540 mg); mp 182-184 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.36 (s, 3H), 2.39 (s, 3H), 5.39 (s, 2H), 6.91 (s, 1H), 7.43-7.61 (m, 3H), 7.97-8.13 (m, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 11.4, 12.6, 71.7, 106.2, 112.8, 126.4 (2C), 126.5, 128.4, 128.9 (2C), 130.8, 151.5, 151.8, 160.3, 160.5, 161.0, 170.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₅N₂O₄ 323.1026; Found 323.1026.

3-(Imidazo[1,2-a]pyridin-2-yl)-4-(5-methyl-2-phenyloxazol-4-yl)furan-2(5H)-one (3j).

White powder, 21% yield (322 mg); mp 208-209 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.24 (s, 3H), 5.30 (s, 2H), 6.81 (t, *J* = 6.6 Hz, 1H), 7.13-7.24 (m, 1H), 7.40-7.51 (m, 3H), 7.56 (d, *J* = 9.1 Hz, 1H), 8.00-8.07 (m, 2H), 8.17 (d, *J* = 6.6 Hz, 1H), 8.41 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.5, 71.8, 112.7, 114.0, 117.5, 118.3,

125.1, 126.0, 126.3 (2C), 127.1, 128.8 (2C), 129.2, 130.4, 136.0, 144.9,

148.5, 150.7, 160.5, 173.4.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₁H₁₆N₃O₃ 358.1186; Found 358.1175.

4-(5-Methyl-2-phenyloxazol-4-yl)-3-(pyridin-2-yl)furan-2(5H)-one (3k).

Brown powder, 61% yield (834 mg); mp 155-156 °C.

¹H NMR (300 MHz, CDCl₃): δ = 1.88 (s, 3H), 5.29 (s, 2H), 7.24-7.34 (m, 1H), 7.41-7.49 (m, 3H), 7.77-7.84 (m, 2H), 7.91-8.00 (m, 2H), 8.69 (d, *J* = 4.4 Hz, 1H).

3k ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.3, 71.0, 123.3, 123.9, 125.1, 126.3 (2C), 126.7, 128.8 (2C), 128.9, 130.6, 136.7, 149.8, 150.0, 150.5, 152.1, 160.6, 172.9.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₅N₂O₃ 319.1077; Found 319.1068.

4-(2,4-Dimethylthiazol-5-yl)-3-(thiophen-2-yl)furan-2(5H)-one (6a).

Yellow powder, 56% yield (667 mg); mp 124-125 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.23 (s, 3H), 2.73 (s, 3H), 4.98 (s, 2H), 7.02-7.12 (m, 1H), 7.40 (d, *J* = 4.6 Hz, 1H), 7.55-7.64 (m, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 16.8, 19.4, 72.0, 120.2, 122.8, 127.2, 128.4, 129.0, 130.4, 145.2, 152.1, 167.9, 171.3.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₂NO₂S₂ 278.0304; Found 278.0305.

4-(2,4-Dimethylthiazol-5-yl)-3-(thiophen-3-yl)furan-2(5H)-one (6b).

Yellow powder, 26% yield (310 mg); mp 119-122 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.17 (s, 3H), 2.72 (s, 3H), 5.00 (s, 2H), 7.14 (d, *J* = 4.9 Hz, 1H), 7.32 (dd, *J* = 4.9, 2.5 Hz, 1H), 7.92 (d, *J* = 2.5 Hz, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 16.8, 19.3, 71.6, 121.0, 122.9, 125.9, 126.7, 127.1, 129.7, 146.2, 152.2, 167.6, 172.2.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₃H₁₂NO₂S₂ 278.0304; Found 278.0310.

4-(4-Methyl-2-phenylthiazol-5-yl)-3-(thiophen-3-yl)furan-2(5H)-one (6c).

Yellow powder, 66% yield (962 mg); mp 131-134 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.27 (s, 3H), 5.08 (s, 2H), 7.20 (d, *J* = 4.8 Hz, 1H), 7.32-7.37 (m, 1H), 7.44-7.53 (m, 3H), 7.89-8.01 (m, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 17.2, 71.6, 121.4, 123.2, 126.0, 126.6

☐ (2C), 126.7, 127.2, 129.1 (2C), 129.7, 130.9, 132.7, 146.0, 153.7, 169.0, 172.2.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₄NO₂S₂ 340.0460; Found 340.0449.

Anal. Calcd for C₁₈H₁₃NO₂S₂: C, 63.69; H, 3.86; N, 4.13. Found: C, 63.39; H, 3.87; N, 4.11.

4-(4-Methyl-2-phenylthiazol-5-yl)-3-(thiophen-2-yl)furan-2(5H)-one (6d).

Yellow powder, 55% yield (801 mg); mp 134-136 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.33 (s, 3H), 5.06 (s, 2H), 7.02-7.16 (m, 1H), 7.35-7.56 (m, 4H), 7.61-7.71 (m, 1H), 7.89-8.02 (m, 2H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 17.1, 72.0, 120.6, 123.1, 126.7 (2C), 127.3, 128.5, 129.1 (2C), 129.2, 130.5, 130.8, 132.8, 144.8, 153.6, 169.4, 171.3.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₄NO₂S₂ 340.0460; Found 340.0459.

3-(1H-Indol-3-yl)-4-(4-methyl-2-phenylthiazol-5-yl)furan-2(5H)-one (6e).

Yellow powder, 66% yield (1.06 g); mp 227-230 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 2.16 (s, 3H), 5.43 (s, 2H), 6.84-6.89 (m, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 7.10 (t, *J* = 7.2 Hz, 1H), 7.40-7.53 (m, 4H), 7.69-7.83 (m, 3H).

6e ¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 17.6, 71.8, 104.8, 112.5, 119.8, 120.0, 121.2, 122.2, 123.6, 125.5, 126.5 (2C), 128.0, 129.8 (2C), 131.2, 132.7, 136.6, 145.9, 154.6, 154.6, 1$

167.5, 173.3.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₂H₁₇N₂O₂S 373.1005; Found 373.1001. Anal. Calcd for C₂₂H₁₆N₂O₂S: C, 70.95; H, 4.33; N, 7.52. Found: C, 70.70; H, 4.03; N, 7.40.

4-(2,4-Dimethyloxazol-5-yl)-3-(1H-indol-3-yl)furan-2(5H)-one (7a).

Dark yellow powder, 40% yield (506 mg); mp 213-215 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.82 (s, 3H), 2.22 (s, 3H), 5.35 (s, 2H), 6.90-7.03 (m, 2H), 7.08-7.17 (m, 1H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.68-7.72 (m, 1H), 11.57 (s, 1H).

 $\begin{bmatrix} 7a \\ 1^3C{^1H} & NMR (75 \text{ MHz, DMSO-d}_6): \delta = 13.0, 14.0, 69.6, 105.2, 112.3, 117.6, 119.6, 120.2, 121.9, 126.2, 127.9, 136.2, 139.5, 139.7, 140.2, 162.5, 173.5.$

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₇H₁₅N₂O₃ 295.1077; Found 295.1084.

4-(2,4-Dimethyloxazol-5-yl)-3-(1-methyl-1H-indol-3-yl)furan-2(5H)-one (7b).

Yellow crystals, 44% yield (583 mg); mp 183-186 °C.

¹H NMR (300 MHz, CDCl₃): δ = 1.75 (s, 3H), 2.35 (s, 3H), 3.87 (s, 3H), 5.18 (s, 2H), 6.97-7.08 (m, 2H), 7.18-7.27 (m, 1H), 7.36 (d, *J* = 7.9 Hz, 1H), 7.68 (s, 1H).

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₇N₂O₃ 309.1234; Found 309.1226.

4-(2,4-Dimethyloxazol-5-yl)-3-(thiophen-3-yl)furan-2(5H)-one (7c).

Pale yellow powder, 54% yield (606 mg); mp 177-178 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.00 (s, 3H), 2.48 (s, 3H), 5.10 (s, 2H), 7.29 (d, *J* = 5.5 Hz, 1H), 7.32-7.38 (m, 1H), 7.91-7.86 (m, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.5, 14.0, 69.1, 119.3, 125.1, 127.1, 127.7, 129.9, 138.9, 140.0, 141.0, 163.0, 172.5.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₃H₁₂NO₃S 262.0532; Found 262.0527.

4-(2,4-Dimethyloxazol-5-yl)-3-(thiophen-2-yl)furan-2(5H)-one (7d).

Pale yellow powder, 39% yield (438 mg); mp 115-116 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.07 (s, 3H), 2.50 (s, 3H), 5.11 (s, 2H), 7.07-7.14 (m, 1H), 7.46 (d, *J* = 4.9 Hz, 1H), 7.56 (d, *J* = 3.2 Hz, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.7, 14.0, 69.3, 118.2, 126.9, 128.1, 129.5, 130.6, 138.6, 140.0, 140.2, 163.1, 171.9.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₃H₁₂NO₃S 262.0532; Found 262.0529.

4-(2,5-Dimethylthiophen-3-yl)-3-(thiophen-3-yl)furan-2(5H)-one (8a).

Pale brown powder, 79% yield (938 mg); mp 77-79 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.09 (s, 3H), 2.45 (s, 3H), 4.95 (s, 2H), 6.57 (s, 1H), 7.13 (d, *J* = 5.0 Hz, 1H), 7.25 (dd, *J* = 2.4, 5.0 Hz, 1H), 7.95 (d, *J* = 2.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 14.3, 15.1, 71.4, 121.5, 124.5, 125.3, 126.0, 126.6, 128.3, 130.5, 136.9, 138.3, 151.5, 173.0.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₄H₁₃O₂S₂ 277.0351; Found 277.0356.

4-(2,5-Dimethylthiophen-3-yl)-3-(thiophen-2-yl)furan-2(5H)-one (8b).

Brown powder, 87% yield (1.03 g); mp 110-112 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.19 (s, 3H), 2.47 (s, 3H), 4.95 (s, 2H), 6.56 (s, 1H), 7.01-7.06 (m, 1H), 7.34 (d, *J* = 5.0 Hz, 1H), 7.61 (d, *J* = 3.6 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 14.3, 15.1, 71.7, 121.2, 124.3, 126.9, 127.4, 127.8, 128.0, 131.3, 137.0, 138.6, 150.6, 172.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₄H₁₃O₂S₂ 277.0351; Found 277.0355.

4-(2,5-Dimethylthiophen-3-yl)-3-(1H-indol-3-yl)furan-2(5H)-one (8c).

Pale yellow powder, 51% yield (678 mg); mp 201-203 °C. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 1.74$ (s, 3H), 2.37 (s, 3H), 5.22 (s, 2H), 6.72-6.83 (m, 2H), 6.87 (s, 1H), 7.02-7.11 (m, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.71 (d, J = 2.5 Hz, 1H), 11.49 (s, 1H).

8c ¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 14.6, 15.2, 71.7, 105.9, 112.2, 119.6, 119.9 (2C), 121.9, 125.5, 126.0, 127.3, 130.1, 136.3, 137.0, 137.3, 149.7, 174.1.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₆NO₂S 310.0896; Found 310.0895.

4-(2,5-Dimethylthiophen-3-yl)-3-(1-methyl-1H-indol-3-yl)furan-2(5H)-one (8d).

Red powder, 58% yield (806 mg); mp 142-143 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.83$ (s, 3H), 2.45 (s, 3H), 3.85 (s, 3H), 5.08 (s, 2H), 6.69 (s, 1H), 6.77 (d, J = 8.2 Hz, 1H), 6.87-6.93 (m, 1H), 7.16-7.23 (m, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.79 (s, 1H).

8d ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 14.6, 15.1, 33.1, 71.5, 105.5, 109.3, 119.9, 120.4, 120.5, 121.9, 124.9, 125.8, 129.6, 131.0, 136.7, 137.6, 137.7, 147.4, 174.4.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₈NO₂S 324.1053; Found 324.1056.

1,5-Dimethyl-4-(5-oxo-4-(thiophen-3-yl)-2,5-dihydrofuran-3-yl)-1H-pyrrole-2-carbonitrile (9a).

Yellow powder, 64% yield (782 mg); mp 147-150 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.94 (s, 3H), 3.69 (s, 3H), 4.95 (s, 2H), 6.81 (s, 1H), 7.12 (d, *J* = 4.9 Hz, 1H), 7.28-7.33 (m, 1H), 7.81-7.87 (m, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 11.9, 33.0, 71.2, 105.5, 113.0, 113.6, 117.9, 120.4, 125.6, 126.1, 126.6, 130.5, 134.5, 149.6, 173.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found 285.0699.

1,5-Dimethyl-4-(5-oxo-4-(thiophen-2-yl)-2,5-dihydrofuran-3-yl)-1H-pyrrole-2-carbonitrile (**9b**).

Yellow powder, 83% yield (1.01 g); mp 175-177 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.03$ (s, 3H), 3.70 (s, 3H), 4.93 (s, 2H), 6.81 (s, 1H), 7.02-7.07 (m, 1H), 7.34 (d, J = 5.0 Hz, 1H), 7.53 (d, J = 3.5 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.0, 33.0, 71.6, 105.5, 113.1 (2C), 118.0, 120.1, 127.1, 127.2, 128.2, 131.2, 134.5, 149.1, 172.1.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found 285.0701.

Anal. Calcd for C₁₅H₁₂N₂O₂S: C, 63.36; H, 4.25; N, 9.85. Found: C, 62.98; H, 3.97; N, 9.83.

4-(4-(1H-Indol-3-yl)-5-oxo-2,5-dihydrofuran-3-yl)-1,5-dimethyl-1H-pyrrole-2-carbonitrile (9d).

Yellow powder, 72% yield (981 mg); mp 243-246 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 1.72 (s, 3H), 3.52 (s, 3H), 5.24 (s, 2H), 6.77-6.90 (m, 2H), 7.05 (s, 1H), 7.06-7.13 (m, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.64 (d, *J* = 2.5 Hz, 1H), 11.49 (s, 1H).

9d ¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 11.9$, 33.1, 71.4, 104.0, 105.7, 112.3, 114.0, 114.9, 117.9, 118.9, 119.5, 120.1, 121.9, 125.5, 127.1, 136.3, 136.6, 149.1, 174.2. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₁₆N₃O₂ 318.1237; Found 318.1244.

4-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)-3-(thiophen-3-yl)furan-2(5H)-one (10a).

Yellow powder, 75% yield (1.04 g); mp 135-137 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.05 (s, 3H), 5.07 (s, 2H), 7.23-7.28 (m, 1H), 7.32-7.38 (m, 1H), 7.39-7.55 (m, 5H), 7.70 (s, 1H), 7.83-7.89 (m, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.3, 70.9, 112.7, 120.1, 125.1 (2C), 125.7,

126.1, 126.8, 128.6, 129.3 (2C), 130.6, 137.9, 138.9 (2C), 148.5, 173.0.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₅N₂O₂S 323.0849; Found 323.0849.

4-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)-3-(thiophen-2-yl)furan-2(5H)-one (10b).

Pale yellow powder, 78% yield (1.08 g); mp 122-123 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.13$ (s, 3H), 5.06 (s, 2H), 7.04-7.14 (m, 1H), 7.31-7.66 (m, 7H), 7.73 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): $\delta = 12.1$, 71.2, 104.8, 112.0, 119.7, 125.0 (2C), 126.9, 127.1, 128.1, 128.4, 129.1 (2C), 131.1, 137.8, 138.7, 147.7, 172.0.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₅N₂O₂S 323.0849; Found 323.0852.

3-(1H-Indol-3-yl)-4-(5-methyl-1-phenyl-1H-pyrazol-4-yl)furan-2(5H)-one (10c).

Pale brown powder, 55% yield (840 mg); mp 227-229 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.77 (s, 3H), 5.38 (s, 2H), 6.87-6.94 (m, 2H), 7.10-7.18 (m, 1H), 7.29 (d, J = 7.2 Hz, 2H), 7.41-7.55 (m, 4H), 7.71 (d, J = 2.5 Hz, 1H), 7.75 (s, 1H), 11.54 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 12.2, 71.1, 105.6, 112.5, 114.1, 117.8, 119.4, 120.1, 122.0, 125.4 (2C), 127.2, 128.8, 129.7 (2C), 136.3 (2C), 127.2, 128.8, 129.7 (2C), 136.3 (2C), 128.8, 129.7 (2C), 136.3 (2C), 128.8, 129.7 (2C), 136.3 (2C), 128.8, 129.7 (2C), 136.8 (2C), 128.8, 129.7 (2C), 136.8 (2C), 128.8 (2C), 12$

138.6, 139.1, 139.6, 147.9, 174.1.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₂H₁₈N₃O₂ 356.1394; Found 356.1392.

