Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

Tight-binding Inhibition of Jack bean α -Mannosidase by Glycoimidazole Clusters

Maëva M. Pichon, Fabien Stauffert, Anne Bodlenner, and Philippe Compain*

Tables of contents

(copies of ¹ H NMR, ¹³ C NMR and HRMS spectra	5
	Fig S1. ¹ H NMR (400 MHz, CDCl3) spectrum of compound 9a	5
	Fig S2. ¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 9a	5
	Fig S3. HRMS (ESI-MS) spectrum of compound 9a	6
	Fig S4. ¹ H NMR (400 MHz, CDCl₃) spectrum of compound 9b	6
	Fig S5. ¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 9b	7
	Fig S6. HRMS (ESI-MS) spectrum of compound 9b	7
	Fig S7. ¹ H NMR (400 MHz, CDCl₃) spectrum of compound 10a	8
	Fig S8. ¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 10a	8
	Fig S9. HRMS (ESI-MS) spectrum of compound 10a	9
	Fig S10. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 10b	9
	Fig S11. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 10b	. 10
	Fig S12. HRMS (ES-MS) spectrum of compound 10b	. 10
	Fig S13. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 11a	. 11
	Fig S14. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 11a	. 11
	Fig S15. HRMS (ESI-MS) spectrum of compound 11a	. 12
	Fig S16. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 11b	. 12
	Fig S17. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 11b	. 13
	Fig S18. HRMS (ESI-MS) spectrum of compound 11b	. 13
	Fig S19. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 12a	. 14
	Fig S20. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 12a	. 14
	Fig S21. HRMS (ESI-MS) spectrum of compound 12a	. 15
	Fig S22. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 12b	. 15
	Fig S23. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 12b	. 16
	Fig S24. HRMS (ESI-MS) spectrum of compound 12b	. 16
	Fig S25. ¹ H NMR (400 MHz, CD ₃ OD) spectrum of compound 13a	. 17
	Fig S26. ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of compound 13a	. 17
	Fig S27. HRMS (ESI-MS) spectrum of compound 13a	. 18
	Fig S28. ¹ H NMR (400 MHz, CD ₃ OD) spectrum of compound 13b	. 18
	Fig S29. ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of compound 13b	. 19
	Fig S30. HRMS (ESI-MS) spectrum of compound 13b	. 19
	Fig S31. ¹ H NMR (300 MHz, CDCl₃) spectrum of compound 16a	. 20
	Fig S32. ¹³ C NMR (75 MHz, CDCl ₃) spectrum of compound 16a	. 20
	Fig S33. ¹ H NMR (400 MHz, CDCl₃) spectrum of compound 17a	. 21
	Fig S34. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 18a	. 21
	Fig S35. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 18a	. 22
	Fig S36. HRMS (ESI-MS) spectrum of compound 18a	. 22
	Fig S37. ¹ H NMR (400 MHz, CDCl ₃) spectrum of compound 18b	. 23
	Fig S38. ¹³ C NMR (100 MHz, CDCl ₃) spectrum of compound 18b	. 23
	Fig S39. HRMS (ESI-MS) spectrum of compound 18b	. 24
	Fig S40. ¹ H NMR (500 MHz, CD ₃ OD) spectrum of compound 19a	. 24
	Fig S41. ¹³ C NMR (125 MHz, CD₃OD) spectrum of compound 19a	. 25
	Fig S42. HRMS (ESI-MS) spectrum of compound 19a	. 25

