Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Clickable coupling of carboxylic acids and amines at room temperature mediated by SO_2F_2 : A significant breakthrough for the construction of amides and peptide linkages

Shi-Meng Wang, Chuang Zhao, Xu Zhang, Hua-Li Qin*

State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China

E-mail: qinhuali@whut.edu.cn

Table of content

1.	General considerations	S2
2.	Screening the optimized conditions for amidation reaction of 1a with 4a	S2
3.	Enantiopurity of the amino acid amides 7a-7m	S4
4.	General procedures for the gram scale reactions	S16
5.	Procedures for the synthesis of compound 9, 11, 14 and 17	S16
6.	NMR spectra of 5, 6, 7, 9, 11, 14 and 17	S18
7.	References	S87

1. General considerations

All reactions were carried out under an air atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl₃ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (¹H NMR, 0 ppm) and CFCl₃ (¹⁹F NMR, 0 ppm) as internal standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5 μ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. Enantiomeric excesses were determined on HPLC using Chiralcel OD or IC column with UV detector. Optical rotations were measured on a Roudolph Autopl IV. Melting points of the products were measured on a micro melting point apparatus (SGW X-4) and uncorrected. High resolution mass spectra (HRMS) were obtained on an Agilent 1260-6221 TOF mass spectrometry. Reagents used in the reactions were all purchased from commercial sources and used without further purification.

2. Screening the optimized conditions for amidation reaction of 1a with 4a

Table 1 The amidation reaction of 1a with 4a in the presence of different bases.^a

COOH +	NH ₂ SO ₂ F ₂ base (3 equiv.) MeCN (0.15 M)	N H
1a	4a rt (2 equiv.)	~5а
Fntry	Base	Yield
Linuy	Dube	(5 a, %) ^b
1	DIPEA	82
2	Et ₃ N	81
3	DBU	<1
4	DBN	<1
5	TMEDA	54
6	DMAP	46
7	DABCO	32
8	proton sponge	<1
9	K ₂ CO ₃	26
10	Na ₂ CO ₃	<1
11	K ₃ PO ₄	13
12	Na ₃ PO ₄	<1
13	KOAc	9
14	NaOAc	<1
15	Cs_2CO_3	47
16	NaHCO ₃	<1

^a General conditions: a mixture of benzoic acid (**1a**, 0.3 mmol), aniline (**4a**, 0.6 mmol) and base (0.9 mmol, 3 equiv) in MeCN (reaction diluted to 0.15 M) under SO₂F₂ atmosphere (balloon) was stirred at room temperature for 5 h. ^b The yield was determined by HPLC using *N*-phenylbenzamide (**5a**, $t_R = 3.807 \text{ min}$, $\lambda_{max} = 263.0 \text{ nm}$, water/methanol = 30 : 70 (v/v)) as the external standard.

\bigcirc	COOH + 〔 1a	NH ₂ SO ₂ F DIPEA (3 solvent (0 4a rt (2 equiv.)	equiv.) (.15 M) 5a
	Entw	Solvent	Yield
	Entry		(5a , %) ^b
	1	MeCN	82
	2	dioxane	59
	3	toluene	67
	4	THF	19
	5	acetone	24
	6	DMF	20
	7	DMSO	26
	8	NMP	45
	9	DCM	36

Table 2 The amidation reaction of 1a with 4a in the presence of different solvents.^a

^a General conditions: a mixture of benzoic acid (**1a**, 0.3 mmol), aniline (**4a**, 0.6 mmol) and DIPEA (0.9 mmol, 3 equiv) in solvent (reaction diluted to 0.15 M) under SO₂F₂ atmosphere (balloon) was stirred at room temperature for 5 h. ^b The yield was determined by HPLC using *N*-phenylbenzamide (**5a**, t_R = 3.807 min, $\lambda_{max} = 263.0$ nm, water/methanol = 30 : 70 (v/v)) as the external standard.