4-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)-3-(1-methyl-1H-indol-3-yl)furan-2(5H)-one (10d).

Pale yellow powder, 62% yield (1.04 g); mp 169-170 °C.

¹H NMR (300 MHz, CDCl₃): δ = 1.64 (s, 3H), 3.88 (s, 3H), 5.19 (s, 2H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.93-7.00 (m, 1H), 7.21-7.28 (m, 3H), 7.34-7.47 (m, 4H), 7.75 (s, 1H), 7.76 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 12.2, 33.2, 71.1, 105.2, 109.6, 114.2, 118.9, 119.7, 120.6, 122.0, 125.2 (2C), 125.7, 128.4, 129.2 (2C), 130.9, 136.7,

138.4, 138.7, 139.0, 144.7, 174.4.

HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ Calcd for C₂₃H₁₉N₃O₂Na 392.1369; Found 392.1359.

4-(5-Methyl-2-(thiophen-2-yl)oxazol-4-yl)-3-(thiophen-3-yl)furan-2(5H)-one (11a).

Light brown power, 40% yield (566 mg); mp 153-155 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.02 (s, 3H), 5.18 (s, 2H), 7.10-7.20 (m, 1H), 7.24-7.40 (m, 2H), 7.48 (d, *J* = 4.4 Hz, 1H), 7.63-7.70 (m, 1H), 7.88 (s, 1H).

 $11a \qquad 13C{^{1}H} \text{ NMR (75 MHz, CDCl_3): } \delta = 12.0, 70.9, 121.2, 125.6, 126.7, 127.3, 128.1 (2C), 128.9, 129.0 (2C), 130.2, 146.9, 148.3, 157.3, 173.0.$

Yellow powder, 37% yield (523 mg); mp 146-148 °C.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₂NO₃S₂ 330.0253; Found 330.0253.

4-(5-Methyl-2-(thiophen-2-yl)oxazol-4-yl)-3-(thiophen-2-yl)furan-2(5H)-one (11b).

¹H NMR (300 MHz, CDCl₃): $\delta = 2.12$ (s, 3H), 5.18 (s, 2H), 7.08-7.18 (m, 2H), 7.43 (d, J = 5.1 Hz, 1H) 7.48 (d, J = 4.9 Hz, 1H), 7.58 (d, J = 3.4 Hz, 1H), 7.69 (d, J = 3.3 Hz, 1H).

128.2, 128.7, 128.9, 129.0, 129.1, 130.8, 146.1, 148.2, 157.4, 172.2.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₂NO₃S₂ 330.0253; Found 330.0244.

3-(1H-Indol-3-yl)-4-(5-methyl-2-(thiophen-2-yl)oxazol-4-yl)furan-2(5H)-one (11c).

Pale orange powder, 50% yield (778 mg); mp 206-208 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.56 (s, 3H), 5.31 (s, 2H), 7.00 (t, *J* = 7.5 Hz, 1H), 7.10 (d, *J* = 7.9 Hz, 1H), 7.13-7.18 (m, 1H), 7.21 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.48 (d, *J* = 5.0 Hz, 1H), 7.67 (d, *J* = 3.4 Hz, 1H), 7.71-7.77 (m, 1H), 8.83 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 11.5, 71.3, 106.4, 111.7, 119.8, 119.9, 120.4, 122.6, 125.1, 126.6, 128.0 (2C), 128.6, 129.3, 129.7, 135.7, 145.0, 149.0, 157.0, 174.4.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₀H₁₅N₂O₃S 363.0798; Found 363.0795.

4-(1,5-Dimethyl-2-phenyl-1H-imidazol-4-yl)-3-(1H-indol-3-yl)furan-2(5H)-one (12a).

Yellow powder, 34% yield (539 mg); mp 242-243 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 1.49 (s, 3H), 3.45 (s, 3H), 5.29 (s, 2H), 6.83-6.96 (m, 2H), 7.10 (d, *J* = 7.4 Hz, 1H), 7.41-7.54 (m, 4H), 7.62-7.70 (m, 3H), 11.48 (s, 1H).

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₂₀N₃O₂ 370.1550; Found 370.1540.

4-(5-Methyl-2-phenyl-1H-imidazol-4-yl)-3-(thiophen-3-yl)furan-2(5H)-one (12b).

White powder, 46% (637 mg); mp 230-233 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.15 (s, 3H), 5.32 (s, 2H), 7.08-7.20 (m, 1H), 7.33-7.54 (m, 3H), 7.58-7.68 (m, 1H), 7.83-8.01 (m, 3H), 12.87 (br s, 1H). ¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 11.8, 71.1, 114.8, 125.3 (2C), 127.0, 127.8, 129.1, 129.3 (3C), 129.9, 130.2, 131.9, 132.5, 145.9, 151.2, 173.3.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₅N₂O₂S 323.0849; Found 323.0843.

4-(1,5-Dimethyl-2-phenyl-1H-imidazol-4-yl)-3-(thiophen-3-yl)furan-2(5H)-one (12c).

Yellow powder, 48% (694 mg); mp 130-131 °C.

¹H NMR (300 MHz, CDCl₃): δ = 1.85 (s, 3H), 3.60 (s, 3H), 5.23 (s, 2H), 7.28-7.35 (m, 2H), 7.45-7.55 (m, 3H), 7.57-7.65 (m, 2H), 7.81-7.89 (m, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 10.9, 32.2, 71.5, 118.3, 125.2, 125.7, 127.5, 128.8 (2C), 128.9 (2C), 129.3, 129.7, 129.9, 130.2, 131.4, 148.8, 151.2, 173.9.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₁₇N₂O₂S 337.1005; Found 337.1003.

4-(1,5-Dimethyl-2-phenyl-1H-imidazol-4-yl)-3-(thiophen-2-yl)furan-2(5H)-one (12d).

Yellow powder, 58% (838 mg); mp 193-195 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.96 (s, 3H), 3.61 (s, 3H), 5.23 (s, 2H), 7.05-7.11 (m, 1H), 7.37 (d, *J* = 4.5 Hz, 1H), 7.45-7.53 (m, 4H), 7.60-7.68 (m, 2H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 11.2, 32.2, 71.7, 117.5, 126.8 (2C), 128.2, 128.8 (2C), 128.9 (2C), 129.3, 129.4, 130.0, 130.2, 132.1, 149.0, 150.8, 173.1.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₁₇N₂O₂S 337.1005; Found 337.0993.

4-(5-Methyl-1,2-diphenyl-1H-imidazol-4-yl)-3-(thiophen-2-yl)furan-2(5H)-one (12e).

Yellow powder, 51% (873 mg); mp 187-189 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 1.79$ (s, 3H), 5.32 (s, 2H), 7.00-7.77 (m, 13H). ¹³C{¹H} NMR (75 MHz, CDCl₃): $\delta = 11.6$, 71.7, 118.1, 126.9, 127.0, 127.7, 127.8 (2C), 128.2 (2C), 128.3 (2C), 128.5 (2C), 128.7, 129.4, 129.9 (2C), 131.3, 132.0, 136.5, 148.1, 150.4, 173.0.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₄H₁₉N₂O₂S 399.1162; Found

399.1154.

3-(5-Methyl-2-phenyl-1H-imidazol-4-yl)-2-(thiophen-3-yl)cyclopent-2-enone (24).

Yellow powder, 62% (992 mg); mp 234-236 °C.

¹H NMR (300 MHz, CDCl₃+DMSO-d₆): δ = 1.60 (s, 3H), 2.36-2.41 (m, 2H), 2.88-2.92 (m, 2H), 6.85 (d, *J* = 4.7, 1H), 7.02-7.18 (m, 4H), 7.32-7.36 (m, 1H), 7.70-7.75 (m, 2H).

24 ¹³C{¹H} NMR (75 MHz, CDCl₃+DMSO-d₆): δ = 11.9, 29.4, 34.4, 124.1, 124.3 (2C), 125.1 (2C), 127.9, 128.3, 128.4 (2C), 129.8, 130.0, 131.4, 132.8, 133.9, 146.5, 206.9.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₇N₂OS 321.1056; Found 321.1053.

Anal. Calcd for C₁₉H₁₆N₂OS: C, 71.22; H, 5.03; N, 8.74. Found: C, 70.09; H, 5.05; N, 8.41.

Synthesis of dihetarylethene 16c. Compound 16d (500 mg, 1.6 mmol) was dissolved in dry DMF (10 mL) and cooled by crushed ice. Then sodium hydride NaH (45 mg, 1.9 mmol) was added portionwise and dodecyl bromide (438 mg, 1.8 mmol) was was added. The reaction mixture was stirred 12 h at ambient temperature, was poured into water (100 mL), and extracted with ethyl acetate (3×30 mL). The combined organic phases were washed with water (100 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography by petroleum ether/ethyl acetate.

4-(4-(1-Dodecyl-1H-indol-3-yl)-5-oxo-2,5-dihydrofuran-3-yl)-1,5-dimethyl-1H-pyrrole-2-carbonitrile (**16c**).

Yellow amorphous powder, 30% yield (230 mg).

¹H NMR (300 MHz, CDCl₃): $\delta = 0.89$ (t, J = 6.4 Hz, 3H), 1.19-1.40 (m, 18H), 1.60 (s, 3H), 1.83-1.97 (m, 2H), 3.53 (s, 3H), 4.17 (t, J = 7.1 Hz, 2H), 5.06 (s, 2H), 6.70 (d, J = 8.0 Hz, 1H), 6.87 (s, 1H), 6.87-6.93 (m, 1H), 7.14-7.22 (m, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.75 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 11.7, 14.1, 22.7, 26.9, 29.2, 29.3, 29.5 (2C), 29.6 (2C), 30.0, 31.9, 32.7, 46.7, 71.2, 104.9, 105.1, 109.8, 113.4, 115.2, 117.6, 119.2, 119.6, 120.4, 121.8, 125.7, 129.9, 135.4, 136.0, 145.7, 174.3.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₃₁H₄₀N₃O₂ 486.3115; Found 486.3103.

II.2. Photoreactions of dihetarylethenes

Preparative photoreactions of dihetarylethenes. Method A (general). Dihetarylethene (100 mg) was dissolved in 10 mL of appropriate solvent, and the reaction mixture was irradiated ($\lambda = 365$ nm, two 8W lamps) with stirring in a 12 mL flat-bottomed glass vessel. After completion of the reaction (TLC control), the mixture was poured into water (100 mL), and extracted with ethyl acetate (3 × 30 mL). The combined organic phases were washed with water (100 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography by gradient system petroleum ether/ethyl acetate (6:1 \rightarrow 1:1).

Method B (*in situ* alkylation method). To the solution of dihetarylethene (100 mg) in DMF (10 mL) potassium carbonate K₂CO₃ (1.5 equiv) and alkyl halogenide (5 equiv of methyl iodide MeI or 2 equiv of benzyl chloride BnCl or 2 equiv of *n*-dodecyl bromide C₁₂H₂₅Br) were added. The reaction mixture was irradiated ($\lambda = 365$ nm, two 8W lamps) with stirring in a 12 mL flat-bottomed glass vessel. After completion of the reaction (TLC control), the solution was poured into water (100 mL), and extracted with ethyl acetate (3 × 30 mL). The combined organic phases were washed with water (100 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by column chromatography by gradient system petroleum ether/ethyl acetate (10:1 \rightarrow 2:1).

Method C (for pyrazole-based dihetarylethenes 10). Dihetarylethene (100 mg) was dissolved in 10 mL of appropriate solvent (toluene or DMF) and DABCO (1 equiv) was added (in the case of DHE's 10c,d). The reaction mixture was irradiated ($\lambda = 365$ nm, two 8W lamps) with stirring. After completion of the reaction (TLC control), the precipitate was fittered off, washed with DCM (5 mL) and dried on air.

N-(5-methyl-1-oxo-1,3-dihydrothieno[3,2-e]isobenzofuran-4-yl)benzamide (4a).

Dihetarylethene: **3a**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 11 h. White crystals, 79% yield (79 mg); 219-222 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.61 (s, 3H), 5.42 (s, 2H), 7.53-7.68 (m, 3H), 7.95 (d, J = 5.4 Hz, 1H), 8.06 (d, J = 7.2 Hz), 8.17 (d, J = 5.4 Hz, 1H), 10.36 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 17.3$, 69.7, 117.3, 121.2, 127.1, 128.3 (2C), 129.0 (2C), 132.4, 132.9, 133.4, 134.1, 135.9, 142.6, 144.8, 166.0, 170.5.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₄NO₃S 324.0689; Found 324.0696.

N-(4-methyl-8-oxo-6,8-dihydrothieno[2,3-e]isobenzofuran-5-yl)benzamide (4b).

Dihetarylethene: **3b**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 4 h.

White crystals, 91% yield (91 mg); 147-149 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.65 (s, 3H), 5.44 (s, 2H), 7.52-7.66 (m, 3H), 7.78 (d, *J* = 5.4 Hz, 1H), 8.01 (d, *J* = 5.4 Hz, 1H), 8.05 (d, *J* = 7.3 Hz, 1H), 8.01 (d, *J* = 5.4 Hz, 1H), 8.05 (d, *J* = 7.3 Hz, 1H), 8.05 (d, J = 7.3

2H), 10.31 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 16.0, 70.4, 117.7, 123.4, 127.9, 128.3 (2C), 128.9 (2C), 129.7, 132.4, 132.5, 134.2, 137.3, 142.2, 143.8, 165.9, 170.4.

HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ Calcd for C₁₈H₁₃NO₃SNa 346.0508; Found 346.0507.

N-(5-methyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)benzamide (4c).

Dihetarylethene: **3c**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 8 h.

White powder, 89% yield (89 mg); mp > 300 °C.

¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.64$ (s, 3H), 5.46 (s, 2H), 7.29 (t, J = 7.2 H = 1H) 7.47.7.72 (c, 5H) 8.00 (c, 1 + 2.7) 8.00 (c, 1 + 2.7)

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 13.7, 70.3, 112.0, 116.4, 116.7, 119.9, 121.4, 124.8, 125.7, 127.3, 127.6, 128.3 (2C), 129.0 (2C), 132.3, 134.3, 138.6, 140.6, 141.3, 165.9, 171.9. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₂H₁₇N₂O₃ 357.1234; Found 357.1232.

S18

N-(5,6-dimethyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)benzamide (4d).

Dihetarylethene: **3d**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 7 h.

White crystals, 87% yield (87 mg); 246-249 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 2.84 (s, 3H), 4.21 (s, 3H), 5.44 (s, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.51-7.76 (m, 5H), 8.09 (d, *J* = 6.9 Hz, 2H), 8.97 (d, *J* = 7.7 Hz, 1H),

10.33 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 15.0, 33.5, 70.1, 110.2, 116.8, 117.6, 120.0, 120.3, 124.8, 126.8, 127.5, 128.3 (2C), 128.5, 129.0 (2C), 132.4, 134.3, 139.0, 140.8, 142.9, 166.0, 171.8. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₁₉N₂O₃ 371.1390; Found 371.1383. Anal. Calcd for C₂₃H₁₈N₂O₃: C, 74.58; H, 4.90; N, 7.56. Found: C, 74.44; H, 5.04; N, 7.48.

N-(5-methyl-1-oxo-1,3-dihydrofuro[3,4-f]isoquinolin-4-yl)benzamide (4e).

Dihetarylethene: **3e**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 3 h.

White powder, 90% yield (90 mg); mp 235-238 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.81 (s, 3H), 5.49 (s, 2H), 7.54-7.70 (m, 3H), 8.08 (d, *J* = 7.1 Hz, 2H), 8.59 (d, *J* = 5.4 Hz, 1H), 8.80 (d, *J* = 5.7 Hz, 1H), 9.72

(s, 1H), 10.54 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 14.2, 69.5, 115.5, 117.6, 128.1, 128.4 (2C), 129.0 (2C), 129.8, 130.5, 132.6, 133.9, 140.2, 145.8, 150.7, 152.5, 166.2, 170.5.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₅N₂O₃ 319.1077; Found 319.1090.