Fig S43. ¹ H NMR (500 MHz, CD₃OD) spectrum of compound 19b	. 26
Fig S44. ¹³ C NMR (125 MHz, CD₃OD) spectrum of compound 19b	26
Fig S45. HRMS (ESI-MS) spectrum of compound 19b	27
Fig S46. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 20a	27
Fig S47. ¹³ C NMR (125 MHz, CDCl₃) spectrum of compound 20a	28
Fig S48. HRMS (ESI-MS) spectrum of compound 20a	28
Fig S49. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 20b	29
Fig S50. ¹³ C NMR (125 MHz, CDCl₃) spectrum of compound 20b	29
Fig S51. HRMS (ESI-MS) spectrum of compound 20b	30
Fig S52. ¹ H NMR (500 MHz, CD₃OD) spectrum of compound 21a	30
Fig S53. ¹³ C NMR (125 MHz, CD₃OD) spectrum of compound 21a	31
Fig S54. HRMS (ESI-MS) spectrum of compound 21a	31
Fig S55. ¹ H NMR (500 MHz, CD₃OD) spectrum of compound 21b	32
Fig S56 ¹³ C NMR (125 MHz, CD ₃ OD) spectrum of compound 21b	32
Fig S57. HRMS (ESI-MS) spectrum of compound 21b	33
Fig S58. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 22a	33
Fig S59. ¹³ C NMR (125 MHz, CDCl₃) spectrum of compound 22a	34
Fig S60. HRMS (ESI-MS) spectrum of compound 22a	34
Fig S61. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 22b	35
Fig S62. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 22	35
Fig S63. HRMS (ESI-MS) spectrum of compound 22b	36
Fig S64. ¹ H NMR (500 MHz, CD₃OD) spectrum of compound 23a	36
Fig S65. ¹³ C NMR (125 MHz, CD ₃ OD) spectrum of compound 23a	37
Fig S66. HRMS (ESI-MS) spectrum of compound 23a	37
Fig S67. ¹ H NMR (500 MHz, CD₃OD) spectrum of compound 23b	38
Fig S68. ¹³ C NMR (125 MHz, CD ₃ OD) spectrum of compound 23b	38
Fig S69. HRMS (ESI-MS) spectrum of compound 23b	39
Fig S70. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 25a	39
Fig S71. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 25a	40
Fig S72. HRMS (ESI-MS) spectrum of compound 25a	40
Fig S73. ¹ H NMR (500 MHz, CDCl₃) spectrum of compound 25b	41
Fig S74. ¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound 25b	41
Fig S75. HRMS (ESI-MS) spectrum of compound 25b	42
Fig S76. ¹ H NMR (500 MHz, DMSO-d ₆) spectrum of compound 26a	42
Fig S77. ¹³ C (125 MHz, DMSO-d ₆) and DEPT spectra of compound 26a	43
Fig S78. HRMS (ESI-MS) spectrum of compound 26a	43
Fig S79. ¹ H NMR (500 MHz, DMSO-d ₆) spectrum of compound 26b	44
Fig S80. ¹³ C NMR (125 MHz, DMSO-d ₆) spectrum of compound 26b	44
Fig S81. HRMS (ESI-MS) spectrum of compound 26b	. 45
Inhibition assays against Jack Bean α -mannosidase	.46
Fig S82. Dixon plot and replot of compound 13a	46
Fig S83. Lineweaver Burk plot and replot for K_i determination (2.23±0.13 μ M) of compound 13a	46

Fig S86. Dixon plot and replot of compound 19a	48
Fig S87. Lineweaver Burk plot and replot for K_i determination (0.49±0.64 μ M) of compound 19a	48
Fig S88. Dixon plot and replot of compound 19b	49
Fig S89. Lineweaver Burk plot and replot for K_i determination (0.037±0.007 μ M) of compound 19b	49
Fig S90. Dixon plot and replot of compound 21a	50
Fig S91. Lineweaver Burk plot and replot for K_i determination (0.25±0.03 μ M) of compound 21a	50
Fig S92. Dixon plot of compound 21b	51
Fig S93. Lineweaver Burk plot and replot of compound 21b	51
Fig S94. Plot of enzyme velocity as a function of inhibitor 21b concentration	51
Fig S95. Dixon plot and replot of compound 23a	52
Fig S96. Lineweaver Burk plot, slope and intercept replots of reciprocal plot data for K_i determination ($K_i = 0.21 \pm 0.05$ $K_i' = 1.00 \pm 0.096 \mu$ M) of compound 23a	μM; 52
Fig S97. Dixon plot of compound 23b	53
Fig S98. Lineweaver Burk plot and replot of compound 23b	53
Fig S99. Plot of enzyme velocity as a function of inhibitor 23b concentration	53
Fig S100. Plot of enzyme velocity as a function of inhibitor 26a concentration	54
Fig S101. Plot of enzyme velocity as a function of inhibitor 26b concentration	54

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 675.297071 1 C42H44CIN2O4 675.298412
 2.0
 3.4 21.5
 ok even
 8.1
 7.8
 n.a.
 n.a.
 n.a.
 n.a.

