Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

**Supporting Information** 

# A phototunable anion receptor for C-H...X interactions with benzoate anion

Sk. Atiur Rahaman, Munshi Sahid Hossain, Sruthy Baburaj, Ankita Biswas, Arijit Bag, Subhajit Bandyopadhyay\*

E-mail: sb1@iiserkol.ac.in

#### Table of Contents

### Page

| Figure S1. <sup>1</sup> H NMR of <b>1</b> upon exposure at 366 nm UV light                                                                 | S3      |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Figure S2. Blank UV-vis titration of 1 with anions                                                                                         | S3      |
| Figure S3. UV-vis absorption spectrum of 1•PhCOO <sup>-</sup> with upon addition of water                                                  | S4      |
| Figure S4. Fluorescence UV-vis Job's plots for benzoate bound receptor 1                                                                   | S4      |
| Figure S5. UV-vis absorption titration spectra of compound <b>1</b> with CIO <sub>4</sub> <sup>-</sup> , F <sup>-</sup> , OAc <sup>-</sup> | S4      |
| Figure S6–S8. Non-linear data fitting for determination of binding constant                                                                | S5–S6   |
| Calculation value of host-guest binding stoichiometry from non-linear data fitting                                                         | S6      |
| Figure S9. NMR titration of receptor 1 with benzoate                                                                                       | S7      |
| Figure S10. NMR titration of photocycloaddition 1' with benzoate                                                                           | S7      |
| Figure S11–S12. <sup>1</sup> H– <sup>1</sup> H 2D NOESY spectrum                                                                           | S8      |
| Figure S13–S14. UV-vis titration of photocycloaddition 1' with anions                                                                      | S9      |
| Figure S16. Calculated energy minimized structures and the distance                                                                        | S10     |
| Figure S17. Calculated charge distribution of the 1•PhCOO <sup>-</sup>                                                                     | S11     |
| Figure S18. Molecular orbital pictures of 1•PhCOO <sup>-</sup>                                                                             | S11     |
| Figure S19. Calculated UV-vis spectra of 1                                                                                                 | S12     |
| Figure S20. Reversible UV-vis absorption spectra of photocycloaddition 1'                                                                  | S12     |
| Figure S21. ESI Mass                                                                                                                       | S13     |
| Figure S22. <sup>1</sup> H-NMR spectrum of compound <b>2</b>                                                                               | S13     |
| Figure S23. <sup>13</sup> C-NMR spectrum of compound <b>2</b>                                                                              | S14     |
| Figure S24. <sup>1</sup> H-NMR spectrum of compound <b>1</b>                                                                               | S14     |
| Figure S25. <sup>13</sup> C-NMR spectrum of compound 1                                                                                     | S15     |
| Figure S26. FT-IR spectra of 1                                                                                                             | S15     |
| DFT computational results                                                                                                                  | S15–S19 |



Figure S1. <sup>1</sup>H NMR of 1 (10<sup>-4</sup> M) upon exposure at 366 nm UV light in CDCl<sub>3</sub> at 25 °C.



**Figure S2**. The changes in the UV-vis absorption spectra of ligand **1** (10  $\mu$ M) upon titration with anions (100  $\mu$ M) and anions (benzoate, perchlorate, fluoride, acetate: 100  $\mu$ M each) without the receptor in CH<sub>3</sub>CN media with 1% DMSO as a co-solvent at 25 °C.



**Figure S3**. The changes in the UV-vis absorption spectrum of ligand 1⊂PhCOO<sup>-</sup> with upon addition of a trace amount of water in CH<sub>3</sub>CN media at 25 °C.



Figure S4. Fluorescence UV-vis Job's plots for benzoate bound receptor 1.



**Figure S5**. UV-vis absorption spectra of compound **1** (10  $\mu$ M) upon addition of 0 to 100  $\mu$ M of (A) ClO<sub>4</sub><sup>-</sup>, (B) F<sup>-</sup>, (C) OAc<sup>-</sup>.