N-(5-methyl-1-oxo-1,3-dihydrofuro[3,4-h]isoquinolin-4-yl)benzamide (4fa).

Dihetarylethene: **3f**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 8 h.

Yellow powder, 35% yield (35 mg); 212-213 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.69 (s, 3H), 5.52 (s, 2H), 7.54-7.73 (m, 3H), 8.09 (d, *J* = 6.8 Hz, 2H), 8.17 (d, *J* = 5.8 Hz, 1H), 8.78 (d, *J* = 5.8 Hz,

1H), 10.12 (s, 1H), 10.61 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 14.5, 69.9, 118.9, 122.2, 128.4 (2C), 129.0 (2C), 129.1, 132.3, 132.6, 133.9, 136.5, 137.9, 145.2, 147.4, 149.4, 166.1, 170.4.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₅N₂O₃ 319.1077; Found 319.1050.

N-(5-methyl-1-oxo-1,3-dihydrofuro[3,4-f]quinolin-4-yl)benzamide (4fb).

Dihetarylethene: **3f**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 8 h.

Yellow powder, 54% yield (54 mg); mp 195-198 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.81 (s, 3H), 5.48 (s, 2H), 7.55-7.69 (m, 3H), 7.80 (dd, *J* = 8.3, 4.2 Hz, 1H), 8.05-8.12 (m, 2H), 9.10-9.17 (m, 2H), 10.52 (s,

1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.9, 69.4, 117.8, 122.9, 123.7, 128.4 (2C), 129.0 (2C), 131.0, 131.5, 132.5, 134.0, 141.0, 147.6, 148.2, 151.2, 166.0, 170.7.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₁₅N₂O₃ 319.1077; Found 319.1074.

N-(4-methyl-8-oxo-2-phenyl-6,8-dihydroisobenzofuro[4,5-d]thiazol-5-yl)benzamide (4g).

Dihetarylethene: **3g**. Method: A. Solvent: DCM. Dopant: none or DABCO (1 equiv). Reaction time: 19 h.

Yellow crystals, 35% yield (35 mg, without DABCO), 90% (90 mg, 1 equiv of DABCO); mp 245-248 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 2.62$ (s, 3H), 5.44 (s, 2H), 7.53-7.66 (m, 6H), 8.09 (d, J = 7.3 Hz, 2H), 8.14-8.20 (m, 2H), 10.57 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 18.9, 69.1, 116.2, 127.9 (2C), 128.1, 128.4 (2C), 129.0 (2C), 129.9 (2C), 132.5 (2C), 132.8, 134.0, 135.9, 138.4, 146.8, 147.2, 166.0, 168.4, 171.3.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₃H₁₇N₂O₃S 401.0954; Found 401.0941.

Anal. Calcd for C23H16N2O3S: C, 68.98; H, 4.03; N, 7.00. Found: C, 68.71; H, 4.57; N, 6.89.

N-(2-amino-4-methyl-8-oxo-6,8-dihydroisobenzofuro[4,5-d]thiazol-5-yl)benzamide (4h).

Dihetarylethene: **3h**. Method: A (filtration instead of chromatography). Solvent: DCM. Dopant: DABCO (1 equiv). Reaction time: 40 h. Yellow crystals, 44% yield (44 mg); mp > 300 °C. ¹H NMR (300 MHz, CDCl₃): δ = 2.40 (s, 3H), 5.24 (s, 2H), 7.48-7.73 (m, 3H), 7.91-8.12 (m, 2H), 8.22 (s, 2H), 10.12 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 18.7, 68.5, 123.3, 126.5, 128.2 (2C), 128.9 (2C), 129.1, 132.3, 134.2, 134.6, 144.2, 148.3, 165.9, 169.0, 170.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₇H₁₄N₃O₃S 340.0750; Found 340.0750.

N-(3,4-dimethyl-8-oxo-6,8-dihydroisobenzofuro[5,4-d]isoxazol-5-yl)benzamide (4i).

Dihetarylethene: **3i**. Method: A. Solvent: DCM. Dopant: DABCO (1 equiv). Reaction time: 45 h.

Pale yellow powder, 77% yield (77 mg); mp 224-225 °C.

¹H NMR (600 MHz, CDCl₃): $\delta = 2.66$ (s, 3H, CH₃), 2.78 (s, 3H, CH₃), 5.47 (s, 2H, CH₂), 7.55-7.61 (m, 2H, H^{arom}), 7.64-7.68 (m, 1H, H^{arom}), 8.05 (d, J = 7.4

Hz, 2H, H^{arom}), 10.30 (s, 1H, NH).

¹³C{¹H} NMR (151 MHz, CDCl₃): δ = 12.4, 14.8, 70.3, 107.0, 123.6, 127.1, 128.3 (2C), 129.0 (2C), 132.5, 134.0, 139.9, 150.1, 156.3, 156.5, 166.1, 167.6.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₅N₂O₄ 323.1026; Found 323.1020.

N-(5-methyl-1-oxo-1,3-dihydroisobenzofuro[4',5':4,5]imidazo[1,2-a]pyridin-4-yl)benzamide (4j).

Dihetarylethene: **3j**. Method: A. Solvent: DCM. Dopant: DABCO (1 equiv). Reaction time: 51 h. White powder, 60% yield (60 mg); mp 284-286 °C. ¹H NMR (600 MHz, CDCl₃): δ = 2.91 (s, 3H, CH₃), 5.42 (s, 2H, CH₂), 7.13-7.18 (m, 1H, H^{imidazopyridine}), 7.57-7.61 (m, 2H, H^{arom}), 7.64-7.68 (m, 1H, H^{arom}), 7.71-7.76 (m, 1H, H^{imidazopyridine}), 7.88 (d, *J* = 9.0 Hz, 1H, H^{imidazopyridine}), 8.10 (d,

J = 7.4 Hz, 2H, H^{arom}), 9.24 (d, J = 6.8 Hz, 1H, H^{imidazopyridine}), 10.41 (s, 1H, NH). ¹³C{¹H} NMR (151 MHz, CDCl₃): $\delta = 15.1$, 69.1, 111.7, 112.4, 117.9, 123.4, 128.3 (2C), 129.0 (2C), 129.3, 129.6, 130.2, 131.5, 132.4, 134.2, 139.6, 145.9, 150.9, 166.3, 169.5. HRMS (ESI-TOF) m/z [M+Na]⁺ Calcd for C₂₁H₁₅N₃O₃Na 380.1006; Found 380.1001.

N-(5-methyl-9-oxo-7,9-dihydrofuro[3,4-h]quinolin-6-yl)benzamide (**4**k).

Dihetarylethene: **3k**. Method: A. Solvent: MeOH. Dopant: DABCO (1 equiv). Reaction time: 16 h.

Gray powder, 37% yield (37 mg); mp 210-212 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.70 (s, 3H, CH₃), 5.42 (s, 2H, CH₂), 7.60 (t, J = 7.4 Hz, 2H, H^{arom}), 7.67 (t, J = 7.4 Hz, 1H, H^{arom}), 7.77 (dd, J = 8.6, 4.2 Hz,

1H, H^{pyridine}), 8.08 (d, J = 7.4 Hz, 2H, H^{arom}), 8.75 (dd, J = 8.6, 1.6 Hz, 1H, H^{pyridine}), 9.12 (dd, J = 4.2, 1.6 Hz, 1H, H^{pyridine}).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 14.6, 68.1, 118.9, 122.7, 128.3 (2C), 128.6, 128.9 (2C), 129.0, 132.5, 134.0, 134.6, 140.1, 143.2, 152.1, 152.2, 166.2, 168.6.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₅N₂O₃ 319.1077; Found 319.1077.

N-acetyl-N-benzoyl-5-oxo-4-(2-phenylthiazol-4-yl)-2,5-dihydrofuran-3-carboxamide (5a).

Dihetarylethene: **3g**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 19 h.

Yellow amorphous powder, 18% yield (19 mg).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 26.0, 70.7, 106.9, 122.3, 127.0 (2C), 128.6 (2C), 129.2 (2C), 130.1 (2C), 130.9, 131.6, 132.9, 134.4, 144.4, 148.9, 165.6, 168.9, 170.5, 171.9, 172.8. HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ Calcd for C₂₃H₁₆N₂O₅SNa 455.0672; Found 455.0662.

N-benzoyl-5-oxo-4-(2-phenylthiazol-4-yl)-2,5-dihydrofuran-3-carboxamide (5b).

Dihetarylethene: **3g**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 19 h.

Yellow amorphous powder, 15% yield (15 mg).

¹H NMR (300 MHz, CDCl₃): δ = 5.27 (s, 2H), 6.94-7.75 (m, 10H), 8.96 (s, 1H), 14.06 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 70.8, 122.8, 126.3, 127.0 (2C), 128.1 (2C), 128.4 (2C), 128.9 (2C), 131.0, 131.2, 132.9, 133.5, 144.5, 146.9, 160.4, 167.4, 170.0, 171.8.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₁H₁₅N₂O₄S 391.0747; Found 391.0745.

5-Methyl-4-(methylthio)thieno[3,2-e]isobenzofuran-1(3H)-one (13a).

Dihetarylethene: **6b** and **6c**. Method: B. Reaction time: 8 h.

Yellow powder, 85% yield (77 mg, from **6c**), 27% (24 mg, from **6b**); mp 193-196 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.36 (s, 3H), 2.92 (s, 3H), 5.44 (s, 2H), 7.78 (d, J = 5.4 Hz, 1H), 8.06 (d, J = 5.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 19.0 (2C), 70.1, 118.0, 122.0, 124.4, 131.6, 135.4, 142.9, 143.2, 150.3, 170.8.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₂H₁₁O₂S₂ 251.0195; Found 251.0194.

4-Methyl-5-(methylthio)thieno[2,3-e]isobenzofuran-8(6H)-one (13b).

Dihetarylethene: **6d**. Method: B. Reaction time: 8 h. Pale yellow powder, 78% yield (58 mg); mp 195-197 °C. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.34$ (s, 3H), 2.87 (s, 3H), 5.54 (s, 2H), 7.72 (d, J = 5.4 Hz, 1H), 7.96 (d, J = 5.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 18.0, 18.6, 71.1, 117.9, 123.6, 125.5,

129.5, 134.6, 142.0, 144.6, 150.1, 170.5.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₂H₁₁O₂S₂ 251.0195; Found 251.0198.

Anal. Calcd for C₁₂H₁₀O₂S₂: C, 57.57; H, 4.03. Found: C, 58.98; H, 4.10.

5-(Benzylthio)-4-methylthieno[2,3-e]isobenzofuran-8(6H)-one (13c).

Dihetarylethene: 6d. Method: B. Reaction time: 8 h.

Yellow amorphous powder, 81% yield (78 mg). ¹H NMR (300 MHz, CDCl₃): $\delta = 2.86$ (s, 3H), 3.86 (s, 2H), 4.87 (s, 2H), 6.88-

6.97 (m, 2H), 7.13-7.23 (m, 3H), 7.55 (d, J = 5.5 Hz, 1H), 7.67 (d, J = 5.5 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): *δ* = 17.7, 40.4, 70.7, 118.2, 122.4, 122.5, 127.5, 128.5 (3C), 128.6 (2C), 135.8, 137.9, 141.9, 145.6, 150.7, 170.5.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₅O₂S₂ 327.0508; Found 327.0514.

5-Methyl-4-(methylthio)-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (13d).

Dihetarylethene: **6e**. Method: B. Reaction time: 8 h. Yellow powder, 71% yield (54 mg); mp 265-268 °C. ¹H NMR (600 MHz, DMSO-d₆): $\delta = 2.36$ (s, 3H, CH₃), 2.86 (s, 3H, CH₃), 5.56 (s, 2H, CH₂), 7.23-7.29 (m, 1H, H^{carbazole}), 7.49-7.54 (m, 1H, H^{carbazole}), 7.62 (d, J = 8.2 Hz, 1H, H^{carbazole}), 8.80 (d, J = 8.0 Hz, 1H, H^{carbazole}), 11.80

(s, 1H, NH).

¹³C{¹H} NMR (151 MHz, DMSO-d₆): *δ* = 15.7, 18.9, 71.0, 112.0, 117.0, 117.9, 120.0, 121.2, 124.9, 125.0, 127.7, 132.7, 140.3, 141.3, 145.0, 172.1.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₄NO₂S 284.0740; Found 284.0747.

4-(Benzylthio)-5-methyl-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (13e).

Dihetarylethene: 6e. Method: B. Reaction time: 8 h.
Yellow powder, 64% yield (62 mg); mp 217-218 °C (decomp.).
¹H NMR (300 MHz, DMSO-d₆): δ = 2.65 (s, 3H), 3.98 (s, 2H), 5.12 (s, 2H), 6.96-7.01 (m, 2H), 7.15-7.18 (m, 3H), 7.23-7.29 (m, 1H), 7.49-7.54 (m, 1H), 7.62 (d, J = 8.2 Hz, 1H), 8.79 (d, J = 8.0 Hz, 1H), 11.76 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 15.5, 39.7, 71.0, 112.1, 120.0, 121.1, 122.0, 125.0, 127.5, 127.8, 128.2, 128.6 (2C), 129.3 (2C), 130.5, 134.1, 138.7, 140.1, 141.3, 146.2, 172.0. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₂H₁₈NO₂S 360.1053; Found 360.1044.

(Dodecylthio)-5-methyl-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (13f).

Dihetarylethene: **6e**. Method: B. Reaction time: 8 h. Pale yellow powder, 47% yield (55 mg); mp 200-203 °C. ¹H NMR (300 MHz, CDCl₃+DMSO-d₆): δ = 0.81 (t, J = 6.6 Hz, 3H), 1.13-1.34 (m, 18H), 1.42-1.52 (m, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.84 (s, 3H), 5.42 (m, 2H), 7.13-7.20 (m, 1H), 7.38-7.45 (m, 1H), 7.54 (d, J = 8.1

Hz, 1H), 8.80 (d, *J* = 7.9 Hz, 1H), 11.45 (br s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃+DMSO-d₆): δ = 14.3, 15.8, 22.6, 28.6, 29.0, 29.2, 29.4 (2C), 29.5 (2C), 30.0, 31.8, 35.9, 70.9, 111.7, 117.1, 118.2, 119.6, 121.3, 123.3, 125.1, 127.3, 132.8, 140.4, 141.2, 144.8, 171.9.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₇H₃₆NO₂S 438.2461; Found 438.2456.

4-Hydroxy-5-methylthieno[3,2-e]isobenzofuran-1(3H)-one (14a).

Dihetarylethene: **7c**. Method: A. Solvent: DMF. Dopant: none. Reaction time:25 h. Pale yellow powder, 32% yield (27 mg); mp 267-269 °C (decomp.). ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.47$ (s, 3H), 5.38 (s, 2H), 7.76 (d, J = 5.4 Hz, 1H), 7.83 (d, J = 5.4 Hz, 1H), 9.90 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 14.9, 69.0, 117.3, 120.9, 124.1, 128.4, 128.8, 135.4, 143.5, 146.2, 179.8.

MS (EI) m/z (%) = 220 (100) [M]⁺.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₁H₉O₃S 221.0267; Found 221.0271.

5-Hydroxy-4-methylthieno[2,3-e]isobenzofuran-8(6H)-one (14b).

Dihetarylethene: **7d**. Method: A. Solvent: DMF. Dopant: none. Reaction time: 25 h. Yellow powder, 54% yield (45 mg); mp 229-233 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.53 (s, 3H), 5.43 (s, 2H), 7.58 (d, *J* = 5.4 Hz, 1H), 7.86 (d, *J* = 5.4 Hz, 1H), 9.66 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 13.6, 69.6, 117.6, 122.6, 125.6, 126.0, 129.0, 134.8, 142.8, 146.8, 170.6.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₁H₉O₃S 221.0267; Found 221.0276.

5-Methoxy-4-methylthieno[2,3-e]isobenzofuran-8(6H)-one (14c).

Dihetarylethene: **7d**. Method: B (alkylation agent was added after completion of first step of reaction). Solvent: DMF. Dopant: none. Reaction time: 25 + 12 h (without irradiation).

