Identification of Crucial Bottlenecks in Engineered Polyketide Biosynthesis Using the Monensin Gene Cluster as a Model System

Marius Grote, Susanna Kushnir, Niclas Pryk, David Möller, Julian Erver, Ahmed Ismail-Ali, Frank Schulz*

1	Gen	eral Remarks	4
2	LC-ł	IRMS Method	5
3	Ove	rview of Hop-Off Intermediates	11
4	Extr	acted Ion Chromatograms	12
	4.1	Further ER ⁰ Mutants	12
	4.2	Further KR ⁰ Mutants	13
	4.3	DH ⁰ Mutants	15
	4.4	Double Null Mutants	16
	4.5	Precursor Directed Biosynthesis	18
5 B	Mas	s Spectrometric Data for Premonensin Derivatives and their Intermediates from the	20
D	5.1	Premonensin A and B (PreAR) as Final Products of the Biosynthetic Assembly Line.	20
	5.2	Hop-Off Products in Fermentations of <i>S. cinnamonensis</i> A495	20
	5.3	FR2 ⁰ Mutant – Premonensin Derivatives and Hon-Off Products	29
	5.3.1	$FR2^{0}$ Premonensin A and B ($FR2^{0}$ Pre _{A/B})	
	5.3.2	Hop-Off Products $ER2^0$	
	5.4	Further ER ⁰ Mutants – Premonensin Derivatives and Hop-Off Products	
	5.4.1	ER6 ⁰ Premonensin A and B	34
	5.4.2	ER8 ⁰ Premonensin A and B	35
	5.4.3	Hop-Off Products from the Biosynthesis of ER6 ⁰ and ER8 ⁰ Premonensin A and B	37
	5.5	KR ⁰ Mutants - Premonensin Derivatives and Hop-Off Products	38
	5.5.1	KR4 ⁰ Pre _{A/B}	38
	5.5.2	KR6 ⁰ Pre _{A/B}	40
	5.5.3	KR11 ⁰ Pre _{A/B}	41
	5.5.4	KR12 ⁰ Pre _{A/B}	43
	5.5.5	Hop-Off intermediates from KR ⁰ Mutants	44
	5.6	DH ⁰ Mutants – Premonensin Derivatives and Hop-Off Products	49
	5.6.1	DH2 ⁰ Premonensin	49
	5.6.2	DH4 ⁰ Premonensin	51
	5.6.3	DH5 ⁰ Premonensin	52
	5.6.4	DH7 ⁰ Premonensin	53
	5.6.5	DH8 ⁰ Premonensin	55
	5.6.6	Hop-Off Intermediates from DH ^o Mutants	56
	5.7	Double Mutants Nulling I wo Reductive Domains	58
	5.7.1	ER2ºDH8º	58
	5.7.2	ER2ºKR4º	59
	5./.3	Hop-Off Intermediates from Double Null Mutants	59
	5.8	Precursor Directed Biosynthesis – Premonensin Derivatives and Hop-Off Intermediates	61
	5.8.1	Premohensin Derivatives (Prex) Resulting from a Precursor Directed Biosynthesis	61
	5.8.2	Hop-Off Intermediates from the Premonensin Biosynthesis with New-to-Nature Side Chain	IS65
6	NMI	R Data of Premonensin Derivatives	68
7	Keto	synthase Alignments and Phylogenetic Tree	72
8	Mon	AIX, MonAX and Orf31, Streptomyces Manipulation	73
	8.1	Cloning	73
	8.2	Expression and Purification	73
	8.3	Oligonucleotides Used in this Study	75
	8.4	In vitro Activity Assay of Hydrolases	76
9	Synt	hesis	77
9	9 1	General Information	·····// 77
	9.11	Solvents and Reagents	·····// 77
	917	Experimental Setup	
	9.1.2	Reaction Control and Purification	
	9.2	Characterization Methods	78

9.2.1	NMR-Spectroscopy	
9.2.2	Melting Point Determination	
9.2.3	Specific Rotation $[\alpha]_D^{20}$	
9.3	Synopsis ER2 ⁰ -Triketide Thioester	79
9.4	Synthetic Procedures for ER2 ⁰ -Triketide Thioester	80
9.5	Synopsis Wildtype Triketide Thioester	
9.6	Synthesis Wildtype Triketide Thioester	93
9.7	VCD Spectrum of Compound 13 to Verify Absolute Configuration	
9.8	NMR-Spectra of the Synthesis Part (Following Pages)	
10 Refe	erences	145

1 General Remarks

Chapter 2 contains additional information on the LC-HRMS method used in this manuscript. All released intermediates that were detected via LC-HRMS are listed in **chapter 3**.