**Figure S6**. Determination of the binding constant for the benzoate-bound receptor  $1 \subset CIO_4^-$ . (Non-linear data fitting of the absorbance data obtained from the titration). The value of the binding constant was  $2.17 \times 10^4 \text{ M}^{-1}$ .



**Figure S7**. Determination of the binding constant for the benzoate-bound receptor  $1 \subset F^-$ . (Non-linear data fitting of the absorbance data obtained from the titration). The value of the binding constant was 2.61 × 10<sup>4</sup> M<sup>-1</sup>.



**Figure S8**. Determination of the binding constant for the benzoate-bound receptor  $1 \subset OAc^-$ . (Non-linear data fitting of the absorbance data obtained from the titration). The value of the binding constant was  $2.8 \times 10^4$  M<sup>-1</sup>.

The Bindfit software for data analysis were used from *supramolecular.org* .

The constants  $K^{11}$  from the 1:1 binding data<sup> $\zeta$ </sup>

|                      | Parameter (bounds) | Optimised (M <sup>-1</sup> ) | Error (%) |
|----------------------|--------------------|------------------------------|-----------|
| 1⊂PhCOO <sup>-</sup> | K (0 <b>→</b> ∞)   | 28632.52                     | ± 10.91   |
| 1⊂ClO₄ <sup>−</sup>  | K (0 <b>→</b> ∞)   | 21719.72                     | ± 7.42    |
| 1⊂OAc <sup>−</sup>   | K (0 <b>→</b> ∞)   | 28006.12                     | ± 11.21   |
| 1⊂F <sup>-</sup>     | K (0 <b>→</b> ∞)   | 26117.54                     | ± 11.43   |

<sup>ζ</sup>A 1:2 binding model was ignored because of the large errors associated with the fitting of the binding model.



**Figure S9.** <sup>1</sup>H NMR titration of **1** (10<sup>-4</sup> M) upon addition of TBA benzoate in CD<sub>3</sub>CN at 25 °C. (See Figure 5, Main text for the peak assignments)



Figure S10. <sup>1</sup>H NMR titration of photocycloaddition 1' (10<sup>-4</sup> M) upon addition of TBA benzoate in CDCl<sub>3</sub> at 25 °C.



**Figure S11.** <sup>1</sup>H–<sup>1</sup>H 2D NOESY NMR spectrum in CD<sub>3</sub>CN (instrument frequency 500 MHz) at 25 °C of  $1 \subset PhCOO^{-1}$ .



Figure S12. <sup>1</sup>H–<sup>1</sup>H 2D NOESY NMR (500 MHz) spectrum in CD<sub>3</sub>CN at 25 °C of 1⊂PhCOO<sup>-</sup>.



**Figure S13.** Change in the absorbance at absorbance at 275 nm upon the addition of 0-10 equiv. of ClO<sub>4</sub><sup>-</sup> to the photocycloaddition adduct **1**' (10  $\mu$ M) (inset: The absorption spectra of **1**' with the addition of 0-10 equiv. of ClO<sub>4</sub><sup>-</sup>).



**Figure S14.** Change in the absorbance at absorbance at 275 nm upon the addition of 0-10 equiv. of F<sup>-</sup> to the photocycloaddition adduct **1**' (10 µM) (inset: The absorption spectra of **1**' with the addition of 0-10 equiv. of F<sup>-</sup>).



**Figure S15.** Change in the absorbance at absorbance at 275 nm upon the addition of 0-10 equiv. of OAc<sup>-</sup> to the photocycloaddition adduct **1**' (10  $\mu$ M) (inset: The absorption spectra of **1**' with the addition of 0-10 equiv. of OAc<sup>-</sup>).



**Figure S16.** (a) The calculated energy minimized structures and the distance (Å) of (a) the probe **1** and (b) the PhCOO<sup>-</sup> bound **1** obtained from the DFT studies with 6-311G basis.