Pale gray powder, 35% yield (31 mg).

¹H NMR (300 MHz, CDCl₃): δ = 2.65 (s, 3H), 3.92 (s, 3H), 5.50 (s, 2H), 7.48 (d, J

= 5.4 Hz, 1H), 7.65 (d, *J* = 5.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.4, 60.5, 68.7, 118.7, 121.7, 128.9, 130.5, 131.3, 136.7, 142.8, 149.5, 170.1.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₂H₁₁O₃S 235.0423; Found 235.0428.

5-(Dodecyloxy)-4-methylthieno[2,3-e]isobenzofuran-8(6H)-one (14d).

Dihetarylethene: **7d**. Method: B (alkylation agent was added after completion of first step of reaction). Solvent: DMF. Dopant: none. Reaction time: 25 + 12 h (without irradiation).

Pale yellow powder, 34% yield (50 mg); mp 75-78 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.1 Hz, 3H), 1.25-1.37 (m, 16H), 1.45-1.55 (m, 2H), 1.78-1.88 (m, 2H), 2.64 (s, 3H), 3.98 (t, J = 6.4 Hz, 3H), 5.46 (s, 2H), 7.47 (d, J = 5.4 Hz, 1H), 7.64 (d, J = 5.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.6, 14.1, 22.7, 26.0, 29.3, 29.4, 29.6 (4C), 30.3, 31.9, 68.9, 73.5, 118.6, 121.7, 128.8, 130.3, 131.4, 137.1, 142.8, 148.7, 170.2.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₃₃O₃S 389.2145; Found 389.2136.

5-Methyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl acetimidate (14e).

Dihetarylethene: **7a**. Method: A. Solvent: DMF. Dopant: DABCO (3 equiv). Reaction time: 7 h.

Brown powder, 50% yield (50 mg); mp >300 °C (decomp.).

¹H NMR (600 MHz, DMSO-d₆): $\delta = 2.16$ (s, 3H, CH₃), 2.58 (s, 3H, CH₃), 5.37 (s, 2H, CH₂), 7.24-7.28 (m, 1H, H^{carbazole}), 7.48-7.52 (m, 1H, H^{carbazole}),

7.63 (d, *J* = 8.1 Hz, 1H, H^{carbazole}), 8.82 (d, *J* = 7.9 Hz, 1H, H^{carbazole}), 9.85 (s, 1H, NH), 11.75 (s, 1H, NH).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 13.6, 23.2, 70.4, 111.9, 116.0, 116.6, 119.8, 121.4, 124.5, 124.7, 127.1, 127.7, 138.0, 140.5, 141.2, 168.8, 172.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₇H₁₅N₂O₃ 295.1077; Found 295.1074.

4-Hydroxy-5-methyl-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (14f).

Dihetarylethene: **7a**. Method: A. Solvent: DMF. Dopant: DABCO (3 equiv). Reaction time: 7 h. Pale orange powder, 29% yield (25 mg); mp 295-298 °C. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.52$ (s, 3H), 5.44 (s, 2H), 7.13-7.21 (m, 1H), 7.34-7.43 (m, 1H), 7.53 (d, J = 8.1 Hz, 1H), 8.69 (d, J = 7.8 Hz, 1H), 9.61 (s, 1H), 11.44 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): *δ* = 11.3, 69.6, 111.4, 116.4, 113.8, 116.8, 119.4, 122.0, 123.9, 125.7, 129.2, 140.7, 141.8, 147.1, 172.1.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₂NO₃ 254.0812; Found 254.0811.

4-Methyl-5-(2-(methylthio)prop-1-en-1-yl)thieno[2,3-e]isobenzofuran-8(6H)-one (15b, E- and Z- isomers in ratio ≈ 2 :1).

Dihetarylethene: **8b**. Method: B. Reaction time: 8 h.

Yellow powder, 90% yield (95 mg); mp 154-157 °C.

Isomer 1. ¹H NMR (300 MHz, CDCl₃+DMSO-d₆): δ = 1.36 (s, 3H), 2.03 (s, 3H), 2.20 (s, 3H), 4.81 (s, 2H), 5.65 (s, 1H), 7.13-7.19 (m, 1H), 7.24-7.31 (m, 1H).

Isomer 2. ¹H NMR (300 MHz, CDCl₃+DMSO-d₆): *δ* = 1.82 (s, 3H), 1.87 (s, 3H), 2.18 (s, 3H), 4.93 (s, 2H), 5.98 (s, 1H), 7.13-7.19 (m, 1H), 7.24-7.31 (m, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃+DMSO-d₆): δ = 13.4, 14.5, 16.9, 17.0, 18.8, 22.5, 113.3, 116.8, 116.9, 118.6, 122.1, 127.2, 127.4, 127.6, 133.0, 133.2, 138.2, 138.3, 138.7, 139.4, 141.0, 141.2, 144.5, 144.7, 170.3, 170.4.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₅O₂S₂ 291.0508; Found 291.0506.

5-(2-(Benzylthio)prop-1-en-1-yl)-4-methylthieno[2,3-e]isobenzofuran-8(6H)-one (15c, E- and Z- isomers in ratio ≈ 93 :7).

Dihetarylethene: 8b. Method: B. Reaction time: 8 h.

Pale yellow powder, 55% yield (73 mg); mp 190-193 °C.

Major isomer. ¹H NMR (300 MHz, CDCl₃): δ = 2.33 (s, 3H), 2.55 (s, 3H),

3.90 (s, 2H), 5.05 (s, 2H), 6.40 (s, 1H), 7.16-7.30 (m, 5H), 7.52 (d, J = 5.4

Hz, 1H), 7.61 (d, *J* = 5.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 17.2, 17.3, 19.2, 23.6, 35.2, 36.1, 70.1, 70.4, 119.1, 121.8, 122.1 (2C), 127.3, 127.4, 127.8, 128.1, 128.5, 128.6, 128.7, 133.8, 136.7, 137.3, 137.7, 138.0, 138.2, 138.5, 141.3, 141.5, 144.8, 170.7.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₁H₁₉O₂S₂ 367.0821; Found 367.0828.

5-Methyl-4-(2-(methylthio)prop-1-en-1-yl)-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (15d, E- / Z- isomers in ratio $\approx 52:48$).

Dihetarylethene: 8c. Method: B. Reaction time: 10 h.

Yellow powder, 91% yield (95 mg); mp 271-274 °C.

Isomer 1. ¹H NMR (300 MHz, DMSO-d₆): δ = 2.21 (s, 3H), 2.42 (s, 3H), 2.53 (s, 3H), 5.33 (s, 2H), 6.42 (s, 1H), 7.18-7.30 (m, 1H), 7.44-7.53 (m, 1H), 7.55-7.65 (m, 1H), 8.75-8.85 (m, 1H), 11.65 (s, 1H).

Isomer 2. ¹H NMR (300 MHz, DMSO-d₆): *δ* = 1.72 (s, 3H), 2.21 (s, 3H), 2.53 (s, 3H), 5.26 (s, 2H), 6.12 (s, 1H), 7.18-7.30 (m, 1H), 7.44-7.53 (m, 1H), 7.55-7.65 (m, 1H), 8.75-8.85 (m, 1H), 11.65 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 13.2, 14.3, 14.7, 14.8, 19.0, 22.5, 70.3, 70.5, 111.4, 114.4, 115.7, 115.8, 116.0, 116.2, 119.1, 119.3, 121.0, 124.2, 126.3, 126.4, 126.6, 127.6 (2C), 138.4 (2C), 139.7, 139.8, 140.2, 140.5, 171.9.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₈NO₂S 324.1053; Found 324.1056.

Anal. Calcd for C₁₉H₁₇NO₂S: C, 70.56; H, 5.30; N, 4.33. Found: C, 69.53; H, 5.85; N, 4.04.

5,6-Dimethyl-4-(2-(methylthio)prop-1-en-1-yl)-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (15e, E-/Z- isomers in ratio $\approx 63:37$).

Dihetarylethene: 8d. Method: B. Reaction time: 8 h.

Yellow powder, 81% yield (84 mg); mp 205-207 °C.

Isomer 1. ¹H NMR (300 MHz, CDCl₃): $\delta = 1.73$ (s, 3H), 2.46 (s, 3H), 2.75 (s, 3H), 4.13 (s, 3H), 4.99 (s, 2H), 5.94 (s, 1H), 7.30-7.41 (m, 2H), 7.49-7.58 (m, 1H), 9.09 (d, J = 7.9 Hz, 1H).

Isomer 2. ¹H NMR (300 MHz, CDCl₃): *δ* = 2.18 (s, 3H), 2.26 (s, 3H), 2.78 (s, 3H), 4.11 (s, 3H), 5.17 (s, 2H), 6.28 (s, 1H), 7.30-7.41 (m, 2H), 7.49-7.58 (m, 1H), 9.10 (d, *J* = 7.9 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 13.9, 15.0, 16.7, 16.8, 19.0, 22.8, 33.1, 70.1, 70.4, 108.4, 108.5, 114.9, 116.7, 118.7, 119.7, 119.8, 120.1, 121.0, 121.1, 125.7 (2C), 126.4, 126.8, 126.9, 128.6, 128.9, 138.4, 139.1, 139.7, 139.8, 140.6, 142.4, 172.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₀H₂₀NO₂S 338.1209; Found 338.1197.

4-(2-Mercaptoprop-1-en-1-yl)-5,6-dimethyl-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (15f, E- / Z-isomers in ratio ≈ 81 :19).

Dihetarylethene: **8d**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 14 h.

Brown powder, 52% yield (52 mg); mp 174-176 °C.

Isomer 1. ¹H NMR (300 MHz, CDCl₃): $\delta = 2.25$ (s, 3H), 2.75 (s, 3H), 4.07

(s, 3H), 5.10 (s, 2H), 6.21 (s, 1H), 7.24-7.40 (m, 2H), 7.47-7.57 (m, 1H),

9.06 (d, *J* = 7.8 Hz, 1H).

Isomer 2. ¹H NMR (300 MHz, CDCl₃): *δ* = 1.80 (s, 3H), 2.75 (s, 3H), 4.07 (s, 3H), 5.00 (s, 2H), 6.32 (s, 1H), 7.24-7.40 (m, 2H), 7.47-7.57 (m, 1H), 9.06 (d, *J* = 7.8 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 16.5, 16.8, 22.3, 26.4, 33.0, 70.1, 70.3, 108.5, 117.0, 119.0, 119.2, 119.8, 120.9, 125.6, 126.6, 127.0, 128.5, 132.5, 134.1, 139.5, 140.4, 142.4, 172.0. MS (EI) m/z (%) = 323 (100) [M]⁺.

HRMS (ESI-TOF) *m*/*z* [M+Na]⁺ Calcd for C₁₉H₁₇NO₂SNa 346.0872; Found 346.0867.

(*Z*)-3-(5-*Methyl*-1-oxo-1,3-dihydrothieno[3,2-e]isobenzofuran-4-yl)-2-(*methylamino*)acrylonitrile (**16a**).

Dihetarylethene: **9a**. Method: A. Solvent: DCM / NMP (9:1). Dopant: none. Reaction time: 7 h. Pale yellow powder, 67% yield (67 mg); mp 196-199 °C. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.57$ (s, 3H), 2.67 (d, J = 4.8 Hz, 3H), 5.32 (s, 2H), 5.52-5.57 (m, 1H), 6.00 (s, 1H), 7.91 (d, J = 5.4 Hz, 1H), 8.13 (d, J = 5.4 Hz, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 19.0, 32.3, 70.3, 104.9, 116.7, 120.7, 121.2, 123.6, 124.0, 131.7, 132.5, 137.5, 138.4, 146.7, 169.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found 285.0696.

(*Z*)-3-(4-*Methyl*-8-oxo-6,8-*dihydrothieno*[2,3-*e*]*isobenzofuran*-5-*yl*)-2-(*methylamino*)*acrylonitrile* (*16b*, *Z*-*isomer*).

Dihetarylethene: **9b**. Method: A. Solvent: DCM / NMP (9:1). Dopant: none. Reaction time: 7 h.

Yellow powder, 47% yield (47 mg); mp 212-215 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.62 (s, 3H, CH₃), 2.66 (d, *J* = 4.8 Hz, 3H, CH₃), 5.36 (s, 2H, CH₂), 5.45-5.49 (m, 1H, NH), 6.01 (s, 1H, CH), 7.77 (d, *J* =

5.4 Hz, 1H, H^{thiophene}), 7.97 (d, J = 5.4 Hz, 1H, H^{thiophene}).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 17.9, 32.3, 71.0, 105.4, 116.8, 117.2, 123.4 (2C), 124.7, 129.1, 133.4, 139.1, 141.7, 145.7, 170.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found 285.0690.

(*E*)-3-(4-Methyl-8-oxo-6,8-dihydrothieno[2,3-e]isobenzofuran-5-yl)-2-(methylamino)acrylonitrile (**16b**, *E*-isomer).

Dihetarylethene: **9b**. Method: A. Solvent: DCM / NMP (9:1). Dopant: none. Reaction time: 7 h. Yellow powder, 44% yield (44 mg); mp 203-205 °C. ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.69$ (s, 3H, CH₃), 2.73 (d, J = 4.9 Hz, 3H, CH₃), 5.26 (s, 2H, CH₂), 5.86 (s, 1H, CH), 6.54 (q, J = 4.9 Hz, 1H, NH), 7.76 (d, J = 5.4 Hz, 1H, H^{thiophene}), 7.99 (d, J = 5.4 Hz, 1H, H^{thiophene}).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 18.1, 30.9, 70.8, 102.2, 116.2, 117.1, 123.5, 124.9, 126.5, 129.3, 133.0, 139.3, 141.9, 146.6, 170.6.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₅H₁₃N₂O₂S 285.0692; Found 285.0698.

3-(6-Dodecyl-5-methyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)-2-(methylamino)acrylonitrile (**16c**, isomer 1).

Dihetarylethene: **9c**. Method: A. Solvent: DMF. Dopant: DABCO (2 equiv) + imidazole (2 equiv). Reaction time: 6 h. Yellow amorphous powder, 32% yield (32 mg). ¹H NMR (300 MHz, CDCl₃+DMSO-d₆): δ = 0.83 (t, *J* = 6.4, 3H), 1.15-1.30 (m, 18H), 1.64-1.79 (m, 2H), 2.50 (s, 3H), 2.74 (s, 3H), 4.52-4.62 (m, 2H),

5.30 (s, 2H), 5.74 (s, 1H), 7.19-7.26 (m, 1H), 7.45-7.53 (m, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 8.96 (d, *J* = 7.7 Hz, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃+DMSO-d₆): δ = 14.2, 17.1, 22.5, 26.5, 29.1 (2C), 29.3, 29.4 (3C), 30.6 (2C), 31.7, 45.3, 70.3, 102.6, 109.8, 110.0, 115.8, 119.9, 121.0, 125.1, 127.2, 127.3, 127.7, 140.0, 141.3, 142.4.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₃₁H₄₀N₃O₂ 486.3115; Found 486.3105.

3-(6-Dodecyl-5-methyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)-2-

(methylamino)acrylonitrile (16c, isomer 2).

Dihetarylethene: **9c**. Method: A. Solvent: DMF. Dopant: DABCO (2 equiv) + imidazole (2 equiv). Reaction time: 6 h.

Yellow amorphous powder, 30% yield (30 mg).

¹H NMR (300 MHz, DMSO-d₆): $\delta = 0.85$ (t, J = 6.4 Hz, 3H), 1.14-1.31 (m,

18H), 1.67-1.85 (m, 2H), 2.66 (s, 3H), 2.75 (s, 3H), 4.54-4.63 (m, 2H), 5.29

(s, 2H), 5.94 (s, 1H), 7.21-7.28 (m, 1H), 7.48-7.55 (m, 1H), 7.62 (d, J = 8.1 Hz, 1H), 8.98 (d, J = 7.8 Hz, 1H). HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₃₁H₄₀N₃O₂ 486.3115; Found 486.3105.

5-Methyl-4-((2-phenylhydrazono)methyl)thieno[3,2-e]isobenzofuran-1(3H)-one (17a).

Dihetarylethene: **10a**. Method: C. Solvent: toluene. Dopant: none. Reaction time: 34 h.

Light green powder, 40% yield (40 mg); mp 245-246 °C.