Table 3 The amidation reaction of 1a with 4a at different reaction concentrations.^a

COOH + 1a	NH ₂ SO ₂ F ₂ DIPEA (3 equiv.) 4a rt (2 equiv.)	O N H 5a
Entry Concentration		Yield
Liiuy	(mol/L)	(5a , %) ^b
1	0.15	82
2	0.2	85
3	0.3	94
4	0.4	94
5	0.5	95
6	0.6	93
7	1.0	91

^a General conditions: a mixture of benzoic acid (**1a**, 0.3 mmol), aniline (**4a**, 0.6 mmol) and DIPEA (0.9 mmol, 3 equiv) in MeCN (reaction diluted to the specified concentration) under SO₂F₂ atmosphere (balloon) was stirred at room temperature for 5 h. ^b The yield was determined by HPLC using *N*-phenylbenzamide (**5a**, $t_R = 3.807$ min, $\lambda_{max} = 263.0$ nm, water/methanol = 30 : 70 (v/v)) as the external standard.

Table 4 Screening the loading of 4a and DIPEA.^a

	1a 4a (X equiv.)	SO ₂ F ₂ IPEA (Y equiv.) MeCN (0.3 M) rt	N H 5a
Entry	X (equiv)	Y (equiv)	Yield
			$(5a, \%)^{\circ}$
1	2	0	<1
2	2	1	61
3	2	2	88
4	2	3	94
5	2	4	94
6	2	5	92
7	1.5	3	90
8	1.2	3	84

^a General conditions: a mixture of benzoic acid (**1a**, 0.3 mmol), aniline (**4a**, 0.6 mmol) and DIPEA (0.9 mmol, 3 equiv) in MeCN (reaction diluted to 0.3 M) under SO₂F₂ atmosphere (balloon) was stirred at room temperature for 5 h. b: The yield was determined by HPLC using *N*-phenylbenzamide (**5a**, $t_R = 3.807 \text{ min}$, $\lambda_{max} = 263.0 \text{ nm}$, water/methanol = 30 : 70 (v/v)) as the external standard.

3. Enantiopurity of the Amino Acid Amides 7a-7m

Ethyl benzoyl-L-alaninate (**7a**).^[1] >99% ee was determined by chiral HPLC (chiralcel OD-H, n-hexane/2-propanol = 80/20, 0.5 mL/min, 254 nm). t_R = 9.92 min (minor) and 12.32 min (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

Ethyl benzoyl-L-tyrosinate (**7b**).^[2] >99% ee was determined by chiral HPLC (chiralcel OD-H, n-hexane/2-propanol = 80/20, 0.5 mL/min, 254 nm). t_R = 14.79 min (minor) and 23.29 min (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

	MI20181208IWSM-LAO-OET-RAC - 检测器 1)					
保留时间 峰面积 峰高 [min] [mAU.s] [mAU]						
1	14.788	1287.437	43.977	47.0		
2	23.290	1453.636	32.855	53.0		
	合计	2741.073	76.832	100.0		

Ethyl benzoyl-L-phenylalaninate (7c).^[1] 98% ee was determined by chiral HPLC (chiralcel OD-H, n-hexane/2-propanol = 90/10, 1.0 mL/min, 254 nm). t_R = 8.93 min (minor) and 11.58 min (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

结果表(不计算 - D:\ECLASSICAL_W3200\WORK1\DATA\QIN\WANG S M\BENBING L -

	122 / O Bar 1/				
	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]	
1	8.929	16.675	0.453	1.0	
2	11.578	1631.298	69.623	99.0	
	合计	1647.974	70.075	100.0	

结果表(不计算 - D:IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MIBENBING RAC - 检测器 1)

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	8.813	1568.309	92.437	52.2
2	11.611	1436.881	61.500	47.8
	合计	3005.190	153.936	100.0

Ethyl benzoyl-L-valinate (7d).^[3] 99% ee was determined by chiral HPLC (chiralcel OD-H, n-hexane/2-propanol = 90/10, 1.0 mL/min, 254 nm). $t_R = 5.36 \text{ min (minor)}$ and 6.62 min (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

结果表(不计算 - D:IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MIXIE L - 检测器

	1/					
	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]		
1	5.357	3.572	0.307	0.3		
2	6.615	1316.343	82.149	99.7		
	合计	1319.915	82.456	100.0		

结果责(不计算 - D: IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MIXIE RAC -检测器 1)

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	5.346	1463.236	107.828	59.7
2	6.625	988.614	67.308	40.3
	合计	2451.850	175.136	100.0