**Figure S17.** The calculated energy minimized structures and the charge distribution of the PhCOO<sup>-</sup> bound **1** obtained using from the DFT calculation with 6-311G basis. The numbers and the signs next to the atoms imply the respective partial charges on the atoms.



**Figure S18.** The molecular orbitals and energies for the HOMO-1, HOMO of the **1**•PhCOO<sup>-</sup> useing with 6-311G basis.



**Figure S19**. The calculated UV-vis spectrum of 1⊂PhCOO<sup>-</sup> in CH<sub>3</sub>CN using B3LYP/6-311G(d) method.



Figure S20. Reversal of 1' (10 µM) to 1 upon radiation at 254 nm in CH<sub>3</sub>CN at 25 °C.



Figure S22. <sup>1</sup>H-NMR spectrum of compound **2** in CDCl<sub>3</sub> at 25 °C.

1.5845



Figure S24. <sup>1</sup>H-NMR spectrum of compound 1 in CDCl<sub>3</sub> at 25 °C with 400 MHz.





#### DFT computational results:

Cartesian coordinates (X, Y, Z) table and the free energies in atomic unit (a.u.) for the optimized structure of the receptor 1 calculated by DFT methods at the B3LYP/6-31G(d) level.

Receptor **1** E = -2326.41217863 a.u.

Atom X Y Z C 1.326300000 -8.333100001 1.076700000

| 0      | -1.039700000 | -7.059800001               | 0.638900000  |
|--------|--------------|----------------------------|--------------|
| С      | 2.523300000  | -1.042100000               | -1.440300000 |
| С      | -2.571700000 | -1.098400000               | -1.428700000 |
| С      | 7.410600001  | 0.180400000                | -0.890200000 |
| С      | -7.483000001 | 0.025500000                | -0.879600000 |
| 0      | 1.243000000  | -6.943400001               | 0.590500000  |
| 0      | 2.453600000  | -2.447700000               | -0.988400000 |
| 0      | -2.469600000 | -2.501200000               | -0.974000000 |
| С      | 7.052400001  | 5.327100001                | -1.514000000 |
| С      | 7.991400001  | 0.919400000                | 4.262200001  |
| С      | -7.194600001 | 5.176300001                | -1.504100000 |
| С      | -8.101600001 | 0.758700000                | 4.269600001  |
| C      | 6.967100001  | 4.199900001                | -2.382300000 |
| C      | 7 908700001  | -0.230000000               | 3 422600000  |
| C      | -7 090700001 | 4 050100000                | -2 371600000 |
| C<br>C | -7 998400001 | -0 389800000               | 3 431200000  |
| c<br>c | 7 2/8/00001  | 5 1/0700001                | -0 170600000 |
| c<br>c | 7.883700001  | 2 170300000                | 3 715200000  |
| c<br>c | 7 303200001  | 2.170300000<br>1 987800001 | 0.161400000  |
| C<br>C | -7.393800001 | 4.987800001                | 2 722500000  |
| C<br>C | 7 092900001  | 2.010700000                | 1 90200000   |
| C<br>C | 7.063600001  | 2.922300000                | -1.692900000 |
| C<br>C | 7.728100001  | -0.102800000               | 2.068300000  |
| C<br>C | -7.192200001 | 2.771200000                | -1.882100000 |
| C      | -7.812200001 | -0.260800000               | 2.077800000  |
| C      | -0.008900000 | -2.372000000               | -1.011400000 |
| C      | 1.233300000  | -4.348900001               | -0.314900000 |
| C      | -1.200700000 | -4.3/3600001               | -0.307700000 |
| (      | -4.9/1500001 | -0.468/00000               | -0.651000000 |
| C      | 7.571700001  | 3.629300000                | 1.754000000  |
| C      | -/./05600001 | 3.4/2900000                | 1.762200000  |
| N      | -4.60//00001 | -0./95800000               | -2.838600000 |
| С      | -0.005200000 | -6.412300001               | 0.408300000  |
| С      | 3.953300000  | -0.696300000               | -1.606900000 |
| С      | -4.009100000 | -0.784600000               | -1.594800000 |
| С      | 1.205300000  | -3.031700000               | -0.778300000 |
| С      | -1.207800000 | -3.057500000               | -0.771100000 |
| С      | 0.023600000  | -5.014600001               | -0.082200000 |
| С      | 7.432100001  | 1.371800000                | 0.047600000  |
| С      | -7.526300001 | 1.216700000                | 0.057800000  |
| Ν      | 5.838000001  | -0.368700000               | -2.716900000 |
| Ν      | -6.122500001 | -0.299000000               | -1.353600000 |
| С      | 7.373200001  | 3.824800000                | 0.382300000  |
| С      | 7.690000001  | 2.349700000                | 2.306100000  |
| С      | -7.503300001 | 3.670500000                | 0.391500000  |
| С      | -7.809400001 | 2.192100000                | 2.314400000  |
| С      | 7.298200001  | 2.675800000                | -0.494300000 |
| С      | 7.615900001  | 1.186700000                | 1.441500000  |
| С      | -7.408600001 | 2.522300000                | -0.484300000 |
| С      | -7.714600001 | 1.029800000                | 1.450800000  |
| Ν      | 4.551600001  | -0.692300000               | -2.850900000 |
| Ν      | 6.056400001  | -0.168500000               | -1.365100000 |
| С      | 4.909300001  | -0.363000000               | -0.662600000 |
| Ν      | -5.900300001 | -0.498100000               | -2.705000000 |
| Н      | 2.387500000  | -8.536800001               | 1.146400000  |