Additional figures in **chapter 4** illustrate the extracted ion chromatograms of those intermediates, released in fermentations of additional null mutants and from precursor directed biosynthesis discussed in the manuscript.

Chapter 5 comprises all mass spectrometric characterization of the derivatives of final products (premonensin A and B) by null mutations in the reductive loops or precursor directed biosynthesis. All mass spectrometric data for the detectable intermediates released from the respective assembly lines are stated. mSigma values represent the match of the measured and calculated isotope pattern for the sum formula calculated from the exact mass. ^[1-3] <10: excellent agreement. <80 acceptable agreement. Especially for low intensities values are not representative or not determined (n.d.).

MS² data for the fragmentation of premonensin derivatives and intermediates released in the mutants starting from module 10. MS² data of earlier intermediates are omitted from the SI as they do not fragment under the given conditions. mSigma values for MS² data are not stated as low intensities in general resulted in not representative or not available (n.d.) values.

Chapter 6 lists the NMR data collected for the premonensin derivatives purified from a fermentation of *Streptomyces cinnamonensis* A495 ER2⁰DH8⁰.

Chapter 7 gives an overview of amino acid sequences of ketosynthases from the monensin gene cluster and four additional polyether antibiotic PKS searching for a motif correlating with their substrate acceptance.

Chapter 8 contains details on cloning, expression and enrichment of the three hydrolases MonAIX, MonAX and Orf31 discussed in the manuscript. Also, the in vitro methods for the colorimetric assay are given. Oligonucleotides used in the study are listed.

Chapter 9 contains all data for the synthesis and characterization of compounds used in the *in vitro* assay.

2 LC-HRMS Method

Figure S 1: HPLC profile used throughout the analysis. The MS method is listed on the following pages. HPLC-HRMS analysis was run on an Ultimate 3000 HPLC System (consisting of a pump, autosampler, column oven and UV detector) coupled to a compact mass spectrometer (BRUKER DALTONIK GmbH, Life Sciences, Bremen, Germany) using the standard electrospray ionization source. All solvents were LC-MS grade (Chromasolv). A NUCLEODUR C18 Isis column (Macherey&Nagel, 150/2, 1.8 µm), was used for chromatographic separation. For internal calibration a lock mass of 622.028960 (Hexakis(1H,1H,2H-perfluoroethoxy)phosphazene) and sodium formiate clusters were used.

otofControl

General Information

Method Name:	110-1300 autoMSMS posm	Saved:	2018/09/05 09:38:08+02:00
Application Name:	Bruker otofControl	Application	4.1.3.5
Device Type:	compact	Version:	
Operator:	Demo User	Device Serial	8255754.20147
Operating System:	Windows 7 Professional	Number:	
operating oystem.	Windows / Troicssional	Host:	COMPACT-20147
		Organisation:	Bruker Daltonik GmbH

Chromatogram

Enabled	Color	Туре	Masses	Width	Polarity	Filter
On	Red	BPC			±	MS
On	Blue	TIC			±	MS
On	Black	TIC			±	All MS/MS

SPL

Scheduled	Off
Precursor List:	

Segment 1

0 0.02 min

	10.181	
0.0	211	

Polarity:	Positive	Scan Mode:	MS
Mass Range from:	110 m/z	Mass Range to:	1300 m/z
Rolling Average:	Off	Rolling Average No.:	2
Spectra rate:	8.00 Hz	View:	Expert
Mode			
Save Spectra:	Line and Profile Spectra	Line Spectra Calculation:	Use Maximum Intensity
Absolute Threshold (per 1000	25 cts.	Peak Summation Width:	3 pts.
sum.):		Focus Active:	Off
Mark as Calibration Segment:	Off		
Source			
Source:	ESI		
End Plate Offset:	500 V	Capillary:	4500 V
Nebulizer:	2.2 Bar	Dry Gas:	10.0 l/min
Dry Temp:	220 °C	Divert Valve:	Waste 1-6