Tert-butyl (S)-2-(phenylcarbamoyl)pyrrolidine-1-carboxylate (7e).^[4] 95% ee was determined by chiral HPLC (chiralcel OD-H, n-hexane/2-propanol = 90/10, 1.0 mL/min, 254 nm). $t_R = 5.31$ min. (minor) and 6.49 min. (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

结果表(不计算 - D: IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MIFU L - 检测器

-/					
	保留时间 峰面积 峰高 面积 [min] [mAU.s] [mAU] [%]				
1	5.307	179.057	10.971	2.3	
2	6.491	7732.432	422.818	97.7	
	合计	7911.490	433.789	100.0	

結果表(不计算 - D:1ECLASSICAL_W3200IWORK11DATA1QIN1WANG S MIFU RAC -检测器 1)

		保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
I	1	5.310	8435.054	514.236	55.6
I	2	6.506	6728.661	366.699	44.4
I		合计	15163.715	880.935	100.0

Ethyl (tert-butoxycarbonyl)glycyl-L-phenylalaninate (**7f**).^[5] >99% ee was determined by chiral HPLC (chiralcel IC, n-hexane/2-propanol = 80/20, 1.0 mL/min, 254 nm). t_R = 8.96 min (major) and 13.58 min (minor). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

结果表(不计算 - D:\ECLASSICAL	W3200 WORK1 DATAI QINI WANG S

0

-50 L

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	9.000	199.328	5.384	23.2
2	13.581	661.191	10.540	76.8
	合计	860.520	15.924	100.0

Tert-butyl-(3-(1H-indol-3-yl)-1-oxo-1-(phenylamino)propan-2-yl)carbamate (7i).^[4] Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 322.6 mg, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (s, 1H), 7.95 (s, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 2H), 7.23 (t, *J* = 7.7 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 7.06 (t, *J* = 7.2 Hz, 1H), 6.98 (s, 1H), 5.39 (s, 1H), 4.63 (s, 1H), 3.30 (d, *J* = 31.0 Hz, 2H), 1.42 (s, 9H). [α]_D²⁵ = -26.3 (c = 0.10, CHCl₃). 68% ee was determined by chiral HPLC (chiralcel IA,

n-hexane/2-propanol = 80/20, 1.0 mL/min, 254 nm). t_R = 8.98 min (major) and 14.90 min (minor). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

结果表(不计算 - D: IECLASSI CAL_W3200I WORK1IDA TAIQINI WANG S MI20181208I WSM-BOC-SE-L - 检测器 1)

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	8.985	478.558	22.772	16.2
2	14.903	2475.716	66.343	83.8
	合计	2954.274	89.116	100.0

结果表(不计算 - D:\ECLASSICAL_W3200\WORK1\DATA\QIN\WANG S

W1201012001W3W-BCC-3E-RAC - 12 (A) Ba 1)				
	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	8.981	3287.864	155.262	54.2
2	14.924	2781.503	74.016	45.8
	合计	6069.367	229.279	100.0

Tert-butyl-(3-(4-hydroxyphenyl)-1-oxo-1-(phenylamino)propan-2-yl)carbamate (**7j**).^[4] Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 352.9 mg, 99% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (s, 1H), 7.39 (d,

J = 7.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.31-7.26 (m, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 7.2 Hz, 1H), 5.40 (d, J = 8.0 Hz, 1H), 4.57 (s, 1H), 3.29-3.16 (m, 1H), 3.08 (dd, J = 13.6, 7.1 Hz, 1H), 1.39 (s, 9H). [α]_D²⁵ = -61.4 (c = 0.10, CHCl₃). 60% ee was determined by chiral HPLC (chiralcel IA, n-hexane/2-propanol = 80/20, 1.0 mL/min, 254 nm). t_R = 6.91 min (major) and 9.94 min (minor). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

結果表(不计算 - D: IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MI20181208IWSM-BOC-LAO-L - 检测器 1)

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	6.910	2392.661	151.121	80.2
2	9.937	592.146	27.973	19.8
	合计	2984.807	179.094	100.0

结果表(不计算 - D: IECLASSICAL_W3200IWORK1IDATAIQINIWANG S M120181208IWSM-BOC-LAO-RAC - 检测器 1)

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	6.923	1902.427	116.497	40.0
2	9.948	2857.365	135.060	60.0
	合计	4759.792	251.557	100.0