| Н | 0.846000000  | -9.003200001 | 0.368300000  |
|---|--------------|--------------|--------------|
| Н | 0.848300000  | -8.415100001 | 2.049400000  |
| Н | 2.010600000  | -0.943300000 | -2.396800000 |
| Н | 2.038000000  | -0.408900000 | -0.696800000 |
| Н | -2.099800000 | -0.452900000 | -0.687200000 |
| Н | -2.062500000 | -0.990200000 | -2.386100000 |
| Н | 7.984900001  | 0.378600000  | -1.791100000 |
| Н | 7.846300001  | -0.701200000 | -0.431900000 |
| Н | -8.060300001 | 0.213400000  | -1.781000000 |
| Н | -7.903100001 | -0.863700000 | -0.421500000 |
| Н | 6.958800001  | 6.324100001  | -1.922000000 |
| Н | 8.136200001  | 0.795100000  | 5.326400001  |
| Н | -7.112700001 | 6.174400001  | -1.912000000 |
| Н | -8.250600001 | 0.633000000  | 5.333100001  |
| Н | 6.804300001  | 4.356300001  | -3.440100000 |
| Н | 7.988100001  | -1.214900000 | 3.862200000  |
| Н | -6.926000001 | 4.208300001  | -3.428800000 |
| Н | -8.066500001 | -1.375600000 | 3.870900000  |
| Н | 7.311500001  | 5.987600001  | 0.500700000  |
| Н | 7.940500001  | 3.052500000  | 4.339800001  |
| Н | -7.471300001 | 5.834000001  | 0.509200000  |
| Н | -8.080500001 | 2.892400000  | 4.346300001  |
| Н | 6.992800001  | 2.092100000  | -2.576900000 |
| Н | 7.665200001  | -1.001000000 | 1.472600000  |
| Н | -7.087800001 | 1.942200000  | -2.565600000 |
| Н | -7.733600001 | -1.158400000 | 1.483100000  |
| Н | -0.020700000 | -1.358100000 | -1.372500000 |
| Н | 2.180000000  | -4.833500001 | -0.144500000 |
| Н | -2.132200000 | -4.886500001 | -0.128400000 |
| Н | -4.914800001 | -0.354800000 | 0.414300000  |
| Н | 7.631900001  | 4.491900001  | 2.406400000  |
| Н | -7.780900001 | 4.334900001  | 2.413900000  |
| Н | 4.850700001  | -0.253100000 | 0.403000000  |

