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General Information

L-cysteine, L-serine, L-lysine, glutathione, glucose, 2-formylphenylboronic acid (2-FPBA), 2-
acetylphenylboronic acid (2-APBA) and fetal bovine serum were purchased from Fisher Scientific or
Sigma-Aldrich. All Fmoc protected amino acids HBTU were purchased from Chem-Impex
International or Advanced Chemtech. APBA-IA was synthesized according to previously published
protocol!. UV spectra were collected on a Nanodrop UV-vis spectrometer. NMR data were collected
on a VNMRS 500 MHz NMR spectrometer. Mass-spec data were collected on an Agilent 6230 LC-
TOF mass spectrometer. Peptide synthesis was carried out on a Tribute peptide synthesizer (Protein
Technologies) and purified by reverse phase HPLC (Waters Prep LC, Jupiter C18 Column).

Method for RP-HPLC: isocratic 100% buffer A for 10min, 100% buffer A to 60% buffer A in 30 min,
60% to 5% buffer A in 2 min, isocratic 5% buffer A for 5 min, 5% to 100% buffer A in 5 min and
isocratic buffer A for 1 min.

Buffer A: 95% nano pure water with 5% acetonitrile and 0.1% trifluoroacitic acid.

Buffer B: 5% nano pure water with 95% acetonitrile and 0.1% trifluoroacitic acid.

Method for LC/MS: isocratic 95% buffer A for 5min, 95% buffer A to 5% buffer A in 15 min, isocratic
5% buffer A for 5 min, 5% buffer A to 95% buffer A in 1 min and then isocratic 95% buffer A for 7
min.

Buffer A: nano pure water with 0.1% formic acid

Buffer B: acetonitrile with 0.1% formic acid.

Crystallographic Information

100 mM 2-FPBA or 2-APBA and 100 mM Tris were dissolved in 75% Acetonitrile/25% water in a
loosely capped 5 mL glass vial at room temperature. After a few days, crystals were observed for both

complex.



Table 1. Crystallography data and structure refinement for APBA-Tris.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 67.679x
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(l)]
R indices (all data)

Absolute structure parameter

Extinction coefficient

Largest diff. peak and hole

C12H16BNO4
C12 H16 BN O4
249.07

100(2) K
1.54178 =
Orthorhombic
Pca2,

a=11.3174Q2) = a= 900
b=13.2547(3) = b= 9000,
c=7.8913(2) = g =900,

1183.76(5) =3
4

1.398 Mg/m3

0.851 mm-1
528

0.220 x 0.130 x 0.050 mm3
3.334 to 69.7410.

-12<=h<=13, -15<=k<=16, -9<=I<=9

7352

2045 [R(int) = 0.0299]

100.0 %

Semi-empirical from equivalents
0.7533 and 0.6610

Full-matrix least-squares on F2
2045741173

1.066

R1=0.0276, wR2 = 0.0729
R1 =0.0287, wR2 = 0.0740
0.00(8)

n/a

0.250 and -0.166 e.~3




Table 2. Atomic coordinates ( X 10%) and equivalent isotropic displacement parameters (=2x 103)for

C12H16BNO4. U(eq) is defined as one third of the trace of the orthogonalized Uil tensor.

X y z U(eq)
0O(1) 3606(1) 7334(1) 5203(2) 17(1)
0(2) 7568(1) 8463(1) 4306(2) 14(1)
0(3) 6132(1) 8179(1) 2222(2) 14(1)
O(4) 3767(1) 10207(1) 2494(2) 16(1)
N(1) 5346(1) 8291(1) 5079(2) 11(1)
C@1) 4764(2) 7402(2) 5937(3) 13(1)
C(2) 5500(2) 6492(2) 5452(3) 14(1)
C@3) 5274(2) 5522(2) 6033(3) 18(1)
C4) 6059(2) 4760(2) 5588(3) 21(1)
C(5) 7038(2) 4967(2) 4578(3) 20(1)
C(6) 7234(2) 5940(2) 3990(3) 17(2)
C(7) 6465(2) 6724(1) 4432(3) 14(1)
C(8) 4878(2) 8178(1) 2174(3) 15(2)
C(9) 4479(2) 8686(2) 3818(3) 13(2)
C(10) 3311(2) 8287(2) 4477(3) 18(1)
C(11) 4677(2) 7567(2) 7833(3) 16(1)
C(12) 4569(2) 9833(2) 3731(3) 16(1)
B(1) 6528(2) 7896(2) 3923(3) 12(1)