		Mass Sp	ectrum HR Re	eport		
Analysis Info				Acquisition Date	1/10/2018 3:39:4	15 PM
Analysis Name Method Sample Name Comment	D:\Data\SMasse\2018\0 Tune_pos_Mid.m MP0263 Pur	1_Janvier2018\F01502SK	.d	Operator Instrument	BDAL@DE micrOTOF II	8213750.1045 1
Acquisition Para	meter			Set Corrector Fill	59.0 V	
Source Type	ESI	Ion Polarity	Positive	n/a	n/a	
n/a Seen Benin	n/a 50 m/a	n/a	n/a	n/a Sat Deflector	n/a	
Scan Begin Scan End	3000 m/z	n/a p/a	n/a n/a	Set Flight Tube	1800.0 V 8600.0 V	
	0000 11/2	n/a	n/a	Set Detector TO	= 1953.3 V	
Intens						+MS, 0.0-0.1min #2-3
1.0-		675.2988				
0.8						
0.6-		676 2020 -				
0.4		676.3028 6	77.2984			
0.2			678.3006			
×109-			ЛЛ			Ca2Ha4CIN2Oa, 675.2984
		1+ 675 2984				
1.0-		073.2304				
0.8-		1.				
0.6		676.3017 6	1+ 77,2979			
0.4			1+			
0.2-			678.2998 1+			
0.0	672 67	74 676	678	680 682	684	686 m/z

 Meas. m/z # Ion Formula
 m/z err [ppm]
 Mean err [ppm]
 rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 675.298793
 1 C42H44CIN2O4
 675.298412
 -0.6
 -1.1
 21.5
 ok even
 5.8
 6.1
 n.a.
 <td

Fig S6. HRMS (ESI-MS) spectrum of compound 9b

Fig S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **10a**

Fig S9. HRMS (ESI-MS) spectrum of compound 10a

Fig S12. HRMS (ES-MS) spectrum of compound 10b

Fig S14. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound **11a**

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 494.224166 1 C22H32N508
 0.8
 0.1
 9.5
 ok even
 1.4
 2.2
 n.a.
 n.a.
 n.a.
 n.a.

		Mass S	Spectrum HR Re	eport		
Analysis Info				Acquisition Date	3/28/2018 3:03:3	6 PM
Analysis Name Method Sample Name Comment	D:\Data\SMasse\2018\03_1 Tune_pos_Standard.m MP0298	Mars 2018\F02017Sh	<.d	Operator Instrument	BDAL@DE micrOTOF II	8213750.1045 1
Acquisition Paran	neter			Set Corrector Fill	59.0 V	
Source Type n/a Scan Begin Scan End	ESI n/a 50 m/z 3000 m/z	lon Polarity n/a n/a n/a n/a	Positive n/a n/a n/a n/a	n/a n/a Set Reflector Set Flight Tube Set Detector TOF	n/a n/a 1800.0 V 8600.0 V 1953.3 V	
Intens x10 ⁵ 0.8-		494.2251				+MS, 0.0-0.1min #2-3
0.6- 0.4-						
0.2			495.2283			
×109-						C ₂₂ H ₃₂ N ₅ O ₈ , 494.2245
0.8-		494.2245				
0.6-						
0.4-			1+			
0.2-		1	496.2298			
0.0-	492	494	496	498	500	m/z

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e⁻ Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 494.225051 1 C22H32N508 494.224539
 -1.0
 -0.3 9.5
 ok even
 5.0
 8.9
 n.a.
 n.a.
 n.a.
 n.a.

Fig S18. HRMS (ESI-MS) spectrum of compound 11b

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 560.272013 1 C27H38N508
 560.271490
 -0.9
 -0.7 11.5
 ok even
 1.7
 2.9
 n.a.
 n.a.
 n.a.
 n.a.