## Cartesian coordinates of the benzoate bound receptor

Benzoate bound receptor **1** : E = -2746.57466142 a.u.

| Ato | om X         | Y            | Z            |
|-----|--------------|--------------|--------------|
| С   | 10.909800001 | -0.444600000 | -0.426500000 |
| 0   | 9.358800001  | 1.777100000  | -0.659600000 |
| С   | 3.415100000  | -2.127300000 | 0.955700000  |
| С   | 3.078400000  | 2.962000000  | 0.311800000  |
| С   | -0.042200000 | -5.620600001 | -0.025800000 |
| С   | -1.167100000 | 5.389400001  | -0.954400000 |
| 0   | 9.447800001  | -0.468600000 | -0.241400000 |
| 0   | 4.839900001  | -1.994200000 | 0.568600000  |
| 0   | 4.429500001  | 2.826500000  | -0.302300000 |
| С   | -2.897100000 | -3.873100000 | 3.953500000  |
| С   | -4.234000001 | -5.172700001 | -3.131500000 |
| С   | -3.942700000 | 5.770800001  | 3.221900000  |
| С   | -4.530900001 | 2.248700000  | -3.174900000 |
| С   | -1.532200000 | -4.246900001 | 3.782300000  |
| С   | -2.875100000 | -5.551500001 | -3.338200000 |
| С   | -2.698100000 | 6.335500001  | 2.816300000  |

| С | -3.287100000 | 2.793200000  | -3.610700000 |
|---|--------------|--------------|--------------|
| С | -3.754700000 | -3.913400000 | 2.885300000  |
| С | -4.651700001 | -4.792100001 | -1.884100000 |
| С | -4.621700001 | 4.935000001  | 2.374200000  |
| С | -5.016300001 | 2.569400000  | -1.935100000 |
| С | -1.060400000 | -4.654800001 | 2.559100000  |
| С | -1.976600000 | -5.547100001 | -2.301200000 |
| С | -2.167400000 | 6.058300001  | 1.580600000  |
| С | -2.568900000 | 3.642000000  | -2.807000000 |
| С | 4.535500001  | 0.413600000  | 0.173000000  |
| С | 6.728900001  | -0.653000000 | 0.119100000  |
| С | 6.525300001  | 1.736700000  | -0.297100000 |
| С | 0.740600000  | 3.747000000  | -0.435800000 |
| С | -4.175300000 | -4.369700001 | 0.496500000  |
| С | -4.794200001 | 3.767200000  | 0.206500000  |
| Ν | 2.162800000  | 5.306000001  | 0.339400000  |
| С | 8.773300001  | 0.715700000  | -0.385700000 |
| C | 2.651000000  | -3.337800000 | 0.576900000  |
| C | 2.009300000  | 3.958200000  | 0.079900000  |
| C | 5 343500001  | -0 723000000 | 0 292300000  |
| C | 5.143700001  | 1.642300000  | -0.121700000 |
| C | 7.313300001  | 0.582600000  | -0.185100000 |
| C | -1 474200000 | -5 145800001 | 0 133900000  |
| C | -2 333900000 | 4 895200001  | -0.635000000 |
| N | 2 333700000  | -5 490500001 | 0.175000000  |
| N | 0 164400000  | 4 977300001  | -0 473300000 |
| C | -3 303300000 | -4 329600001 | 1 590500000  |
| C | -3 745700000 | -4 768100001 | -0 773400000 |
| C | -4 103600000 | 4 618900001  | 1 076200000  |
| C | -4 297100001 | 3 449500000  | -1.061400000 |
| C | -1 921400000 | -4 721300001 | 1 411200000  |
| C | -2 363600000 | -5 163000001 | -0.970600000 |
| C | -2 845500000 | 5 196000001  | 0.653400000  |
| C | -3.036000000 | 4 018000000  | -1 500000000 |
| N | 3 225500000  | -4 593800001 | 0.596000000  |
| N | 1 175200000  | -4 790800001 | -0 116400000 |
| C | 1 348500000  | -3 463800000 | 0 124700000  |
| N | 1.040800000  | 5 943500001  | 0.003600000  |
| C | -4 114200000 | -1 613500000 | 0 409200000  |
| C | -2 776600000 | -1 516100000 | 0.015400000  |
| C | -2 197900000 | -0.264900000 | -0.246200000 |
| C | -2 983100000 | 0 889400000  | -0 102500000 |
| C | -4 322100001 | 0 795300000  | 0.285300000  |
| C | -4 891400001 | -0.457200000 | 0.543200000  |
| C | -0.846000000 | -0.118500000 | -0 559000000 |
| 0 | -0 407100000 | 1 356100000  | -0 747200000 |
| 0 | -0.103000000 | -1 473300000 |              |
| н | 11 224500001 | -1 468100000 | -0.264300000 |
| н | 11 366200001 | 0.223300000  | 0.299700000  |
| Н | 11.151900001 | -0.117800000 | -1.434700000 |
| н | 3.348400000  | -2.108300000 | 2.04400000   |
| н | 2 842100000  | -1 293400000 | 0 553100000  |
| н | 2.482800000  | 2.071300000  | 0.113800000  |
| Н | 3.221700000  | 3.090200000  | 1.385300000  |
|   |              |              |              |