 $\begin{bmatrix} 0 \\ 17a \end{bmatrix}$ ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.74$ (s, 3H), 5.64 (s, 2H), 6.78-6.85 (m, 1H), 7.06 (d, J = 7.8 Hz, 2H), 7.26-7.33 (m, 2H), 7.91 (d, J = 5.4 Hz, 1H), 8.11 (d, J = 5.4 Hz, 1H), 8.39 (s, 1H), 10.70 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): *δ* = 18.3, 72.9, 112.6 (2C), 117.8, 119.8, 121.6, 124.8, 129.8 (2C), 132.5, 133.5, 133.8, 135.0, 142.9, 144.0, 145.1, 170.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₅N₂O₂S 323.0849; Found 323.0833.

4-Methyl-5-((2-phenylhydrazono)methyl)thieno[2,3-e]isobenzofuran-8(6H)-one (17b).

Dihetarylethene: **10b**. Method: C. Solvent: toluene. Dopant: none. Reaction time: 33 h.

Yellow powder, 70% yield (70 mg); mp 225-226 °C.

17b ¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.76$ (s, 3H), 5.63 (s, 2H), 6.77-6.90 (m, 1H), 6.99-7.14 (m, 2H), 7.24-7.37 (m, 2H), 7.69-7.82 (m, 1H), 7.86-7.97 (m, 1H), 8.39 (s, 1H), 10.59 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 16.8, 73.6, 112.5 (2C), 118.3, 119.7, 123.4, 125.8, 129.3, 129.8 (2C), 132.9, 134.4, 136.6, 142.1, 143.0, 145.2, 170.6.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₅N₂O₂S 323.1; Found 323.1.

5-Methyl-4-((2-phenylhydrazono)methyl)-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (17c).

Dihetarylethene: **10c**. Method: C. Solvent: DMF. Dopant: DABCO (1 equiv). Reaction time: 56 h.

Green powder, 73% yield (73 mg); mp 275-277 °C (decomp.).

¹H NMR (300 MHz, DMSO-d₆): δ = 2.75 (s, 3H), 5.61 (s, 2H), 6.76-6.86 (m, 1H), 7.08 (d, *J* = 7.8 Hz, 2H), 7.17-7.37 (m, 3H), 7.40-7.49 (m, 1H),

7.60 (d, J = 8.0 Hz, 1H), 8.46 (s, 1H), 8.82 (d, J = 7.6 Hz, 1H), 10.79 (s, 1H), 11.87 (s, 1H). ¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 14.2$, 73.5, 111.8, 112.5, 119.4, 119.7, 121.6, 124.8, 124.9, 125.2, 127.0, 128.7 (4C), 129.7, 134.8, 137.9, 140.4, 141.4, 145.4, 172.0. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₂H₁₈N₃O₂ 356.1394; Found 356.1371.

5,6-Dimethyl-4-((2-phenylhydrazono)methyl)-3,6-dihydro-1H-furo[3,4-c]carbazol-1-one (17d).

Dihetarylethene: **10d**. Method: C. Solvent: DMF. Dopant: DABCO (1 equiv). Reaction time: 29 h.

Yellow powder, 45% yield (45 mg); mp > 300 °C.

¹H NMR (600 MHz, DMSO-d₆): δ = 3.04 (s, 3H), 4.22 (s, 3H), 5.72 (s, 2H), 6.80-6.85 (m, 1H), 7.08 (d, *J* = 7.6 Hz, 2H), 7.27-7.32 (m, 3H), 7.56

(ddd, *J* = 1.1, 7.1, 8.3 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 8.55 (s, 1H), 9.02 (d, *J* = 7.8 Hz, 1H), 10.66 (s, 1H).

¹³C{¹H} NMR (151 MHz, DMSO-d₆): δ = 15.9, 34.2, 73.4, 110.3, 112.5 (2C), 117.7, 118.1, 119.6, 120.1, 120.7, 125.1, 126.0, 126.5, 127.6, 129.8 (2C), 131.2, 135.2, 138.6, 141.1, 145.2, 171.9. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₂₀N₃O₂ 370.1550; Found 370.1547.

N-(5-methyl-1-oxo-1,3-dihydrothieno[3,2-e]isobenzofuran-4-yl)thiophene-2-carboxamide (18a).

Dihetarylethene: **11a**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 7 h.

Yellow powder, 85% yield (85 mg); mp 139-142 °C.

18a ¹H NMR (300 MHz, CDCl₃): $\delta = 2.48$ (s, 3H), 5.09 (s, 2H), 7.10-7.19 (m, 1H), 7.56-7.65 (m, 2H), 7.76 (d, J = 5.4 Hz, 1H), 7.89 (d, J = 3.2 Hz, 1H), 8.55 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 16.7, 69.5, 117.5, 121.5, 124.7, 128.1, 129.8, 131.1, 131.7, 133.8, 134.9, 137.4, 142.7, 143.4, 160.6, 170.7.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₆H₁₂NO₃S₂ 330.0253; Found 330.0254.

N-(4-Methyl-8-oxo-6,8-dihydrothieno[2,3-e]isobenzofuran-5-yl)thiophene-2-carboxamide (18b).

Dihetarylethene: **11b**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 8 h.

Yellow powder, 75% yield (75 mg); mp 221-223 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.52 (s, 3H), 5.03 (s, 2H), 7.15 (t, *J* = 4.3 Hz, 1H), 7.34 (d, *J* = 5.4 Hz, 1H), 7.54 (d, *J* = 5.4 Hz, 1H), 7.60 (d, *J* = 4.9 Hz), 7.60 (d, J = 4

1H), 7.88 (d, *J* = 3.2 Hz, 1H), 8.38 (s, 1H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 15.4, 70.1, 117.9, 122.0, 125.6, 128.1, 128.7, 129.8, 131.6, 133.3, 135.8, 137.5, 141.6, 142.3, 160.5, 170.4.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₆H₁₂NO₃S₂ 330.0253; Found 330.0250.

N-(5-*Methyl*-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)thiophene-2-carboxamide (18c).

Dihetarylethene: **11c**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 5 h.

Pale yellow crystals, 84% yield (84 mg); mp > 300 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.62 (s, 3H), 5.45 (s, 2H), 7.18-7.38

(m, 2H), 7.45-7.70 (m, 2H), 7.85-7.95 (m, 1H), 8.03-8.14 (m, 1H), 8.80-

8.90 (m, 1H), 10.35 (s, 1H), 11.84 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 13.7, 70.3, 112.0, 116.5, 116.7, 119.9, 121.3, 124.8, 125.7, 127.0, 127.3, 128.6, 130.0, 132.4, 138.5, 139.3, 140.6, 141.3, 160.4, 171.9.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₀H₁₅N₂O₃S 363.0798; Found 363.0789.

N'-(5-Methyl-1-oxo-1,3-dihydrothieno[3,2-e]isobenzofuran-4-yl)benzimidamide (19a).

Dihetarylethene: **12b**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 18 h.

Gray powder, 83% yield (83 mg); mp 227-228 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.48 (s, 3H), 5.15-5.35 (m, 2H), 6.64 (br s, 2H), 7.43-7.60 (m, 3H), 7.63-7.74 (m, 1H), 7.84-7.94 (m, 1H), 7.97-8.13

(m, 2H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 15.0, 70.1, 117.8, 123.0, 127.8 (2C), 128.3, 128.5 (2C), 128.7, 130.6, 130.8, 135.8, 139.7 (2C), 140.4, 142.7, 171.0.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₈H₁₅N₂O₂S 323.0849; Found 323.0864.

N-Methyl-N'-(5-methyl-1-oxo-1,3-dihydrothieno[3,2-e]isobenzofuran-4-yl)benzimidamide (19b).

Dihetarylethene: **12c**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 11 h.

Dark yellow powder, 75% yield (75 mg); mp 124-127 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 2.28 (s, 3H), 2.92 (s, 3H), 5.11 (s, 2H), 7.18-7.35 (m, 5H), 7.69-7.83 (m, 2H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 16.7, 29.1, 69.7, 116.5, 121.0, 128.0 (2C), 128.7 (2C), 129.0, 129.3, 129.9, 130.1, 135.6, 140.4, 141.8, 142.9, 159.2, 171.2.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₉H₁₇N₂O₂S 337.1005; Found 337.1000.

N-Methyl-N'-(4-methyl-8-oxo-6,8-dihydrothieno[2,3-e]isobenzofuran-5-yl)benzimidamide (19c).

Dihetarylethene: **12d**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 12 h.

Yellow powder, 87% yield (87 mg); mp 190-193 °C.

¹H NMR (300 MHz, CDCl₃): δ = 2.50 (s, 3H), 3.12 (s, 3H), 5.02 (s, 2H), 5.09 (s, 1H), 7.04-7.60 (m, 7H).

¹³C{¹H} NMR (75 MHz, CDCl₃): δ = 15.3, 29.2, 70.0, 117.4, 122.0 (2C), 127.1, 127.5, 128.7 (2C), 129.0 (2C), 130.1, 133.4, 134.8, 138.7, 142.2, 158.6, 171.2.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₁₇N₂O₂S 337.1005; Found 337.0993.

N'-(4-Methyl-8-oxo-6,8-dihydrothieno[2,3-e]isobenzofuran-5-yl)-N-phenylbenzimidamide (19d).

Dihetarylethene: **12e**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 18 h.

Gray powder, 94% yield (94 mg); mp 185-187 °C.

¹H NMR (300 MHz, DMSO-d₆): $\delta = 2.42$ (s, 3H), 5.26 (s, 2H), 6.96-7.10 (m, 1H), 7.23-7.44 (m, 7H), 7.50-7.59 (m, 1H), 7.78-7.87 (m, 1H), 7.89-

8.00 (m, 2H), 9.52 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 15.8, 70.4, 120.5 (2C), 122.5, 130.0, 124.0, 124.4, 128.4, 128.7 (4C), 128.8 (2C), 129.3, 130.1, 130.2, 135.6, 139.2, 141.4, 142.3, 156.6, 170.8. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₄H₁₉N₂O₂S 399.1162; Found 399.1151.

N-Methyl-N'-(5-methyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)benzimidamide (19e).

Dihetarylethene: **12a**. Method: A. Solvent: DCM. Dopant: DABCO (3 equiv). Reaction time: 9 h.

Pale brown powder, 76% yield (76 mg); mp 251-252 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.30 (s, 3H), 2.94 (s, 3H), 5.16 (s,

2H), 7.12-7.22 (m, 1H), 7.20-7.30 (m, 5H), 7.33-7.40 (m, 1H), 7.46-

7.51 (m, 1H), 8.64 (d, *J* = 7.8 Hz, 1H), 11.29 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 13.2, 29.1, 70.3, 111.4, 112.5, 116.1, 119.3, 119.4, 120.4, 122.0, 123.8, 125.7, 128.0 (2C), 128.6 (2C), 128.9, 129.0, 129.9, 134.3, 140.5, 141.3, 172.5. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₂₀N₃O₂ 370.1550; Found 370.1543.
4-Methyl-8-oxo-6,8-dihydrothieno[2,3-e]isobenzofuran-5-yl ethanimidothioate (20).

О

CI

Ο

Dihetarylethene: **6a**. Method: A (without chromatography). Solvent: DCM. Dopant: none. Reaction time: 5 h.

Yellow powder, 84% yield (84 mg); mp 259-260 °C.

20 ^{Me} ¹H NMR (300 MHz, DMSO-d₆): $\delta = 1.77$ (s, 3H), 2.42 (s, 3H), 5.16 (s, 2H), 7.68 (d, J = 5.5 Hz, 1H), 8.01 (d, J = 5.5 Hz, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 17.8, 22.7, 70.6, 118.5, 120.6, 123.8, 124.6, 130.4, 136.1, 142.0, 145.1, 149.7, 170.0.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₃H₁₂NO₂S₂ 278.0304; Found 278.0297.

Anal. Calcd for C₁₃H₁₁NO₂S₂: C, 56.29; H, 4.00; N, 5.05. Found: C, 57.12; H, 3.95; N, 4.81.

5-((Chloromethyl)thio)-4-methylthieno[2,3-e]isobenzofuran-8(6H)-one (21).

Dihetarylethene: **6a**. Method: A. Solvent: DCM. Dopant: DABCO (1 equiv). Reaction time: 7 h.

Colorless crystals, 27% yield (28 mg); mp 147-149 °C.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₂H₁₀ClO₂S₂ 284.9805; Found 284.9805.

Syn- 3a-hydroxy-2,11,11b-trimethyl-11,11b-dihydro-3aH-furo[3,4-c]oxazolo[4,5-a]carbazol-6(4H)-one (23).

Dihetarylethene: **7a** or **7b**. Method: B (for **7a**) or A (for **7b**). Solvent: DMF (for **7a**) or DCM (for **7b**). Reaction time: 7 h (for **7a**) or 6 h (for **7b**).

Orange powder, 73% yield (80 mg, from **7b**), 30% yield (33 mg, from **7a**); mp > 300 °C.

23 ¹H NMR (300 MHz, DMSO-d₆): $\delta = 1.54$ (s, 3H, CH₃), 1.90 (s, 3H, CH₃), 3.92 (s, 3H, CH₃), 5.17 (d, J = 17.5 Hz, 1H, ¹/₂CH₂), 5.26 (d, J = 17.5 Hz, 1H, ¹/₂CH₂), 7.21-7.30 (m, 2H, H^{indole}), 7.53-7.58 (m, 1H, H^{indole}), 8.46-8.51 (m, 1H, H^{indole}), 9.52 (s, 1H, OH).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 21.7, 23.2, 31.5, 60.3, 69.7, 101.6, 110.8, 122.2 (2C), 122.6, 122.9, 136.0, 137.1, 138.3, 148.2, 169.3, 172.0, 194.5.$

MS (EI) m/z (%) = 324 (100) [M]⁺.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₁₈H₁₇N₂O₄ 325.1183; Found 325.1185.

N'-(4-Methyl-8-oxo-7,8-dihydro-6H-indeno[5,4-b]thiophen-5-yl)benzimidamide (25).

Dihetarylethene: **24**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 8 h.

Yellow powder, 46% yield (46 mg); mp 228-231 °C.

¹H NMR (300 MHz, DMSO-d₆): δ = 2.38 (s, 3H), 2.59-2.68 (m, 2H), 2.84-2.94 (m, 2H), 6.49 (br s, 2H), 7.45-7.53 (m, 3H), 7.81 (d, *J* = 5.4 Hz, 1H),

7.99 (d, J = 5.4 Hz, 1H), 8.06 (d, J = 7.1 Hz, 2H). ¹³C{¹H} NMR (75 MHz, DMSO-d₆): $\delta = 16.5$, 24.5, 36.6, 122.0, 127.7 (2C), 128.3, 128.5 (2C), 129.2, 129.5, 130.0, 130.7, 136.0, 141.8, 143.5, 149.1, 154.8, 206.3.

HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₁₉H₁₇N₂OS 321.1056; Found 321.1067.

1-Methyl-2-phenyl-4,11-dihydrofuro[3,4-c]imidazo[4,5-a]carbazol-6(1H)-one (26).

Dihetarylethene: **12a**. Method: A. Solvent: DCM. Dopant: none. Reaction time: 20 h.

Yellow powder, 52% yield (50 mg); mp 285-283 °C.

Ph ¹H NMR (300 MHz, DMSO-d₆): $\delta = 4.35$ (s, 3H), 5.77 (s, 2H), 7.22-7.33 (m, 1H), 7.42-7.51 (m, 1H), 7.57-7.77 (m, 4H), 7.87-7.95 (m, 2H), 8.95-

9.05 (m, 1H), 12.14 (s, 1H).

¹³C{¹H} NMR (75 MHz, DMSO-d₆): δ = 34.9, 69.3, 112.1, 114.0, 118.4, 120.0, 122.0, 124.0, 125.6, 126.4, 129.0, 129.2 (2C), 129.5, 129.8, 130.0 (2C), 130.4, 134.2, 140.2, 141.0, 154.2.

MS (EI) m/z (%) = 353 (100) [M]⁺.

HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₂H₁₆N₃O₂ 354.1237; Found 354.1232.