Fig S21. HRMS (ESI-MS) spectrum of compound 12a

Analysis Name D:\Data\SMasse\2018\03_Mars 2018\F01875SK.d Operator BDAL@DE Method Tune_pos_Standard.m Operator BDAL@DE Sample Name MP0285 PUR Instrument micrOTOF II 8213750. Comment 1 Acquisition Parameter Set Corrector Fill 59.0 V 1 Scan Begin 50 m/z n/a n/a n/a n/a n/a Scan End 3000 m/z n/a n/a n/a set Detector 1800.0 V Intenset 3000 m/z n/a n/a n/a set Piletor 1800.0 V Scan End 3000 m/z n/a n/a set Detector TOF 1953.3 V Intenset 280.6399 281.6424 280.6399 4M5,0.0-0.1m 125 280.6394 281.6424 280.6394 24 C ₂₁ H ₃₉ N ₅ O ₆ , 28 1003 24 24 24 C ₂₁ H ₃₉ N ₅ O ₆ , 28 24 C ₂₁ H ₃₉ N ₅ O ₆ , 28 1003 24 24 24 24 24 24	Andrysis into				Acquisition Date	3/9/2018 9:52:13	AM
Method Tune_pos_Standard.m. Operator BDAL@DE Sample Name MP0285 PUR Instrument micrOTOF II 8213750. Comment Acquisition Parameter Set Corrector Fill 50.0 V 1 Source Type ESI Ion Polarity Positive n/a n/a n/a Scan Begin 50 m/z n/a n/a n/a n/a n/a Scan End 3000 m/z n/a n/a set Reflector 1800.0 V Intens x104 n/a set Reflector 1953.3 V +MS, 0.0-0.1m Intens 280 6399 281.1414 281.6424 - - 0.25 280 6394 24 - - - 1.00 0.75 0.50 0.25 - - - 0.25 280 6394 24 - - - 0.25 280 6394 - - - - 0.25 280 6394 - - - - 0.25 24 281.442 - - - 0.25 24 24 - - - 0.25 24 24 - - -	Analysis Name	D:\Data\SMasse\2018\0	3 Mars 2018\F01875S	K.d	/ loquionion Buto	0.012010 0.02.10	
Sample Name MP0285 PUR Instrument micrOTOF II 8213750. Comment Set Corrector Fill 59.0 V 1 Acquisition Parameter Set Corrector Fill 59.0 V 1 Source Type ESI Ion Polarity Positive n/a n/a n/a Name N/a	Method	Tune_pos_Standard.m			Operator	BDAL@DE	
Comment Set Corrector Fill 59,0 V Acquisition Parameter Ion Polarity Positive n/a n/a Source Type ESI Ion Polarity Positive n/a n/a n/a n/a n/a n/a n/a n/a Scan Begin 50 miz n/a n/a n/a n/a Scan End 3000 m/z n/a n/a n/a Set Reflector 1800.0 V Scan End 3000 m/z n/a n/a n/a Set Reflector TOF 1953.3 V	Sample Name	MP0285 PUR			Instrument	micrOTOF II	8213750.1045
Acquisition ParameterSet Corrector Fill59.0 VSource TypeESIIon PolarityPositiven/an/an/an/an/an/an/aScan Begin50 m/zn/an/an/aScan End3000 m/zn/an/aset Reflector1800.0 VScan End3000 m/zn/an/aset Filght Tube8600.0 VIntens.n/an/an/aset Filght Tube8600.0 Vx1041.25280.6399set Detector TOF1953.3 V1.00281.1414281.6424czrHagNsOve, 282.05280.6394dczrHagNsOve, 281.0024281.6422czrHagNsOve, 28	Comment						1
Source Type ESI Ion Polarity Positive n/a n/a n/a n/a n/a n/a Scan Begin S0 m/z n/a n/a Scan Begin 3000 m/z n/a n/a Set Reflector 100.0 V Scan Bed 3000 m/z n/a n/a Set Flight Tube 8600.0 V n/a n/a Set Detector TOF 1953.3 V +MS, 0.0-0.1m 1.25 1.00 0.75 0.50 0.25 0.50 0.5	Acquisition Parar	neter			Set Corrector Fill	59.0 V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source Type	ESI	Ion Polarity	Positive	n/a	n/a	
Scan Begin 50 m/z n/a n/a Set Reflector 1800.0 V Scan End 3000 m/z n/a n/a Set Fight Tube 8600.0 V n/a n/a Set Detector TOF 1953.3 V +MS, 0.0-0.1m *104 1.25 1.00 0.75 0.50 0.50 0.50 0.55 0.55	n/a	n/a	n/a	n/a	n/a	n/a	