| Н | 0.119900000  | -6.267600001 | 0.831900000  |
|---|--------------|--------------|--------------|
| Н | -0.077900000 | -6.264600001 | -0.898300000 |
| Н | -1.254100000 | 6.439500001  | -0.687100000 |
| Н | -1.166300000 | 5.344000001  | -2.038600000 |
| Н | -3.246700000 | -3.556700000 | 4.926500001  |
| Н | -4.925200001 | -5.185500001 | -3.962900000 |
| Н | -4.341700001 | 6.003100001  | 4.199700001  |
| Н | -5.081300001 | 1.583500000  | -3.825900000 |
| Н | -0.860400000 | -4.203100001 | 4.628700001  |
| Н | -2.550100000 | -5.843600001 | -4.327500001 |
| Н | -2.164800000 | 6.986700001  | 3.495600000  |
| Н | -2.904900000 | 2.528500000  | -4.587200001 |
| Н | -4.792900001 | -3.628900000 | 2.999300000  |
| Н | -5.678800001 | -4.496900001 | -1.712000000 |
| Н | -5.565500001 | 4.495600001  | 2.670700000  |
| Н | -5.956600001 | 2.160800000  | -1.587700000 |
| Н | -0.015300000 | -4.907600001 | 2.462300000  |
| Н | -0.956600000 | -5.835400001 | -2.505300000 |
| Н | -1.211900000 | 6.485000001  | 1.315700000  |
| Н | -1.626900000 | 4.020600000  | -3.173300000 |
| Н | 3.460600000  | 0.337400000  | 0.240500000  |
| Н | 7.325200001  | -1.545000000 | 0.216600000  |
| Н | 6.975800001  | 2.690300000  | -0.522900000 |
| Н | 0.269700000  | 2.816800000  | -0.723200000 |
| Н | -5.210000001 | -4.080600000 | 0.635600000  |
| Н | -5.737700001 | 3.340300000  | 0.524700000  |
| Н | 0.575900000  | -2.735000000 | -0.028600000 |
| Н | -4.548100001 | -2.583800000 | 0.611900000  |
| Н | -2.164600000 | -2.399900000 | -0.090600000 |
| Н | -2.525600000 | 1.848200000  | -0.298000000 |
| Н | -4.918500001 | 1.692600000  | 0.389000000  |
| Н | -5.927800001 | -0.531400000 | 0.845900000  |