Synthesis of dihetarylethene 27. 2-(Indol-3-yl)acetic acid 1a (2 g, 11.43 mmol) was dissolved in DMF (25 ml) and potassium carbonate K_2CO_3 (2.37 g, 17.14 mmol) was added. After 5 minutes of stirring, 2-bromo-1-(2-(4-methoxyphenyl)-5-methyloxazol-4-yl)ethanone (bromoketone 2a, 3.53 g, 11.43 mmol) was added. Argon was bubbled through this solution for

30 min. The reaction mixture was stirred for 4 h at 80 °C. The resulting mixture was poured in water (300 ml), extracted with ethyl acetate (5 × 50 ml). The combined organic phases were washed with brine (2 × 200 ml), dried over under MgSO₄ and evaporated in vacuum. The residue was recrystallized form acetone to give 2.51 g (57%) of DHE **27**. Additional quantity of **27** (0.35 g, 8%) was isolated by column chromatography of filtrate solution.

3-(*1H-indol-3-yl*)-4-(2-(4-methoxyphenyl)-5-methyloxazol-4-yl)furan-2(5H)-one (27). Pale yellow powder, 65% yield (2.86 g); mp 249-252 °C (decomp.). ¹H NMR (300 MHz, DMSO-d₆): δ = 1.62 (s, 3H), 3.82 (s, 3H), 5.32 (s, 2H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 7.04-7.14 (m, 3H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.72-7.78 (m, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 11.58 (s, 1H). ¹³C NMR (75 MHz, DMSO-d₆): δ = 11.7, 55.8, 71.1, 105.3, 112.5, 115.0 (2C), 119.3, 119.6, 119.8, 122.0, 125.6, 127.7, 128.1 (2C), 129.8, 130.7, 136.2, 145.4, 148.9, 160.2, 161.7, 173.9. HRMS (ESI-TOF) m/z [M+H]⁺ Calcd for C₂₃H₁₉N₂O₄ 387.1339; Found 387.1344.

Synthesis of carbazole 28. Each of five 12 mL glass vessels were charged by solution of 200 mg of dihetarylethene **27** in mixture DCM / NMP 10:1 (11 mL). The solutions were irradiated with stirring by two 8W UV lamps (365 nm) for 6.5 h. The precipitate was filtred off, washed by 5 ml of DCM and

dried on air. These manipulations afforded 580 mg (58%) of desired carbazole **28** as white powder. The filtrate was evaporated and dissolved in ethyl acetate (50 mL). The solution was washed with water (3 x 150 mL), dried with magnesium sulfate, and evaporated in vacuum. The residue was purified by recrystallization from EtOH. These manipulations gave us additional 170 mg (17%) of desired carbazole **28** as white powder. The crystallization filtrate was purified by flash chromatography by petroleum ether/ethyl acetate (2:1) to give additional 80 mg (8%) of carbazole **28**.

4-Methoxy-N-(5-methyl-1-oxo-3,6-dihydro-1H-furo[3,4-c]carbazol-4-yl)benzamide (28). White powder, 75% yield (750 mg); mp > 300 °C. ¹H NMR (300 MHz, DMSO-d₆): δ = 2.61 (s, 3H), 3.86 (s, 3H), 5.43 (s, 2H), 7.11 (d, *J* = 8.7 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.64 (d, *J* = 8.2 Hz, 1H), 8.06 (d, *J* = 8.7 Hz, 2H), 8.84 (d, *J* = 7.8 Hz, 1H), 10.16 (s, 1H), 11.82 (s, 1H). ¹³C NMR (75 MHz, DMSO-d₆): δ = 13.7, 55.9, 70.3, 111.9, 114.2 (2C), 116.3, 116.6, 119.9, 121.4, 124.8, 125.6, 126.4, 127.2, 127.9, 130.2 (2C), 138.6, 140.6, 141.2, 162.6, 165.3, 172.0. HRMS (ESI-TOF) *m*/*z* [M+H]⁺ Calcd for C₂₃H₁₉N₂O₄ 387.1339; Found 387.1338.

III. Photochemical equipment and gram-scale benzannulation

Figure S1. Device for preparative photochemical reactions, used in our work.

Figure S2. Photochemical reactors, used in our work.

Figure S3. Synthesis of carbazole **28** (photochemical step of benzannulation). Reaction mixtures before and after photoreaction (+ TLC of the mixture).

IV. Proposed mechanism for photorearrangement of dihetarylethenes

Based on the previous mechanistic studies⁷ as well as experimental works⁸ we can propose the following general mechanism of the rearrangement (Scheme S1). The key step is hydrogen migration (red in the photogenerated intermediate **II**). The driving force of the photorearrangement is the stepwise restoration of aromaticity of annulating heterocycle (thiophene on Scheme S1) and benzene ring. According to literature data,^{6,7} mechanism of the hydrogen migration is concerted [1,n]-H migration or proton elimination. Last step of the proposed mechanism (**III** \rightarrow **IV**) is spontaneous cycloreversion of heterocycle due to C-heteroatom bond cleavage and restoration of aromaticity. For clearance we have depicted a specific frameworks of this step for all used transforming heterocycles (Het²).

Frameworks of step III ----- IV for different heterocycles from the present work:

Thiazole as transforming moiety (DHEs 6)

Pyrazole as transforming moiety (DHEs 10)

Imidazole as transforming moiety (DHEs 12)

Thiophene as transforming moiety (DHEs 8)

Oxazole as transforming moiety (DHEs 7)

For the photoreaction of thiazole-based dihetarylethenes **6** we propose the mechanism on Scheme S2. The key step after the photorearrangement is base-induced (base = DABCO or K₂CO₃) elimination of acetonitrile (R = Me) or benzonitrile (R = Ph) from the imidosulfide derivative **28**. A last stage is alkylation of thiophenolate **31** by alkyl halides (CH₂Cl₂, MeI, BnzCl, C₁₂H₂₅Br).

Scheme S2. Proposed mechanism of photoreaction of thiazole derivatives (photorearrangement / *in situ* alkylation)

The mechanism of photoreaction of oxazole-based dihetarylethenes 7 (Scheme S3) in general follows the Scheme S2. The key step after photorearrangement is thermal or photochemical elimination of acetonitrile from acetimidate derivative **32**. Apparently, stability of compounds **32** depends on heterocyclic fragment Het. For indole derivative, acetimidate **14e** is stable and was isolated, while in the case of thiophene-based DHEs only benzo[*b*]thiophenoles **14a,b** were obtained.

Scheme S3. Proposed mechanism of photoreaction of oxazole derivatives 7.

The formation of photoproduct 23 from dihetarylethenes 7a and 7b is rather unclear, and we propose the following mechanism (Scheme S4B). The key step is ene-type⁹ reaction between intermediate 33 with singlet oxygen, formed after sensitization (Scheme S4A). This results in intermediate 35 with peroxide function. Subsequent reduction and cycloreversion of heterocyclic ring of 22 leads to stable product 23. Under *in situ* alkylation conditions (for 7b) additional alkylation of indole takes place. This mechanism is rather speculative and requires comprehensive exploration, but the benefit of the key step $(33 \rightarrow 35)$ is restoration of indole ring aromaticity.

Scheme S4. Proposed mechanism of formation for photoproduct 23.

sensitization by triplet state of DHE $^{3}O_{2} \xrightarrow{1}O_{2}$

C. Reaction, described by Wegner et al. and proposed mechanism

A. Formation of singlet oxygen

It sould be noted, that related transformation was described by Wegner et al. for terarylene **36** (Scheme S4C). ¹⁰ It was found, that **36** undergoes oxidative rearrangement towards **40** in aerobic conditions the presence of oxygen and tetracyanoethylene (TCNE) as a sensitizer. Importantly, several sensitizers were employed, but only TCNE provides formation of **40**. The authors suggested the following mechanism (Scheme S4C). Formation of cation-radical of **36** in the presence of TCNE results in formation of radical **38** after deprotonation. Subsequent reaction with oxygen and trapping of the peroxo by tetracyanoethylene provides **39** in 32% yield.

V. Specific aspects of the photorearrangement

V.1. Role of conformation for α-pyridine derivative

More complex results were obtained for dihetarylethene **3k** based on α -substituted pyridine. Upon irradiation (with or without DABCO) in DCM we have observed gradual conversion of **3k**, however, we did not fix any products. It is known, that intra- or intermolecular noncovalent interactions lead to loss of photoactivity of some photochromic diarylethenes.¹¹ We suppose that DHE **3k** exists mainly in the photoinactive conformation, which prevents cyclization (nitrogen atom of pyridine is turned towards oxazole), and protonation of pyridine should return the desired photoactivity. This assumption was supported by DFT calculation. Actually, photolysis in protic solvents (MeOH or AcOH) let us to detect and isolate desired quinoline **4k** in 37% yield (in MeOH); the structure of the latter was proved by 2D NMR spectroscopy methods.

We observed the formation of water-soluble precipitate after irradiation of DHE 3k in DCM, wherein we did not fix any products by TLC. This result was explained by stabilization of conformer 3k' (Scheme S5). Photocyclization of 3k' should lead to formation of C-N bond (structure 3k'(B)). Fedorova et al. demonstrated, that air oxygen oxidizes related intermediates towards corresponding cationic polyheteroaromatics.^{12,13} Apparently, in the protic solvents (MeOH and AcOH) conformation 3k'' is more stable due to protonation of pyridine / hydrogen bonding with carbonyl. Kawai et al. described similar impact of methanol on terarylene conformation.¹⁴ Thus, photocyclization of 3k in MeOH and AcOH gave us target quinoline 4k.

Scheme S5. Proposed phototransformation of

To support this hypothesis, we optimized structures **3k** and **3kH**⁺ by the DFT method on B3LYP/6-31G (d) level of theory (Figures S4,S5). It was previously reported that this method quite S47

accurately describes the structure of photoactive terarylenes^{15,16} and diarylethenes.¹⁷ Generally, DFT calculations are in consistence with our conclusions (*vide supra*). For **3k** and **3kH**⁺ the antiparallel photoactive conformations are stable and the distance between the reaction centers is less than 4.2 Å, that is necessary for cyclization.¹⁸ We can conclude, that carbonyl group of furan-2(*5H*)-one bridge play important role in stabilization of conformers **3k**' and **3k**''. As can be seen form Figures S3,S4, the distances between oxygen of carbonyl and hydrogens of pyridine (protonated pyridine) rings are shortened (2.24 Å and 1.75 Å).

Figure S4. Optimized structure of dihetarylethene 3k.

Cartesian coordinates of the optimized structure of structure 3k:

1	С	-3.0331110	2.2241650	0.0815990
2	0	-2.0987240	3.2189470	0.1819790
3	С	-2.3282910	0.9048140	0.0566720
4	С	-0.7956170	2.6466210	0.2491550
5	С	-0.9990050	1.1524700	0.2008170
6	С	0.1821260	0.3190900	0.3259470
7	Ν	1.4091630	0.8132240	-0.1223650
8	С	0.3882800	-0.8893610	0.9436240
9	С	2.2811210	-0.0970910	0.1918570
10	0	1.7259740	-1.1615380	0.8527220
11	С	-3.0488290	-0.3530230	-0.2225480
12	С	-4.4380460	-0.4560580	-0.0288930
13	Ν	-2.3185850	-1.3748870	-0.7160400
14	С	-5.0764430	-1.6476800	-0.3634950
15	С	-2.9512850	-2.5044190	-1.0386230
16	С	-4.3256320	-2.6986230	-0.8854500
17	С	3.7170840	-0.1114870	-0.0656030
18	С	4.2993210	0.9622280	-0.7596340
19	С	4.5244180	-1.1746140	0.3687790
20	С	5.6677680	0.9693740	-1.0110060
21	С	5.8937740	-1.1597250	0.1123160
22	С	6.4695690	-0.0902080	-0.5765490
23	0	-4.2152380	2.4723560	0.0269210
24	С	-0.4437130	-1.8575580	1.6976590
25	Н	-0.1931700	3.0015660	-0.5944290
26	Н	-0.3078970	2.9726680	1.1753510
27	Н	-4.9914890	0.3925310	0.3513020
28	Н	-6.1492180	-1.7479100	-0.2217710
29	Н	-2.3258480	-3.2990820	-1.4440830
30	Н	-4.7841540	-3.6416570	-1.1674330
31	Н	3.6656920	1.7773460	-1.0934420
32	Н	4.0764980	-2.0053520	0.9041230
33	Н	6.1111350	1.8030030	-1.5485440
34	Н	6.5124220	-1.9859470	0.4515950
35	Н	7.5377840	-0.0820590	-0.7750330
36	Н	-0.6960300	-2.7291560	1.0832510
37	Н	0.0937410	-2.2047350	2.5868360
38	Н	-1.3805310	-1.3911750	2.0083920

E = -1067.638737 Hartree Imaginary Freq = 0

Figure S5. Optimized structure of dihetarylethene 3kH⁺.

Cartesian coordinates of the optimized structure of structure 3kH+:

1	С	2.9505410	2.1646320	0.1715090
2	0	2.0429680	3.1522010	0.2188860
3	С	2.2504980	0.8527730	0.0805840
4	С	0.7220930	2.5952030	0.2121850
5	С	0.9054560	1.0966400	0.1800420
6	С	-0.2713300	0.2750850	0.2830800
7	Ν	-1.4885020	0.7784800	-0.1738340
8	С	-0.4936180	-0.9199280	0.9421780
9	С	-2.3767330	-0.1087830	0.1633100
10	0	-1.8236980	-1.1676820	0.8593370
11	С	3.0098500	-0.3494580	-0.2236950
12	С	2.4944240	-1.5681290	-0.6890990
13	С	3.3554810	-2.6115640	-1.0063360
14	С	5.2254260	-1.2436320	-0.4257140
15	С	4.7425440	-2.4620120	-0.8602120
16	С	0.3194550	-1.8476510	1.7682030
17	0	4.1542620	2.3613810	0.2053180
18	С	-3.8077050	-0.1235520	-0.0923910
19	С	-4.3784210	0.9325220	-0.8244850
20	С	-4.6192780	-1.1675560	0.3827250
21	С	-5.7462160	0.9403310	-1.0740960
22	С	-5.9874790	-1.1499830	0.1269580
23	С	-6.5525220	-0.0990700	-0.5997580
24	Н	0.1942780	2.9321120	1.1097920
25	Н	0.1774750	2.9573200	-0.6662090
26	Н	1.4255390	-1.6684830	-0.8253270
27	Н	2.9490050	-3.5463690	-1.3801060
28	Н	6.2792740	-1.0185080	-0.3096930
29	Н	5.4295710	-3.2657950	-1.0964710
30	Н	-0.2189500	-2.0935620	2.6892650
31	Н	0.5201000	-2.7928800	1.2466880
32	Н	1.2754290	-1.3921440	2.0362110
33	Η	-3.7424120	1.7325560	-1.1886010
34	Η	-4.1806260	-1.9825250	0.9488730
35	Н	-6.1859560	1.7564660	-1.6392370
36	Н	-6.6139150	-1.9564030	0.4957890
37	Н	-7.6205080	-0.0893880	-0.7966240
38	Ν	4.3680330	-0.2468740	-0.1266200
39	Н	4.7119310	0.7039550	0.1205690

S50

V.2. Possible competition with 1,2-dyotropic rearrangement

In the photoreactions of DHE **8a** (Scheme S6) under alkylation conditions (UV; iodomethane, K_2CO_3 , DMF or benzyl chloride, K_2CO_3 , DMF) we detected the formation of two inseparable isomeric photoproducts. Both compounds exist as a mixture of *E*- / *Z*-isomers, and possess different ¹H NMR spectra.

Apparently, the first product is a desired benzo[*b*]thiophene **15a**, which forms *via* expected photorearrangement of **8a** throw photocyclization / [1,5]-H shift / cycloreversion cascade sequence $(14a(A)\rightarrow 14a(B)\rightarrow C\rightarrow D)$ with subsequent alkylation (Scheme S6). As all other target benzo[*b*]thiophenes, **15a** features two doublets in downfield region with $J^3 = 5.4$ Hz (for Bn-alkylated products, see Figures S6 and S7 below).

The second product has two doublets ($J^3 = 3.2$ Hz) in downfield region. According to the literature data,^{19,20} we assign the structure **G** to the second product (Scheme S6). Probably, DHE **8a** converts to the annulated isomer **F** similar to number of other dithienylethenes with subsequent C-S bond cleavage / hydrogen migration and alkylation towards structure **G**.