Scan End 3000 m/z n/a n/a Set Flight Tube 8600.0 V Intens. n/a n/a Set Detector TOF 1953.3 V +MS, 0.0-0.1m +MS, 0.0-0.1m +MS, 0.0-0.1m 0.75 280.6399 - - 1.25 281.1414 - - - 0.004 281.6424 - - - 0.105 280.6399 - - - 1.25 280.6394 - - - 0.004 2* 280.6394 - - 0.004 2* 280.6394 - - 0.004 2* 280.6394 - - 0.025 0.026 - - - 0.025 - - - - 0.026 - - - - 0.25 - - - - 0.25 - - - -	Scan Begin	50 m/z	n/a	n/a	Set Reflector	1800.0 V	
Intens. x104 n/a set Detector 10F 1953.3 V Intens. 280.6399 +MS, 0.0-0.1m 1.25 280.6399 - - 0.50 281.1414 - - 0.25 280.6394 - - 1.25 280.6394 - - 0.604 2+ 280.6394 - 0.75 281.1409 - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ - - 0.50 2+ -	Scan End	3000 m/z	n/a	n/a	Set Flight Tube	8600.0 V	
Intens. +MS, 0.0-0.1m 125 280.6399 1.00 281.1414 0.25 281.6424 0/04 2+ 1.25 280.6394 1.00 2+ 0.75 281.1409 0.25 2+ 0.50 2+ 0.50 2+ 0.25 281.1409 0.25 2+			n/a	n/a	Set Detector TOF	1953.3 V	
x104 1.25 1.00 0.75 0.50 0.25 280.6399 281.1414 281.6424 C ₂₇ H ₃₉ N ₅ O ₈ , 28 C ₂₇ H ₃₉ N ₅ O ₈ , 28 C ₂₇ H ₃₉ N ₅ O ₈ , 28 24 280.6394 2+ 281.1419 2+ 281.1414 2+ 281.6422	Intens.						+MS, 0.0-0.1min #2-3
1.25 1.00 0.75 0.50 0.25 1.00 0.25 281.1414 281.6424 C ₂₂ H ₃₉ N ₅ O ₈ , 28 C ₂₂ H ₃₉ N ₅ O	×10 ⁴						
1.00 0.75 0.50 0.25 0.00 x104 1.25 1.25 0.50 0.75 0.50 0.50 0.50 0.55 0.50 0.55 0.50	1.25		280.6399				
0.75 0.50 0.25 0.00 x100 281.1414 281.6424 0.00 2+ 280.6394 1.00 0.75 0.50 0.25 2+ 281.1414 281.6424 2+ 281.6424 2+ 281.6424 2+ 281.1414 2+ 281.6422 2+ 281.6422 2+ 281.6422 2+ 281.6422	1.00						
0.50 0.25 281.1414 281.6424 C ₂₂ H ₃₉ N ₅ O ₈ , 28	0 75						
281.1414 0.25 0.90 x109 1.25 1.25 280.6394 1.00 0.75 0.50 0.25 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6424 24 281.6422 281.6422 281.6424 281.6422 281.	0.50						
0.25 0.00 281.6424 C ₂₂ H ₃₉ N ₅ O ₈ , 28 1.25 280.6394 1.00 0.75 0.50 0.25 2+ 281.1409 2+ 281.1409 2+ 281.6422	0.50		28	31.1414			
$\begin{array}{c} 0,004 \\ 2+ \\ 1.25 \\ 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \end{array}$	0.25			281.6424			
$\begin{array}{c} 2+ \\ 1.25 \\ 1.00 \\ 0.75 \\ 0.50 \\ 0.25 \end{array} \qquad \qquad \begin{array}{c} 2+ \\ 280.6394 \\ 281.1409 \\ 281.6422 \end{array}$	0.00			Д	*		C H N O 280 6204
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2+				C27H39N5O8, 280.0394
1.00 0.75 0.50 0.25 2+ 281.1409 2+ 281.6422	×104						
0.75 0.50 0.25	x104 1.25		280.6394				
$ \begin{array}{c} 2+\\ 281.1409\\ 281.6422 \end{array} $	x104 1.25 1.00		280.6394				
0.25 281.1409 2+ 281.6422	×104 1.25 1.00		280.6394				
0.25	×104 1.25 1.00 0.75		280.6394	2+			
	×104 1.25 1.00 0.75 0.50		280.6394	2+ 81.1409 A 2+			
	x104 1.25 1.00 0.75 0.50 0.25		280.6394	2+ 11.1409 2+ 281.6422			
210 219 200 201 202 203 204 203 200	x10 ⁴ 1.25 1.00 0.75 0.50 0.25 0.00	78	280.6394	$ \begin{array}{c} 2+\\ 31.1409\\ 2+\\ 281.6422\\ 1 282 \end{array} $,	285	286 m/z
	x10 ⁴ 1.25 1.00 0.75 0.50 0.25 0.00 2	78 279	280.6394	2+ 11.1409 2+ 281.6422 11 282	283 284	285	286 n
eas. m/z # Ion Formula m/z err [ppm] Mean err [ppm] rdb N-Rule e Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev	x10 ⁴ 1.25 1.00 0.75 0.50 0.25 0.00 2 eas. m/z # lon For	78 279 78 279 mula m/z err [ppm] M	280.6394 280 28 lean err [ppm] rdb N-R	2+ 11.1409 2+ 281.6422 11 282 282 282 282 282 282 28	283 284 Std Mean m/z Std I VarNorm Std	d m/z Diff Std Com	286 m/.

