Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Synthesis of amino acid-derivatives of 5-alkoxy-3,4-dihalo-2(5*H*)-furanones and their preliminary bioactivity investigation as linker

Shi-He Luo^{*a,b*} Kai Yang^{*,*a,c*} Jian-Yun Lin^{*a*} Juan-Juan Gao^{*d*} Xin-Yan Wu^{*a*} Zhao-Yang Wang^{*,*a,b*}

^a School of Chemistry and Environment, South China Normal University; Key Laboratory of Theoretical

Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China

^b School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China

^c College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi province, 341000, P. R. China.

^d College of Sports and Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi province, 341000, P. R.

China

Table of Content

General procedure for compounds O1-O27 , S1-S16 , SO1-SO16	2
¹ H NMR, ¹³ C NMR, ESI-MS spectra of N1-N16 compounds (Figures 1-48)	3-26
References	27

General procedure for compounds O1-O27

According to previous work,¹ the mixture of 3,4-dihalo-2(5*H*)-furanone **1** (0.30 mmol) and DABCO (1.2 eq.) in alkyl alcohol (3.0 mL) was stirred at room temperature for 9 h. Once the reaction completed, the mixture was treated with saturated brine, and extracted with CH_2Cl_2 . The obtained organic layer was washed with distilled water and dried over anhydrous Na_2SO_4 . After filtration and evaporation of the solvents under reduced pressure, the residue was purified by column chromatography to give the expected product (**O1-O27**).

General procedure for compounds S1-S16

According to previous work,² the mixture of 3,4-dihalo-2(5*H*)-furanone **1** (0.30 mmol), CuI (10 mol%), and proline sodium salt (80%, added in batches) in sulfoxide (1 mL) was stirred at the required temperature (oil bath temperature, set as needed, usually 95 °C) under air for 12 h. At ambient temperature, the reaction mixture was diluted with H₂O (15 mL) and extracted with EtOAc (3×15 mL). The organic extracts were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford desired product (**S1-S16**).

General procedure for compounds SO1-SO16

According to previous work,³ the mixture of 3,4-dihalo-2(5*H*)-furanone **1** (0.30 mmol), sodium sulfinate 2 (0.60 mmol) and *n*-Bu₄NBr (3 mol %) in DCE: H₂O (v:v = 5:1, 3 mL) was stirred at 90 °C under air for 8 h. At ambient temperature, the reaction mixture was diluted with H₂O (15 mL) and extracted with EtOAc (3×15 mL). The organic extracts were dried over anhydrous Na₂SO₄. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford desired product (**SO1-SO16**).

Figure 2. ¹³C NMR spectrum of compound N1

Figure 4. ¹H NMR spectrum of compound N2

Figure 6. ESI-MS spectrum of compound N2

Figure 8. ¹³C NMR spectrum of compound N3

Figure 10. ¹H NMR spectrum of compound N4

Figure 12. ESI-MS spectrum of compound N4

Figure 14. ¹³C NMR spectrum of compound N5

Figure 16. ¹H NMR spectrum of compound N6

Figure 18. ESI-MS spectrum of compound N6

Figure 20. ¹³C NMR spectrum of compound N7

Figure 22. ¹H NMR spectrum of compound N8

Figure 24. ESI-MS spectrum of compound N8

Figure 28. ¹H NMR spectrum of compound N10

Figure 30. ESI-MS spectrum of compound N10

Figure 36. ESI-MS spectrum of compound N12

Figure 40. ¹H NMR spectrum of compound N14

Figure 42. ESI-MS spectrum of compound N14

Figure 48. ESI-MS spectrum of compound N16

References

- H.-Q. Wu, S.-H. Luo, L. Cao, H.-N. Shi, B.-W. Wang and Z.-Y. Wang, DABCO-mediated C-O bond formation from C_{sp2}-halogen bond-containing compounds and alkyl alcohols. *Asian J. Org. Chem.*, 2018, 7, 2479.
- L. Cao, S.-H. Luo, H.-Q. Wu, L.-Q. Chen, K. Jiang, Z.-F. Hao and Z.-Y. Wang, Copper(I)-catalyzed alkyl- and arylsulfenylation of 3,4-dihalo-2(5*H*)-furanones (X=Br, Cl) with sulfoxides under mild conditions. *Adv. Synth. Catal.*, 2017, 359, 2961.
- L. Cao, J.-X. Li, H.-Q. Wu, K. Jiang, Z.-F. Hao, S.-H. Luo and Z.-Y. Wang, Metal-free sulfonylation of 3,4-dihalo-2(5*H*)-furanones (X = Cl, Br) with sodium sulfinates under air atmosphere in aqueous media *via* a radical pathway. *ACS Sustainable Chem. Eng.*, 2018, 6, 4147.