Equality of molecular masses of two photoproducts was supported by DOSY NMR spectroscopy (Figure S8) and high-resolution mass-spectrometry (Figure S9).

Figure S6. ¹H NMR spectra (600.13 MHz, CDCl₃) of photoproducts after photoreaction of 8a in the presence of benzyl chloride and K₂CO₃ in DMF.

Figure S7. Downfield region of ¹H NMR spectra from Figure S6.

Figure S8. 2D NMR DOSY spectra of mixture after photoreaction of **8a** in the presence of benzyl chloride and K_2CO_3 in DMF. As can be seen from the spectrum, major components of the mixture have equal molecular masses.

Figure S9. High-resolution mass spectrum (electrospray ionization) of the mixture after photoreaction of **8a** in the presence of benzyl chloride and K_2CO_3 in DMF. The major component of the mixture has molecular mass corresponding to **15a** (or **G** from Scheme S6).

VI. NMR monitoring of photoreactions of dihetarylethenes

Figure S10. ¹H NMR monitoring of photoreaction of DHE **3a** before (**A**) and after (**B**-**F**) irradiation (CDCl₃, C = 0.04 M) with two 8W UV lamps (365 nm) and after addition of 0.3 ml of DMSO- d_6 (**G**).

A. Before irradiation			1
		Me O Ph	
B. + 10 min			1
- Mu			
C. + 10 min			1
	M		<u> </u>
D. + 10 min			
	1		
E. + 10 min			
	1		
F. + 10 min	M		luit
G. + 20 min	1	0~0	l
H. + 20 min		H S Me O Me O	
8.2 7.8 7.6 7.4 7.2 7.0 6.8 6.4 6.0 5.6	5.2 4.8 4.4 ppm	4.0 3.6 3.2	2.8 2.4 2.0

Figure S11. ¹H NMR (200 MHz) monitoring of photoreaction of DHE **3b** before (**A**) and after (**B**-**H**) irradiation (CDCl₃, C = 0.1 M) with one 6W UV lamp (365 nm).

Figure S12. ¹H NMR (200 MHz) monitoring of photoreaction of DHE **3c** before (**A**) and after (**B**-**D**) irradiation (DMSO-d₆, C = 0.05 M) with one 8W UV lamp (365 nm).

Figure S13. ¹H NMR (200 MHz) monitoring of photoreaction of DHE **3d** before (**A**) and after (**B**-**E**) irradiation (CDCl₃, C = 0.12 M) with one 8W UV lamp (365 nm).

Figure S14. ¹H NMR monitoring of photoreaction of DHE **3e** before (**A**) and after (**B**) irradiation (CDCl₃, C = 0.05 M) with one 8W UV lamp (365 nm).

Figure S15. ¹H NMR monitoring of photoreaction of DHE **3f** before (**A**) and after (**B-C**) irradiation (CDCl₃, C = 0.09 M) with one 8W UV lamp (365 nm).

Figure S16. ¹H NMR monitoring of photoreaction of DHE **7d** before (**A**) and after (**B-D**) irradiation (DMF-d₇, C = 0.07 M) with two 8W UV lamps (365 nm).

Figure S17. ¹H NMR monitoring of photoreaction of DHE **10c** before (**A**) and after (**B-E**) irradiation (DMF-d₇, C = 0.05 M) with two 8W UV lamps (365 nm).

Figure S18. ¹H NMR monitoring of photoreaction of DHE **12a** before (**A**) and after (**B**-**E**) irradiation (DMSO-d₆, C = 0.05 M) with two 8W UV lamps (365 nm).

Figure S19. ¹H NMR monitoring of photoreaction of DHE **12a** before (**A**) and after (**B**-**E**) irradiation (DMSO-d₆, C = 0.05 M) in the presence of DABCO (1 equiv) with two 8W UV lamps (365 nm).

Figure S20. ¹H NMR monitoring of photoreaction of DHE **27** before (**A**) and after (**B**-**E**) irradiation (DMSO-d₆, C = 0.065 M) with two 8W UV lamps (365 nm).

Table S1. Crystal data and structure refinement for carbazole 4d. Ellipsoids represent the 50%probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

CCDC number	1859659		
Empirical formula	$(C_{23}H_{18}N_2O_3)_2*0.5H_2O_3$		
Formula weight	379.40		
Temperature/K	120(2)		
Crystal system	triclinic		
Space group	P-1		
	a/Å 7.522(2)		
	b/Å 9.502(3)		
Unit call dimensions	c/Å 26.913(8)		
onit cen dimensions	α/° 86.186(5)		
	β/° 89.331(5)		
	γ/° 69.408(5)		
Volume/Å ³	1796.7(10)		
Z	4		
$\rho_{calc} g/cm^3$	1.403		
μ/mm^{-1}	0.096		
F(000)	796.0		
Crystal size/mm ³	$0.350 \times 0.250 \times 0.050$		
Radiation	MoK α ($\lambda = 0.71073$)		
2Θ range for data collection/°	1.516 to 53.992		
	$-9 \le h \le 9$		
Index ranges	$-12 \le k \le 12$		
	$-34 \le 1 \le 34$		
Reflections collected	27572		
Independent reflections	7754 [$R_{int} = 0.0748$, $R_{sigma} = 0.0691$]		
Data/restraints/parameters	7754/0/520		
Goodness-of-fit on F ²	1.615		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1027, wR_2 = 0.2634$		
Final R indexes [all data]	$R_1 = 0.1079, wR_2 = 0.2668$		
Largest diff. peak/hole / e Å ⁻³	0.60/-0.49		

Table S2. Crystal data and structure refinement for quinoline **4fb**. Ellipsoids represent the 50%probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

CCDC number	1859658		
Empirical formula	$C_{19}H_{14}N_2O_3$		
Formula weight	318.32		
Temperature/K	100(2)		
Crystal system	orthorhombic		
Space group	Pca2 ₁		
	a/Å 16.7044(15)		
	b/Å 4.7039(4)		
Unit call dimensions	c/Å 18.5969(17)		
Unit cell dimensions	α/° 90		
	β/° 90		
	γ/° 90		
Volume/Å ³	1461.3(2)		
Z	4		
$\rho_{calc} g/cm^3$	1.447		
μ/mm^{-1}	0.100		
F(000)	664.0		
Crystal size/mm ³	$0.350 \times 0.250 \times 0.250$		
Radiation	MoK α ($\lambda = 0.71073$)		
2Θ range for data collection/°	4.38 to 57.99		
	$-22 \le h \le 22$		
Index ranges	$-6 \le k \le 6$		
	$-25 \le 1 \le 25$		
Reflections collected	16893		
Independent reflections	$3901 [R_{int} = 0.0447, R_{sigma} = 0.0348]$		
Data/restraints/parameters	3901/1/218		
Goodness-of-fit on F ²	1.012		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0391, wR_2 = 0.0962$		
Final R indexes [all data]	$R_1 = 0.0444, wR_2 = 0.1007$		
Largest diff. peak/hole / e Å ⁻³	0.27/-0.24		

Table S3. Crystal data and structure refinement for benzo[b]thiophene 13b. Ellipsoids represent the50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

CCDC number	1859655		
Empirical formula	$C_{12}H_{10}O_2S_2$		
Formula weight	250.32		
Temperature/K	120(2)		
Crystal system	monoclinic		
Space group	P2 ₁ /n		
	a/Å 7.4647(5)		
	b/Å 10.1476(6)		
Unit call dimensions	c/Å 14.7974(9)		
Unit cen dimensions	α/° 90		
	β/° 97.6800(10)		
	γ/° 90		
Volume/Å ³	1110.83(12)		
Z	4		
$\rho_{calc} g/cm^3$	1.497		
μ/mm^{-1}	0.458		
F(000)	520.0		
Crystal size/mm ³	$0.484\times0.328\times0.294$		
Radiation	MoK α ($\lambda = 0.71073$)		
2Θ range for data collection/°	4.882 to 57.984		
	$-10 \le h \le 10$		
Index ranges	$-13 \le k \le 13$		
	$-20 \le 1 \le 20$		
Reflections collected	13452		
Independent reflections	2957 [$R_{int} = 0.0207$, $R_{sigma} = 0.0143$]		
Data/restraints/parameters	2957/0/185		
Goodness-of-fit on F ²	1.035		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0266, wR_2 = 0.0742$		
Final R indexes [all data]	$R_1 = 0.0293, WR_2 = 0.0764$		
Largest diff. peak/hole / e Å ⁻³	0.42/-0.21		

Table S4. Crystal data and structure refinement for benzo[*b*]thiophene **21**. Ellipsoids represent the50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

CCDC number	1859654		
Empirical formula	$C_{12}H_9ClO_2S_2$		
Formula weight	284.76		
Temperature/K	120(2)		
Crystal system	triclinic		
Space group	P-1		
	a/Å 7.2227(9)		
	b/Å 8.8688(11)		
Unit call dimensions	c/Å 9.7985(13)		
Offit cell dimensions	α/° 72.745(2)		
	β/° 86.410(3)		
	γ/° 77.000(2)		
Volume/Å ³	584.04(13)		
Z	2		
$\rho_{calc} g/cm^3$	1.619		
μ/mm^{-1}	0.668		
F(000)	292.0		
Crystal size/mm ³	$0.400\times0.200\times0.200$		
Radiation	MoK α ($\lambda = 0.71073$)		
2Θ range for data collection/°	4.352 to 67.292		
	$-10 \le h \le 10$		
Index ranges	$-13 \le k \le 13$		
	$-14 \le 1 \le 14$		
Reflections collected	8655		
Independent reflections	4201 [$R_{int} = 0.0281$, $R_{sigma} = 0.0443$]		
Data/restraints/parameters	4201/0/155		
Goodness-of-fit on F ²	0.948		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0422, wR_2 = 0.1267$		
Final R indexes [all data]	$R_1 = 0.0539, wR_2 = 0.1387$		
Largest diff. peak/hole / e Å ⁻³	0.69/-0.41		

Table S5. Crystal data and structure refinement for benzo[*b*]thiophene 14b. Ellipsoids represent the50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

CCDC number	1859660		
Empirical formula	$C_{11}H_8O_3S$		
Formula weight	220.23		
Temperature/K	120(2)		
Crystal system	monoclinic		
Space group	C2/c		
	a/Å 16.1338(3)		
	b/Å 8.52590(10)		
Unit call dimensions	c/Å 14.3640(2)		
Unit cen dimensions	α/° 90		
	β/° 114.5437(8)		
	γ/° 90		
Volume/Å ³	1797.31(5)		
Z	8		
$\rho_{calc} g/cm^3$	1.628		
μ/mm^{-1}	0.339		
F(000)	912.0		
Crystal size/mm ³	$0.380 \times 0.290 \times 0.210$		
Radiation	MoKa ($\lambda = 0.71073$)		
2Θ range for data collection/°	5.526 to 79.994		
Index ranges	$-29 \le h \le 29, -15 \le k \le 15, -25 \le l \le 25$		
Reflections collected	81008		
Independent reflections	5578 [R _{int} = 0.0520, R _{sigma} = 0.0180]		
Data/restraints/parameters	5578/0/138		
Goodness-of-fit on F ²	1.072		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0312, wR_2 = 0.0887$		
Final R indexes [all data]	$R_1 = 0.0358, wR_2 = 0.0924$		
Largest diff. peak/hole / e Å ⁻³	0.65/-0.47		

Table S6. Crystal data and structure refinement for benzo[*b*]thiophene **15b**. Ellipsoids represent the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

Analysis of the Fourier density synthesis in **15b** have revealed the disorder due to superposition of two isomers with occupancies 0.96 and 0.04. The positional and atomic displacement parameters for atoms with minor occupancies were refined with DFIX and EADP instructions.

CCDC number	1859657		
Empirical formula	$C_{15}H_{14}O_2S_2$		
Formula weight	290.38		
Temperature/K	120(2)		
Crystal system	triclinic		
Space group	P-1		
	a/Å 7.5548(5)		
	b/Å 8.9850(6)		
Unit call dimensions	c/Å 11.3559(7)		
Unit cen dimensions	α/° 75.4510(10)		
	β/° 79.4630(10)		
	γ/° 65.9620(10)		
Volume/Å ³	678.58(8)		
Z	2		
$\rho_{calc} g/cm^3$	1.421		
μ/mm^{-1}	0.386		
F(000)	304.0		
Crystal size/mm ³	0.320 imes 0.220 imes 0.180		
Radiation	MoK α ($\lambda = 0.71073$)		
2Θ range for data collection/°	3.72 to 57.998		
Index ranges	$-10 \le h \le 10, -12 \le k \le 12, -15 \le l \le 15$		
Reflections collected	8441		
Independent reflections	$3608 [R_{int} = 0.0146, R_{sigma} = 0.0183]$		
Data/restraints/parameters	3608/9/189		
Goodness-of-fit on F ²	1.042		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0371, wR_2 = 0.1001$		
Final R indexes [all data]	$R_1 = 0.0408, wR_2 = 0.1037$		
Largest diff. peak/hole / e Å ⁻³	0.47/-0.43		

Table S7. Crystal data and structure refinement for benzo[b]thiophene 25. Ellipsoids represent the50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.

CCDC number	1859656				
Empirical formula	$C_{21}H_{22}N_2O_2S_2$				
	$C_{19}H_{16}N_2OS^*(CH_3)_2SO$				
Formula weight	398.52				
Temperature/K	120(2)				
Crystal system	monoclinic				
Space group	$P2_{1}/c$				
	a/A 8.7979(18)				
	D/A 24.844(5)				
Unit cell dimensions	c/A 9.4540(19)				
	α/ 90 β/° 111 00(3)				
	p/111.09(5) $y/^{\circ} = 00$				
V - Laure - / & 3	γ/* 90				
Volume/A ³	1927.9(8)				
	4				
ρ _{calc} g/cm ⁻	1.373				
μ/mm ⁻	0.295				
F(000)	840.0 0.400 × 0.220 × 0.180				
Dediation	$\frac{0.400 \times 0.220 \times 0.180}{M_{\odot}K_{\odot}(2 - 0.71072)}$				
Radiation	$\frac{1}{2} \frac{1}{278} \frac{1}{10} \frac{1}{10} \frac{1}{3}$				
20 range for data collection/*	3.278 t0 57.998				
Index renaes	$-11 \leq n \leq 11$ $22 \leq 1 \leq 22$				
index failges	$-33 \ge K \ge 33$ 12 < 1 < 12				
Paflactions collected	$\frac{-12 \ge 1 \ge 12}{10650}$				
Independent reflections	$5117 [P_{1,1} - 0.0260 P_{1,1} - 0.0244]$				
Data/restraints/parameters	$\frac{5117 [\text{K}_{\text{int}} - 0.0209, \text{K}_{\text{sigma}} - 0.0244]}{5117 / 0/246}$				
C coodpass of fit on E^2	1.020				
Final R indexes $[I > -2\sigma (I)]$	$\frac{1.027}{R_1 - 0.0302} \text{ wP}_2 = 0.0077$				
Final R indexes [$1/-20$ (I)]	$R_1 = 0.0352$, $WR_2 = 0.0777$ $R_1 = 0.0483$, $WR_2 = 0.1041$				
I argest diff near/hole / $a^{\lambda-3}$	$1 - 0.0403, WK_2 - 0.1041$				
Largest unit. peak/noie / CA	0.72/-0.37				

VIII. 2D NMR data and complete NMR assignment

Compound 4i

Table S8. Assignment of NMR signals and 2D NMR correlations for compound 4i.

N⁰	$^{1}\mathrm{H}$	¹³ C	NOESY	HMBC
1	-	156.5	-	10
2	-	123.6	-	9, 10, 11
3	-	156.3	-	9, 10
4	-	107.0	-	9, 11
5	-	139.9	-	9, 11, 12
6	-	150.1	-	9, 11, 12
7	-	127.1	-	9, 11, 12
8	-	167.6	-	9
9	5.47 (s)	70.3	12, 15	2, 3, 4, 5, 6, 7, 8
10	2.78	12.4	11	1, 2, 3
11	2.66	14.8	10, 12, 15	2, 4, 5, 6, 7
12	10.30 (s)	-	9, 11	5, 6, 7, 13
13	-	166.1	-	12, 15
14	-	134.0	-	16
15	8.05 (d, J = 7.4 Hz)	128.3	9, 11	13, 16, 17
16	7.55-7.61 (m)	129.0	-	14, 15, 17
17	7.64-7.68 (m)	132.5	-	15, 16

7.5

10.0

9.5

9.0

8.5

8.0

7.0

6.5 ppm

6.0

5.5

5.0

4.5

4.0

3.5

3.0 2.5

-170

Compound 4j

Table S9. Assignment of NMR signals and 2D NMR correlations for compound 4j.