Fig S24. HRMS (ESI-MS) spectrum of compound 12b

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 392.228988 1 C19H30N5O4
 392.22931
 0.6
 0.1
 7.5
 ok even
 8.3
 13.1
 n.a.
 n.a.
 n.a.

Fig S28. ¹H NMR (400 MHz, CD₃OD) spectrum of compound **13b**

 Meas. m/z # lon Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 196.618868 1 C19H31N504
 196.618254
 -3.1
 -2.7
 7.0
 ok even
 2.5
 4.7
 n.a.
 n.a.

Fig S30. HRMS (ESI-MS) spectrum of compound 13b

ok even

1200

[ppm] -0.4 21.5

0.0 1196

Meas. m/z # Ion Formula

1199.546970 1 C55H79N10O20 1199.546661

1198

m/z err [ppm]

-0.3

1202.5552

Mean err rdb N-Rule e Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

n.a.

1204

n.a.

n.a.

1206

n.a.

1202

78.9 72.4

m/z

Fig S39. HRMS (ESI-MS) spectrum of compound 18b

Fig S42. HRMS (ESI-MS) spectrum of compound 19a

Fig S44. ¹³C NMR (125 MHz, CD₃OD) spectrum of compound **19b**

 Meas. m/z # lon Formula
 m/z err [ppm]
 Mean err [ppm]
 rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 863.463317
 1 C39H63N10012
 863.462144
 -1.4
 -1.0
 13.5
 ok even
 4.0
 4.7
 n.a.
 n.a.
 n.a.
 n.a.

Fig S48. HRMS (ESI-MS) spectrum of compound 20a

Fig S50. $^{\rm 13}C$ NMR (125 MHz, CDCl₃) spectrum of compound 20b

Fig S51. HRMS (ESI-MS) spectrum of compound 20b

30

			Mass Sp	ectrum	HR Rep	oort			
Analysis Info						Acquisitio	on Date	2/1/2018 11:04:0	3 AM
Analysis Name Method Sample Name Comment	D:\Data\SMasse\2018 Tune_pos_Mid.m MP0273 Brut	3\02_Fevrier20)18\F01647SK.	d		Operator Instrume	nt	BDAL@DE micrOTOF II	8213750.1045 1
Acquisition Param	eter					S	et Corrector Fill	59.0 V	
Source Type	ESI	lon	Polarity	Positiv	/e	n	/a	n/a	
n/a Scan Begin	n/a 50 m/z	n/a		n/a		n c	a et Reflector	1800.0 V	
Scan End	3000 m/z	n/a		n/a		5	et Flight Tube	8600.0 V	
		n/a		n/a		S	Set Detector TOF	1953.3 V	
Intens									+MS, 0.2-0.2min #10-12
×10 ⁴]		3+	2+						
1.0-		409.5577	409.8918						
0.8-		Δ.	Λ						
0.6-				3+					
0.4				410.2256					
0.4				\wedge	3+	3+			
0.2-	409.2297				410.5611	410.8973			
×104									C56H90N15O16, 409,5558
1		3+							
1.0-		409.5558							
0.8-		A	3+						
0.6			409.8901						
0.4				3+					
0.4				410.2243	3+				
0.2				\wedge	410.5586	3+ 410 8927			
0.0 408.5	409.0	409.5	410.0		410.5	411.0	, , , ,	411.5	412.0 m/z

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e
 Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 409.557747
 1 C56H90N15016
 409.555784
 -4.8
 -5.4
 19.5
 ok even
 125.0
 108.8
 n.a.
 n.a.
 n.a.
 n.a.
 n.a.