Table 3. Crystallography data and structure refinement for FPBA-TTris.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume
Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 67.679x
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I>2sigma(l)]
R indices (all data)

Extinction coefficient

Largest diff. peak and hole

C11H14BNO4

Cl11H14B N O4

235.04

100(2) K

1.54178 =

Monoclinic

P2:/c

a=13.3622(6) = a= 9000.
b=9.2625(4) = b= 94.734(2)c0.
c = 8.6950(4) = g = 90w,
1072.49(8) =3

4

1.456 Mg/m3

0.906 mm-1
496

0.420 x 0.180 x 0.100 mm3

5.819 to 69.802c0.

0<=h<=16, -11<=k<=11, -10<=I<=10
3453

3453 [R(int) = 7]

99.2 %

Semi-empirical from equivalents
0.7533 and 0.5156

Full-matrix least-squares on F2

3453 /3 /164

1.049
R1=0.0543, wR2 = 0.1538
R1 =0.0598, wR2 = 0.1598

n/a

0.397 and -0.217 e.~-3




Table 4. Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (=2 x 103) for

C11H14BNO4. U(eq) is defined as one third of the trace of the orthogonalized Uil tensor.

X y z U(eq)
0(1) 6562(1) 3964(2) 6685(2) 30(1)
0(2) 9305(1) 6946(2) 5558(2) 28(1)
0(3) 8930(1) 6269(2) 8096(2) 27(2)
0(4) 8811(1) 1611(2) 8371(2) 27(2)
N(1) 8079(1) 4893(2) 5997(2) 24(1)
B(1) 8528(2) 6541(3) 6501(3) 26(1)
C(1) 6953(2) 4978(2) 5669(3) 28(1)
C(2) 6677(2) 6530(3) 5952(3) 29(1)
C(3) 5693(2) 7044(3) 5810(3) 35(1)
C(4) 5527(2) 8482(3) 6126(3) 37(1)
C(5) 6329(2) 9393(3) 6561(3) 33(1)
C(6) 7305(2) 8868(2) 6690(3) 30(1)
C(7) 7490(2) 7419(2) 6376(3) 27(1)
C(8) 9098(2) 4784(2) 8381(3) 26(1)
C(9) 8276(2) 3965(2) 7408(2) 25(1)
C(10) 7247(2) 3992(3) 8047(3) 29(1)
C(11) 8593(2) 2440(2) 7003(3) 26(1)




Relaxation Kinetics

The forward reaction kinetics data were fitted according to the equations of second order relaxation.
The following equations were used to calculate the relaxation constant. Equation 1 describe the reaction
mechanism, equation2 describes the second order relaxation Kinetics, equation 3 describes the

relaxation time constant t, equation 4-7 correlates the concentration of the reactants and the reaction

rates. [A], = 2 mM for FPBA and 8 mM for APBA. [AB] is the concentration of the conjugates at
equilibrium, which equals 1.6 mM for FPBA-Tris and 4.6 mM for APBA-Tris according to the

integration of NMR spectrum. [A] and [B] represent the reactant concentrations at equilibrium.

1 A + B = P [4] [A] =[B]

21y =y, +AeCHD [51 TA]+ [4B] = [A],
_ 1 _TAIBI ke

B k(A + BD o e T



2-FPBA/APBA-TTis conjugation in presence and absence of cysteine
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Figure S1. Tris conjugation with A) 2-FPBA and B) 2-APBA in the presence and absence of free
cysteine.