Tert-butyl-(1-oxo-1-(phenylamino)propan-2-yl)carbamate (7k).^[4] Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 259.0 mg, 98% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.75 (s, 1H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.29 (t, *J* = 8.1 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.10-7.04 (m, 1H), 5.41 (d, *J* = 5.2 Hz, 1H), 4.40 (s, 1H), 1.45 (s, 9H), 1.43 (d, *J* = 7.1 Hz, 3H). [α]_D²⁵ = +12.6 (c = 0.10, MeOH). 50% ee was determined by chiral HPLC (chiralcel IA, n-hexane/2-propanol = 80/20, 1.0 mL/min, 254 nm). t_R = 5.62 min (minor) and 6.32 min (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

保留时间 [min] 峰面积 [mAU.s] 峰高 [mAU] 面积 [%] 25.2 3028.155 291.379 697.532 8964.959 74.8 6.315 合计 11993.114 988.911 100.0 5,65 1.2 1.0 6.34 0.8 Ð .Ph N H Boc H 0.6 - NH Boc 7k 7k' L-form D-form 0.4 0.2 0.0 5 10 15 0 [min.] Time

结果表(不计算 - D:IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MI20181208IWSM-BOC-BING-RAC-1 - 检测器 1)

	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	5.652	12003.124	1128.538	55.0
2	6.344	9806.113	750.298	45.0
	合计	21809.237	1878.836	100.0

Tert-butyl-(4-methyl-1-oxo-1-(phenylamino)pentan-2-yl)carbamate (**71**). ^[4] Petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluent for column chromatography. White solid, 281.9 mg, 92% yield. ¹H NMR (500 MHz, DMSO-d₆) δ 9.92 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.29 (t, *J* = 7.9 Hz, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 4.13 (dd, *J* = 13.7, 9.0 Hz, 1H), 1.67-1.62 (m, 1H), 1.56-1.50 (m, 1H), 1.44 (dd, *J* = 8.3, 5.6 Hz, 1H), 1.38 (s, 9H), 0.89 (dd, *J* = 6.3, 4.2 Hz, 6H). [α]_D²⁵ = +36.6 (c = 0.10, MeOH). 50% ee was determined by chiral HPLC (chiralcel IA, n-hexane/2-propanol = 80/20, 1.0 mL/min, 254 nm). t_R = 4.65 min (minor) and 5.66 min (major). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

结果表(不计算 - D: IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MILIANG L -检测器 1)

		保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
	1	4.649	2182.117	88.462	24.8
	2	5.657	6620.111	304.716	75.2
Ì		合计	8802.228	393.178	100.0

结果表(不计算 - D: IECLASSICAL_W3200IWORK1IDATAIQINIWANG S MILIANG RAC1

	- 102,309 Bir 1/				
	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]	
1	4.646	5565.671	202.257	47.6	
2	5.665	6124.195	258.878	52.4	
	合计	11689.866	461.135	100.0	

Tert-butyl-(4-(methylthio)-1-oxo-1-(phenylamino)butan-2-yl)carbamate (7m). ^[4] Petroleum ether / ethyl acetate = 3 : 1 (v /v) as eluent for column chromatography. White solid, 269.3 mg, 83% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.29 (t, J = 6.5 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 5.50 (d, J = 0.5 Hz, 1H), 4.47 (s, 1H), 2.61 (dd, J = 12.4, 6.6 Hz, 2H), 2.18 (td, J = 13.5, 6.7 Hz, 1H), 2.10 (s, 3H), 2.01 (dd, J = 14.3, 7.0 Hz, 1H), 1.44 (s, 9H). [α]_D²⁵ = -5.9 (c = 0.10, MeOH). 64% ee was determined by chiral HPLC (chiralcel IA, n-hexane/2-propanol = 90/10, 1.0 mL/min, 254 nm). t_R = 10.97 min (major) and 12.17 min (minor). Authentic samples were independently prepared from L- and D-amino acids and their mixture was used as reference racemate.