Fig S54. HRMS (ESI-MS) spectrum of compound 21a

Fig S56¹³C NMR (125 MHz, CD₃OD) spectrum of compound **21b**

 ' |

ppm

Mass Spectrum	HR	Report
---------------	----	--------

Analysis Info				Acquisition Date	12/18/2017 9:48:47 AM	
Analysis Name Method Sample Name Comment	nalysis Name D:\Data\SMasse\2017\12_Decembre 2017\F01460SK.d lethod Tune_pos_Mid.m ample Name MP0260 Pur omment			Operator Instrument	BDAL@DE micrOTOF II	8213750.1045 1
Acquisition Parar	neter			Set Corrector Fill	59.0 V	
Source Type	ESI	Ion Polarity	Positive	n/a	n/a	
n/a	n/a	n/a	n/a	n/a	n/a	
Scan Begin	50 m/z	n/a	n/a	Set Reflector	1800.0 V	
Scan End	3000 m/z	n/a	n/a	Set Flight Tube	8600.0 V	
		n/a	n/a	Set Detector TOP	1953.3 V	
Intens.						+MS, 0.0-0.1min #2-7
x1043		755 0112				
2.5		/55.0112				
2.0		754.6768	755.3459			
1.5		٨	Δ			
1.0			755 6795			
EOI			A			

[ppm] 754.676829 1 C105H147N20O36 754.675680 -1.5 -1.9 42.5 ok even 47.9 41.7 n.a. n.a. n.a.

Fig S60. HRMS (ESI-MS) spectrum of compound 22a

n.a.

T

Fig S65.¹³C NMR (125 MHz, CD₃OD) spectrum of compound 23a

		Mass S	pectrum HR Re	eport		
Analysis Info	•			Acquisition Date	1/22/2018 11:57:	22 AM
Analysis Nam Method Sample Name Comment	e D:\Data\SMasse\2 Tune_pos_Mid.m e MP0270	D:\Data\SMasse\2018\01_Janvier2018\F01540SK.d Tune_pos_Mid.m MP0270			BDAL@DE micrOTOF II	8213750.1045 1
Acquisition F	Parameter			Set Corrector Fill	59.0 V	
Source Type n/a Scan Begin Scan End	ESI n/a 50 m/z 3000 m/z	lon Polarity n/a n/a n/a n/a	Positive n/a n/a n/a n/a	n/a n/a Set Reflector Set Flight Tube Set Detector TOF	n/a n/a 1800.0 V 8600.0 V 1953.3 V	
Intens.						+MS, 0.0min #2
4000 3000		530.6219	531 2938			
2000 1000			531.6235			
0	<u> </u>					C ₇₃ H ₁₁₅ N ₂₀ O ₂₀ , 530.6193
4000-		530.6193 3+				
3000		530.95	36			
2000			3+ 531.2879			
1000			3+ 531.6221 3+ 531.95	64		
0	529	530 53	1 53	2 533		534 m/z

 Meas. m/z # Ion Formula
 m/z err [ppm] Mean err [ppm] rdb N-Rule e Conf mSigma Std I Std Mean m/z Std I VarNorm Std m/z Diff Std Comb Dev

 530.621901 1 C73H115N20020 530.619335
 -4.8
 880.0 26.5
 ok even
 106.1
 90.8
 n.a.
 n.a.
 n.a.
 n.a.

Fig S66. HRMS (ESI-MS) spectrum of compound 23a

Fig S69. HRMS (ESI-MS) spectrum of compound 23b

		Mass S	pectrum HR Re	eport		
Analysis Inf Analysis Nan Method Sample Nam	o ne Z:\2018\05_Mai 2018 Tune_pos_Mid.m ne MP0305 Pur	\F02189SK.d		Acquisition Date Operator Instrument	03/05/2018 15:24:3 BDAL@DE micrOTOF II	10451
Comment						
Acquisition Source Type n/a Scan Begin Scan End	Parameter ESI n/a 50 m/z 3000 m/z	lon Polarity n/a n/a n/a	Positive n/a n/a n/a n/a	Set Corrector Fill n/a Set Reflector Set Flight Tube Set Detector TOF	59.0 V n/a 1800.0 V 8600.0 V 1953.3 V	
Intens. x104 1.00 0.75 0.50 0.25 10	1072.2104		73.0813	~~	+1	74.7138
0.00		1072.8372 1072.7119 1072.5865)73.0879		C392H5	40N70O147, ,8579.69
Meas. m/z # 1072.4607 1	1072.0 Formula Score C 392 H 540 N 70 O 147	1072.5 1073 m/z err [mDa] err [pr 1072.4611 0.4	.0 1073.5 pm] mSigma rdb e 0.4 n.a. 158.0 ev	Conf N-Rule	1074.5	m/z