Toxicity of 2-APBA and 2-FPBA towards E.coli cells

E.coli cells (strain ER2738) were grown in LB media to an ODggo~ 1.0. Cells were spun down and
resuspended in PBS pH 7.4). 100uL of cells were incubated with 2-APBA (2 mM), 2-FPBA (0.5 mM),
or just PBS overnight at 4°C with gentle rocking. Cells were plated before overnight incubation to get
an initial cell count and after overnight incubation to monitor cell death. All the experiments were done
in triplicates.

1 00E+10 - Cell count

1.00E+09 -
1.00E+08 -
1.00E+07 -
1.00E+06 -
1.00E+05 -
1.00E+04 |
1.00E+03 -
1.00E+02 -
1.00E+01 -

1.00E+00
PBS (initial) PBS FPBA APBA

Figure S2. Toxicity of 2-APBA/FPBA towards E. coli cells. Neither showed significant cell killing at
the concentrations needed for efficient conjugation with Tris.

Synthesis of Tris-Alkyne
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Figure S3. Synthesis of an alkyne derivative of Tris.

Synthesis of tert-butyl (2,2-dimethyl-5-((prop-2-yn-1-ylamino)methyl)-1,3-dioxan-5-yl)carbamate (2)



1 was synthesized according to a previously reported procedure?. 1 (259 mg, 1 mmol) was dissolved
in 5 mL of ethanol, to which was added 55 mg of propargylamine. The mixture was allowed to stir for
2 hours at room temperature before the addition of 75.4 mg of NaCNBHs;. The reaction was stirred
overnight and quenched with 30 mL of water. The product was extracted by EtOAc (2 x 50 mL). The
organic layer was combined, washed with 50 mL of saturated sodium chloride and dried over sodium
sulfate. After solvent removal, the product was purified by silica column (30% EtOAc/Hexane, 1%
triethylamine) to give a yellow solid (153 mg, 51% yield). *H-NMR data suggest the product exists as
an ethanol adduct.

'H NMR (500 MHz, Chloroform-d) § 5.01 (s, 1H), 4.06 (d, J = 11.7 Hz, 2H), 3.72 — 3.61 (m, 2H), 3.39
(d, J=2.5Hz, 2H), 2.94 (s, 2H), 2.20 (t, J = 2.4 Hz, 1H), 1.47 — 1.31 (m, 15H).

13C NMR (126 MHz, Chloroform-d) & 154.94, 98.60, 98.45, 81.68, 71.66, 64.46, 64.03, 53.18, 51.85,
49.92, 38.77, 28.31, 28.27, 24.30, 22.89.

MS-ESI*: m/z calculated for CisH27N2O4 [M+H]* 299.1965, found 299.1910.

Synthesis  of  tert-butyl  (2,2-dimethyl-5-((methyl(prop-2-yn-1-yl)amino)methyl)-1,3-dioxan-5-
yl)carbamate (3)

2 (90 mg, 0.3 mmol) was dissolved in 1 mL of Acetone and placed on ice bath. KoCO; (210 mg) was
added to the solution and the mixture was stirred for 10 min. lodomethane (42.5 mg) was added and the
reaction was allowed to stir overnight at room temperature and then quenched with 50 mL of water.
The product was extracted by EtOAc (3 x 50 mL). The organic layer was combined, washed with 50
mL of saturated sodium chloride and dried over sodium sulfate. After solvent removal, the product was
purified by silica column (20% EtOAc/Hexane) to give a white solid (60 mg, 64% yield).

IH NMR (500 MHz, Chloroform-d) & 4.88 (s, 1H), 4.05 (d, J = 10.4 Hz, 2H), 3.74 (d, J = 11.6 Hz, 2H),
3.31 (d, J = 2.4 Hz, 2H), 2.85 (s, 2H), 2.40 (s, 3H), 1.42 (t, J = 15.4 Hz, 15H).

13C NMR (126 MHz, Chloroform-d) § 154.85, 98.30, 79.56, 72.68, 64.30, 56.39, 52.41, 48.14, 44.59,
24.12, 23.28.