M120181208(WSM-BOC-DAN-L-90-10- 位则器 1)				
	保留时间 [min]	峰面积 [mAU.s]	峰高 [mAU]	面积 [%]
1	10.970	8979.084	406.916	81.8
2	12.166	1991.985	82.756	18.2
	合计	10971.070	489.672	100.0

结果表(不计算 - D:\ECLASSICAL_W3200\WORK1\DATA\QIN\WANGS

4. General procedures for the gram scale reactions

Carboxylic acid (1, 1.0 equiv), amine (4, 2.0 equiv), DIPEA (3.0 equiv) and MeCN (reaction mixture was diluted to 0.3 M) were added to an oven-dried 100 mL round bottom flask equipped with a stirring bar and covered with a rubber stopper. Sulfuryl fluoride gas was introduced into the stirred reaction mixture by slowly bubbling from a balloon. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, 1 M aqueous HCl solution (3×20 mL) was added to remove the excess amine and the reaction mixture was extracted with ethyl acetate (3×20 mL). The extracts were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give the desired product.

5. Procedures for the synthesis of compound 9, 11, 14 and 17.

Deferasirox (8, 1.0 mmol, 1.0 equiv), aniline (4a, 2.0 mmol, 2.0 equiv), DIPEA (3.0 mmol, 3.0 equiv) and MeCN (reaction mixture was diluted to 0.3 M) were added to an oven-dried 25 mL reaction flask equipped with a stirring bar and covered with a rubber stopper. Sulfuryl fluoride gas was introduced into the stirred reaction mixture by slowly bubbling from a balloon. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, the reaction mixture was directly concentrated under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 1 : 1 (v/v) as eluents to give amide 9 in 98% yield.

(S)-ibuprofen (10, 1.0 mmol, 1.0 equiv), aniline (4a, 2.0 mmol, 2.0 equiv), DIPEA (3.0 mmol, 3.0 equiv) and MeCN (reaction mixture was diluted to 0.3 M) were added to an oven-dried 25 mL reaction flask equipped with a stirring bar and covered with a rubber stopper. Sulfuryl fluoride gas was introduced into the stirred reaction mixture by slowly bubbling from a balloon. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, 1 M aqueous HCl solution (10 mL) was added to remove the excess amine and the reaction mixture was extracted with ethyl acetate (3×20 mL). The extracts were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluents to give amide 11 in 99% yield.

2-Chloronicotinic acid (12, 1.0 mmol, 1.0 equiv), 4'-chloro-[1,1'-biphenyl]-2-amine (13, 2.0 mmol, 2.0 equiv), DIPEA (3.0 mmol, 3.0 equiv) and MeCN (reaction mixture was diluted to 0.3 M) were added to an oven-dried 25 mL reaction flask equipped with a stirring bar and covered with a rubber stopper. Sulfuryl fluoride gas was introduced into the stirred reaction mixture by slowly bubbling from a balloon. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, the reaction mixture was directly concentrated under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 1 : 1 (v /v) as eluents to give amide 14 in 87% yield.

2-(4-hydroxyphenyl)acetic acid (**15**, 1.0 mmol, 1.0 equiv), 3,5-dimethylaniline (**16**, 2.0 mmol, 2.0 equiv), DIPEA (3.0 mmol, 3.0 equiv) and MeCN (reaction mixture was diluted to 0.3 M) were added to an oven-dried 25 mL reaction flask equipped with a

stirring bar and covered with a rubber stopper. Sulfuryl fluoride gas was introduced into the stirred reaction mixture by slowly bubbling from a balloon. The reaction mixture was stirred at room temperature for 5 h. After the reaction was completed, 1 M aqueous HCl solution (10 mL) was added to remove the excess amine and the reaction mixture was extracted with ethyl acetate (3×20 mL). The extracts were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether / ethyl acetate = 2 : 1 (v /v) as eluents to give amide **17** in 99% yield.

6. NMR spectra of 5, 6, 7, 9, 11, 14 and 17

7. References

[1] J. Martinelli, G. Gugliotta, L. Tei, Org. Lett. 2012, 14, 716.

- [2] A. V. Karnik, S. S. Kamath, J. Org. Chem. 2007, 72, 7435.
- [3] D. Dhanak, K. L. Widdowson, J. R. White, 1999, WO 9955330.
- [4] J. W. Lee, T. H. Ryu, J. S. Oh, H. Y. Bae, H. B. Jang, C. E. Song, Chem. Commun.

2009, *46*, 7224.

[5] Y.-P. Zhu, P. Mampuys, S. Sergeyev, S. Ballet, B. U. W. Maes, *Adv. Synth. Catal.* **2017**, *359*, 2481.