Fig S72. HRMS (ESI-MS) spectrum of compound 25a

Fig S75. HRMS (ESI-MS) spectrum of compound 25b

		Mass S	pectrum HR I	Report		
Analysis Info				Acquisition Date	01/06/2018 11:00:28	3
Analysis Name Method Sample Name Comment	Z:\2018\06_Juin 2018\F0; Tune_pos_Mid.m MP0313 Brut	2439SK.d		Operator Instrument	BDAL@DE micrOTOF II	10451
Acquisition Parameter Source Type n/a Scan Begin Scan End	r ESI n/a 50 m/z 3000 m/z	lon Polarity n/a n/a n/a	Positive n/a n/a n/a n/a	Set Corrector Fi n/a n/a Set Reflector Set Flight Tube Set Detector TC	ill 59.0 V n/a n/a 1800.0 V 8600.0 V 0F 1953.3 V	
Intens x10 ⁴ 0.8-		1038.0176	1038.1838		+M	S, 0.0-0.4min #(2-22)
0.6- 0.4- 0.2- 1037.1829 103	1037.68 1037.5147	42	1038.3504	1038.5167	1039.0169 1039.1828	1039.3499
2500 2000		1038.0152	1038.1826		C 280 H 426	N 70 O 91 ,6225.09
1500 1000 500	1037.68		1038:3498	1038-5171 1038-6843 1038-8512	1039.0184 1039.1856	
1037.25	1037.50 10	037.75 1038.00	1038.25	1038.50 1038.75	1039.00 1039.	25 m/z
<i>l</i> leas. m/z # Formula 1037.5147 1 C 280 H 4	Score 26 N 70 O 91 100.00 103	m/z err [mDa] err [ppi 7.5138 -0.9 -0	m] mSigma rdb).9 45.5 103.0	e ⁻ Conf N-Rule even ok		
	_					

Fig S78. HRMS (ESI-MS) spectrum of compound **26a**

Fig S81. HRMS (ESI-MS) spectrum of compound 26b

Fig S82. Dixon plot and replot of compound 13a

Fig S83. Lineweaver Burk plot and replot for ${\it K}_i$ determination (2.23±0.13 μM) of compound 13a

Fig S85. Lineweaver Burk plot and replot for ${\it K}_i$ determination (0.11±0.02 μM) of compound ${\bf 13b}$

Fig S86. Dixon plot and replot of compound 19a

Fig S87. Lineweaver Burk plot and replot for ${\it K}_i$ determination (0.49±0.64 μM) of compound 19a

Fig S88. Dixon plot and replot of compound **19b**

Fig S89. Lineweaver Burk plot and replot for K_i determination (0.037±0.007 μ M) of compound **19b**

Fig S90. Dixon plot and replot of compound 21a

Fig S91. Lineweaver Burk plot and replot for K_i determination (0.25±0.03 μ M) of compound **21a**

Fig S92. Dixon plot of compound 21b

Fig S94. Plot of enzyme velocity as a function of inhibitor **21b** concentration. The solid curves drawn through the data points represent the best fit to the Morrison equation used to obtain K_i value $(0.037\pm0.010 \ \mu\text{M})$ for the tight binding inhibitor **21b**

Fig S95. Dixon plot and replot of compound 23a

Fig S96. Lineweaver Burk plot, slope and intercept replots of reciprocal plot data for K_i determination ($K_i = 0.21\pm0.05 \ \mu\text{M}$; $K'_i = 1.00\pm0.096 \ \mu\text{M}$) of compound **23a**

Fig S97. Dixon plot of compound 23b

Fig S98. Lineweaver Burk plot and replot of compound 23b

Fig S99. Plot of enzyme velocity as a function of inhibitor **23b** concentration. The solid curves drawn through the data points represent the best fit to the Morrison equation used to obtain K_i value $(0.091\pm0.017 \ \mu\text{M})$ for the tight binding inhibitor **23b**

Fig S100. Plot of enzyme velocity as a function of inhibitor **26a** concentration. The solid curves drawn through the data points represent the best fit to the Morrison equation used to obtain K_i value $(0.006\pm0.001 \,\mu\text{M})$ for the tight binding inhibitor **26a**

Fig S101. Plot of enzyme velocity as a function of inhibitor **26b** concentration. The solid curves drawn through the data points represent the best fit to the Morrison equation used to obtain K_i value $(0.002\pm0.0005 \ \mu\text{M})$ for the tight binding inhibitor **26b**