MS-ESI*: m/z calculated for C16H29N204 [M+H]* 313.2122, found 313.2067.

Synthesis of 2-amino-2-((methyl(prop-2-yn-1-yl)amino)methyl)propane-1,3-diol (4)

3 (31 mg, 0.1 mmol ) was treated with 2 mL of 95% trifluoroacetic acid and 5% water for 1 h, twice.
After removing TFA and water over vacuum, the product was lyophilized and used without purification.
'H NMR (500 MHz, Methanol-ds) § 3.72 (d, J = 2.3 Hz, 2H), 3.69 (d, J = 2.0 Hz, 4H), 3.08 (s, 2H),
2.90 (t, J = 2.3 Hz, 1H), 2.70 (s, 3H).

13C NMR (126 MHz, Methanol-ds) & 75.78, 75.60, 60.67, 60.34, 55.60, 47.67, 43.21.a
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MS-ESI*: m/z calculated for CgH17N20, [M+H]*173.1285, found 173.1217.

Peptide Synthesis

KL31 precursor (sequence: AzidoAla-Leu-Val-Ala-Ala-Gly-Cys-NH;) was synthesized by standard
solid phase peptide synthesis on rink amide resin. Fmoc-AzidoAla-OH was synthesized according to
literature®. The peptide was cleaved off resin using 85% TFA, 5% H20, 5% phenol and 5% thioanisole
and precipitated by cold ether. The crude product was purified via RP-HPLC. 4 was clicked onto the
purified peptide with copper catalyst in water. Briefly, 4 mg of peptide was dissolved in 0.5 mL of DI
water, to which was added 3.5 mg of CuSO4e5H,0 and 2.7 mg of sodium L-ascorbate. 7 puL of 4 from
1 M stock in DMF was added to the mixture and the reaction was incubated for 30 min at room
temperature. The purified peptides were confirmed by LC/MS to confirm the identity and purity.

CD Spectrum of KL31

All the samples were filtered before experiments. The peptides were dissolve in PBS to make a 1 mM
solution. The spectra were taken at 25°C, 1 mm path length, scan 195-260 nm with 1 nm step, 10 sec
averaging time, 0.33 sec settling time. The spectra are presented as the average of triplicates with PBS

blank subtracted.

40
30
20
10
195 205 215 775 235 245 255
-10
-20
-30

-40

KL31 linear KL31 cyclic 2-APBA-Tris conjugate

Figure S4. Circular dichroism (CD) spectra of KL31 before and after APBA-IA mediated cyclization.
The spectrum of the small molecule APBA-Tris conjugate is included as a control. The peptides’ spectra
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show minima at 198 nm and 200 nm respectively, suggesting both the linear precursor and the cyclic
product primarily adopt random coil conformations.

Oxidation Kinetics of 2-APBA/FPBA

The samples were prepared in PBS buffer with 10% D,0O. The concentrations of the small molecules
and H,O, were all set at 0.5 mM. The conversion was monitored at different time points using *H-NMR.

100
S 80 1 —a— phenylboronic acid
£ —e— 2-FPBA
ye —A— D
S . 2-APBA
o
® ]
(@)}
g
c 40 4
)
(&)
9 -
[}
o 20
0 -
T T T T T ///'/ T
0 1 2 3 4 20
time (hr)

Figure S5. Oxidation kinetics of 2-APBA/FPBA in comparison to that of phenylboronic acid. Based
on these results, the apparent half-lives of phenylboronic acid, 2-FPBA, and 2-APBA are estimated to
be 0.5 hr, 4 hrs and 20 hrs respectively.
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Conjugation of 2-APBA/FPBA in Presence of H.O,
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Figure S6. Tris conjugation with 2-APBA or 2-FPBA in the presence of H.O.. All reactions were
allowed to incubate in a phosphate buffer (pH 7.4) for 20 hrs before the *H-NMR spectra were recorded.
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LC-MS of AzidoAla-Leu-Val-Ala-Gly-Cys-NH,
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LC-MS of KL31
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'H and *C NMR spectra
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