N⁰	$^{1}\mathrm{H}$	¹³ C	NOESY	COSY	HMBC
1	-	150.9	-	-	3, 5
2	7.88 (d, J = 9.0 Hz)	117.9	-	3	4
3	7.71-7.76 (m)	131.5	4	2, 4	1, 5
4	7.13-7.18 (m)	112.4	3, 5	3, 5	2, 6
5	9.24 (d, <i>J</i> = 6.8 Hz)	129.6	4, 14	4	1, 3
6	-	129.3	-	-	4, 13, 14
7	-	130.2	-	-	14, 15
8	-	123.4	-	-	13, 14
9	-	145.9	-	-	13, 15
10	-	111.7	-	-	13
11	-	139.6	-	-	-
12	-	169.5	-	-	13
13	5.42 (s)	69.1	15, 18	-	6, 8, 9, 10, 12
14	2.91 (s)	15.1	5, 15, 18	-	6, 7, 8
15	10.41 (s)	-	13, 14, 18	-	7, 9, 16
16	-	166.3	-	-	15, 18
17	-	134.2	-	-	19
18	8.10 (d, J = 7.4 Hz)	128.3	13, 14, 15	19	16, 19, 20
19	7.57-7.61 (m)	129.0	-	18, 20	17, 18
20	7.64-7.68 (m)	132.4	-	19	18

¹H-¹H NOESY spectrum

¹H⁻¹H COSY spectrum

¹H-¹³C HMBC spectrum

Compound 4k

Table S10. Assignment of NMR signals and 2D NMR correlations for compound 4k.

N⁰	$^{1}\mathrm{H}$	¹³ C	NOESY	COSY	HMBC
1	9.12 (dd, <i>J</i> = 4.2, 1.6 Hz)	152.2	2	2, 3	2, 3, 9
2	7.77 (dd, $J = 8.6$, 4.2 Hz)	122.7	1, 3	1, 3	1, 5
3	8.75 (dd, <i>J</i> = 8.6, 1.6 Hz)	134.6	2, 12	1, 2	1, 4, 9
4	-	140.1	-	-	3, 11, 12
5	-	128.6	-	-	2, 12
6	-	128.9	-	-	11, 12
7	-	152.1	-	-	11, 12
8	_	118.9	-	-	11, 12
9	-	143.2	-	-	1, 3, 11
10	-	168.6	-	-	11
11	5.42 (s)	68.1	13, 16	-	4, 6, 7, 8, 9, 10
12	2.70 (s)	14.6	3, 13	-	4, 5, 6, 7, 8
13	10.51 (s)	-	11, 12, 16	-	-
14	-	166.2	-	-	16
15	-	134.0	-	-	17
16	8.08 (d, <i>J</i> = 7.4 Hz)	128.3	11, 13, 17	17	14, 18
17	7.60 (t, J = 7.4 Hz)	129.0	16, 18	16, 18	15
18	7.67 (t, J = 7.4 Hz)	132.5	17	17	16

Compound 13d

 Table S11. Assignment of NMR signals and 2D NMR correlations for compound 13d.

N⁰	¹ H	¹³ C	NOESY	HMBC	COSY
1	11.80 (s)	-	3, 16	2, 7, 8, 13	-
2	-	141.3	-	1, 4, 6	-
3	7.62 (d, <i>J</i> = 8.2 Hz)	112.0	1	5	4
4	7.49-7.54 (m)	127.7	5	2, 5, 6	3, 5
5	7.23-7.29 (m)	120.0	4,6	3, 4, 7	4, 6
6	8.80 (d, <i>J</i> = 8.0 Hz)	125.0	5	2, 4, 8	5
7	-	121.2	-	1, 5	-
8	-	117.9	-	1,6	-
9	-	117.0	-	15, 16	-
10	-	145.0	-	15, 16	-
11	-	124.9	-	15, 16, 17	-
12	-	132.7	-	15, 16	-
13	-	140.3	-	1, 15, 16	-
14	-	172.1	-	15	-
15	5.56 (s)	71.0	17	9, 10, 11, 12, 13, 14	-
16	2.86 (s)	15.7	1, 17	9, 10, 11, 12, 13	-
17	2.36 (s)	18.9	15, 16	11	-

¹H-¹H NOESY spectrum

Compound 16b (E-isomer)

 Table S12. Assignment of NMR signals and 2D NMR correlations for compound 16b (E-isomer).

Nº	$^{1}\mathrm{H}$	¹³ C	NOESY (1D)	COSY	НМВС
1	7.99 (d, <i>J</i> = 5.4 Hz)	129.3	-	2	2, 3, 4, 5
2	7.76 (d, $J = 5.4$ Hz)	123.5	-	1	1, 3, 4, 11
3	-	141.9	-	-	1, 2, 11
4	-	133.0	-	-	1, 2
5	-	117.1	-	-	1, 7, 11
6	-	146.6	-	-	7, 12
7	5.46 (s)	70.8	12	-	5, 6, 8
8	-	170.6	-	-	7
9	-	139.3	-	-	11, 12
10	-	126.5	-	-	11
11	2.69 (s)	18.1	12	-	2, 3, 5, 9, 10
12	5.86 (s)	102.2	7, 11, 16	-	6, 9, 14, 15
13	-	124.9	-	-	16
14	-	116.2	-	-	12
15	6.54 (q, J = 4.9 Hz)	-	-	16	12
16	2.73 (d, J = 4.9 Hz)	30.9	12	15	13

¹H⁻¹H COSY spectrum

Compound 16b (Z-isomer)

Table S13. Assignment of NMR signals and 2D NMR correlations for compound 16b (Z-isomer).

N⁰	$^{1}\mathrm{H}$	¹³ C	NOESY (1D)	COSY	HMBC
1	7.97 (d, <i>J</i> = 5.4 Hz, 1H)	129.1	-	2	2
2	7.77 (d, <i>J</i> = 5.4 Hz, 1H)	123.4	-	1	1
3	-	141.7	-	-	1, 2, 11
4	-	133.4	-	-	1, 2
5	-	117.2	-	-	7
6	-	145.7	-	-	7
7	5.36 (s)	71.0	12	-	5, 6, 8
8	-	170.7	-	-	7
9	-	124.7	-	-	7, 11
10	-	139.1	-	-	7, 11
11	2.62 (s)	17.9	12	-	3, 9, 10
12	6.01 (s)	105.4	7, 11	-	-
13	-	123.4	-	-	16
14	-	116.8	-	-	-
15	5.45-5.49 (m)	-	-	16	-
16	2.66 (d, J = 4.8 Hz)	32.3	-	15	13

Compound 23

Table S15. Assignment of NMR signals and 2D NMR correlations for compound 23.

N⁰	$^{1}\mathrm{H}$	¹³ C	NOESY	HMBC	COSY
1	-	138.3	-	2, 3, 5, 15	-
2	7.53-7.58 (m)	110.8	3, 15	1,4	3
3	7.21-7.30 (m)	122.9	2	1, 4, 5	2
4	7.21-7.30 (m)	122.2	5	2, 3	5
5	8.46-8.51 (m)	122.2	4	1, 3, 6	4
6	-	122.6	-	5	-
7	_	101.6	-	14	-
8	_	136.0	-	14	-
9	-	137.1	-	14	-
10	_	194.5	-	16	-
11	-	60.3	-	16, 17	-
12	_	148.2	-	15, 16	-
13	_	172.0	-	14	-
14	5.17 (d, <i>J</i> = 17.5 Hz, ¹ / ₂ CH ₂), 5.26 (d, <i>J</i> = 17.5 Hz, ¹ / ₂ CH ₂)	69.7	-	7, 8, 9, 13	-
15	3.92 (s)	31.5	2, 16, 17, 19	1, 12	-
16	1.54 (s)	23.2	15, 17	10, 11, 12, 17	-
17	9.52 (s)	-	15, 16, 19	11, 16, 18	-
18	_	169.3	-	17, 19	-
19	1.90 (s)	21.7	15, 17	18	-

¹H-¹H COSY spectrum

Compound 14e

Table S14. Assignment of NMR signals and 2D NMR correlations for compound 14e.

N⁰	$^{1}\mathrm{H}$	¹³ C	NOESY	HMBC	COSY
1	11.75	-	3, 16	2, 3, 7, 8, 13	-
2	-	141.2	-	1, 4, 6	-
3	7.63 (d, <i>J</i> = 8.1 Hz)	111.9	1, 4	1, 4, 5, 6, 8	4
4	7.48-7.52 (m)	127.1	3, 5	2, 3, 6	3, 5
5	7.24-7.28 (m)	119.8	4,6	3, 8	4,6
6	8.82 (d, <i>J</i> = 7.9 Hz)	124.7	5	2, 3, 4, 7	5
7	-	116.0	-	1,6	-
8	-	121.4	-	1, 3, 5	-
9	-	116.6	-	15, 16	-
10	-	138.0	-	15, 16, 17	-
11	-	127.7	-	15, 16, 17	-
12	-	124.5	-	15, 16, 17	-
13	-	140.5	-	1, 16	-
14	-	172.0	-	15	-
15	5.37 (s)	70.4	17	9, 10, 11, 12, 14	-
16	2.58 (s)	13.6	1, 17	9, 11, 10, 12, 13	-
17	9.85 (s)	-	15, 16, 19	10, 11, 12, 18	-
18	-	168.8	_	17, 19	-
19	2.16 (s)	23.2	17	18	-

¹H⁻¹H COSY spectrum

¹H-¹³C HMBC spectrum

IX. Copies of NMR spectra for all new compounds

0

* Ethyl acetate

S99

ppm

* Ethyl acetate

* Dichloromethane

* Ethyl acetate and hexane

* Dichloromethane (5.76 ppm) and grease

* Dichloromethane (5.30 ppm), H₂O (1.70 ppm)

* Ethyl acetate (4.03, 1.99, 1.17 ppm), H₂O (3.33 ppm) and DMSO (2.50 ppm)

¹H NMR spectrum of compound 8b

S137

S143

¹H NMR spectrum of compound 12b

¹³C{¹H} NMR spectrum of compound 12c

* Ethyl acetate

N H

Мe

* Trace amounts of compound 23 (both photoproducts possess very similar $R_{\rm f}$ values)

ppm

A MARKED AND A

* Ethyl acetate

* Ethyl acetate (4.03, 1.99, 1.17 ppm), H₂O (3.33 ppm) and DMSO (2.50 ppm)

* Ethyl acetate (4.03, 1.99, 1.17 ppm), H₂O (3.33 ppm) and DMSO (2.50 ppm)

¹H NMR spectrum of compound 19a

* Ethyl acetate (4.03, 1.99, 1.17 ppm), H₂O (3.33 ppm) and DMSO (2.50 ppm)

¹³C{¹H} NMR spectrum of compound 19b

 \ast H₂O (3.33 ppm) and DMSO (2.50 ppm)

¹³C{¹H} NMR spectrum of compound 23

S187

¹H NMR spectrum of compound 27

* Ethyl acetate

¹³C{¹H} NMR spectrum of compound 27

¹H NMR spectrum of compound 28

¹³C{¹H} NMR spectrum of compound 28

X. References

¹ Bruker. APEXII. Bruker AXS Inc., Madison, Wisconsin, USA, 2008.

² G. M. Sheldrick, SADABS. University of Göttingen, Germany, 1997.

³ G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.

⁴ (a) G. M. Sheldrick, *Acta Cryst.* 2008, **A64**, 112-122. (b) G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8.

⁵ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, **42**, 339-341.

⁶ V. Z. Shirinian, A. A. Shimkin, D. V. Lonshakov, A. G. Lvov, M. M. Krayushkin, *J. Photochem. Photobiol. A*, 2012, **233**, 1.

⁷ a) S. Samori, M. Hara, T.-I. Ho, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Majima, *J. Org. Chem.*, 2005, **70**, 2708–2712; b) E. M. Glebov, N. V. Ruban, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, A. G. Lvov, A. V. Zakharov, V. Z. Shirinian, *J. Phys. Chem. A*, 2018, **122**, 7107–7117.

⁸ (a) T.-I. Ho, J.-Y. Wu, S.-L. Wang, Angew. Chem., Int. Ed., 1999, 38, 2558-2560; (b) T.-I. Ho, J.-

H. Ho, J.-Y. Wu, J. Am. Chem. Soc., 2000, 122, 8575-8576; (c) A. G. Lvov, V. Z. Shirinian, V. V.

Kachala, A. M. Kavun, I. V. Zavarzin, M. M. Krayushkin, Org. Lett., 2014, 16, 4532-4535; (d) A.

G. Lvov, V. Z. Shirinian, A. V. Zakharov, M. M. Krayushkin, V. V. Kachala, I. V. Zavarzin, J. Org. Chem., 2015, 80, 11491-11500; (e) O. Galangau, T. Nakashima, F. Maurel, T. Kawai, Chem. Eur. J., 2015, 21, 8471-8482. (f) A. V. Zakharov, E. B. Gaeva, A. G. Lvov, A. V. Metelitsa, V. Z. Shirinian, J. Org. Chem., 2017, 82, 8651-8661. (g) J. Fan, T. Wang, C. Li, R. Wang, X. Lei, Y. Liang, Z. Zhang, Org. Lett., 2017, 19, 5984-5987. (h) S. Jing, Y. He, T. Wang, J. Zhang, A. Cheng, Y. Liang, Z. Zhang, Synlett, 2018, 29, 1578–1582.

⁹ For review see: M. Stratakis and M. Orfanopoulos, *Tetrahedron*, 2000, **56**, 1595–1615.

¹⁰ M. Auzias, D. Häussinger, M. Neuburger, H. A. Wegner, Org. Lett., 2011, 13, 474-477.

¹¹ (a) Li, X.; Ma, Y.; Wang, B.; Li, G. *Org. Lett.*, 2008, **10**, 3639. (b) Wu, Y.; Chen, S.; Yang, Y.;
Zhang, Q.; Xie, Y.; Tian, H.; Zhu, W. *Chem. Commun.*, 2012, **48**, 528. (c) Wu, Y.; Zhu, W.; Wan,
W.; Xie, Y.; Tian, H.; Li, A.D.Q. *Chem. Commun.*, 2014, **50**, 14205.

¹² O. A. Fedorova, Yu. V. Fedorov, E. N. Andryukhina, S. P. Gromov, M. V. Alfimov, R. Lapouyade, *Org. Lett.*, 2003, **5**, 4533.

¹³ E. N. Gulakova, D. V. Berdnikova, T. M. Aliyeu, Yu. V. Fedorov, I. A. Godovikov, O. A. Fedorova, *J. Org. Chem.*, 2014, **79**, 5533).

¹⁴ T. Nakashima, R. Fujii, T. Kawai, *Chem. Eur. J.*, 2011, **17**, 10951.

- ¹⁵ S. Fukumoto, T. Nakashima, T. Kawai, Angew. Chem., Int. Ed., 2011, 50, 1565.
- ¹⁶ Galangau, O.; Nakashima, T.; Maurel, F.; Kawai, T. Chem. Eur. J., 2015, **21**, 8471.
- ¹⁷ Lvov, A. G.; Kavun, A. M.; Kachala, V. V.; Nelyubina, Y. V.; Metelitsa, A. V.; Shirinian, V. Z. J. *Org. Chem.*, 2017, **82**, 1477.
- ¹⁸ Kobatake, S.; Uchida, K.; Tsuchida, E.; Irie, M. Chem. Commun., 2002, 2804.
- ¹⁹ Irie, M.; Lifka, T.; Uchida, K.; Kobatake, S.; Shindo, Y. Chem. Commun., 1999, 747.
- ²⁰ Herder, M.; Schmidt, B. M.; Grubert, L.; Païzel, M.; Schwarz, J.; Hecht, S. J. Am. Chem. Soc., 2015, **137**, 2738.