HyStar 2019/03/14 13:12+0100

Tune			
Funnel 1 RF:	150.0 Vpp	Funnel 2 RF:	200.0 Vpp
isCID Energy:	0.0 eV	Hexapole RF:	50.0 Vpp
lon Energy:	4.0 eV	Low Mass:	90.0 m/z
Collision Energy:	7.0 eV	Pre Pulse Storage:	5.0 µs
Stepping:	On	Mode:	Basic
Collision RF from:	550.0 Vpp	Collision RF to:	550.0 Vpp
Transfer Time from:	80.0 µs	Transfer Time to:	80.0 µs
Timing from:	50 %	Timing to:	50 %
Collision Energy from:	100 %	Collision Energy to:	250 %
Timing from:	50 %	Timing to:	50 %
MS/MS			
Auto MS/MS:	Off		
MRM			
MRM:	Off		
isCID			
isCID (MS-MS/MS):	Off		
bbCID			
bbCID (MS-MS/MS):	Off		
Segment 2			
0.02 0.3 min			
Main			
Polarity:	Positive	Scan Mode:	MS
Mass Range from:	110 m/z	Mass Range to:	1300 m/z
Rolling Average:	Off	Rolling Average No.:	2
Spectra rate:	8.00 Hz	View:	Expert
Mode			
Save Spectra:	Line and Profile Spectra	Line Spectra Calculation:	Use Maximum Intensity
Absolute Threshold (per 1000	25 cts.	Peak Summation Width:	3 pts.
sum.):	127	Focus Active:	Off
Mark as Calibration Segment:	On		
Source			
Source:	ESI		
End Plate Offset:	500 V	Capillary:	4500 V
Nebulizer:	2.2 Bar	Dry Gas:	10.0 l/min
Dry Temp:	220 °C	Divert Valve:	Source 1-2

Bruker

2019/03/14 13:12+0100

Tune			
Funnel 1 RF:	150.0 Vpp	Funnel 2 RF:	200.0 Vpp
isCID Energy:	0.0 eV	Hexapole RF:	50.0 Vpp
lon Energy:	4.0 eV	Low Mass:	90.0 m/z
Collision Energy:	7.0 eV	Pre Pulse Storage:	5.0 µs
Stepping:	On	Mode:	Basic
Collision RF from:	550.0 Vpp	Collision RF to:	550.0 Vpp
Transfer Time from:	80.0 µs	Transfer Time to:	80.0 µs
Timing from:	50 %	Timing to:	50 %
Collision Energy from:	100 %	Collision Energy to:	250 %
Timing from:	50 %	Timing to:	50 %
MS/MS			
Auto MS/MS:	Off		
MRM			
MRM:	Off		
isCID			
isCID (MS-MS/MS):	Off		
bbCID			
bbCID (MS-MS/MS):	Off		
Segment 3			
0.3 unlimited min			
Main			
Polarity:	Positive	Scan Mode:	Auto MS/MS
Mass Range from:	110 m/z	Mass Range to:	1300 m/z
Rolling Average:	Off	Rolling Average No.:	2
Spectra rate:	8.00 Hz	View:	Expert
Mode			
Save Spectra:	Line and Profile Spectra	Line Spectra Calculation:	Use Maximum Intensity
Absolute Threshold (per 1000	25 cts.	Peak Summation Width:	3 pts.
sum.): Mark as Calibration Segment:	Off	Focus Active:	Off
Source			
Source	ESI		
End Plate Offset	500 V	Canillany	4500 V
Nebulizer	22 Bar	Dry Gas:	10.0 l/min
Dry Temp:	220 °C	Divert Valve	Waste 1-6
5.3 . omp.	220 0	Briter Fairer	1100001-0

Bruker

2019/03/14 13:12+0100

Tune			
Funnel 1 RF:	150.0 Vpp	Funnel 2 RF:	200.0 Vpp
isCID Energy:	0.0 eV	Hexapole RF:	50.0 Vpp
Ion Energy:	4.0 eV	Low Mass:	90.0 m/z
Collision Energy:	7.0 eV	Pre Pulse Storage:	5.0 µs
Stepping:	On	Mode:	Basic
Collision RF from:	550.0 Vpp	Collision RF to:	550.0 Vpp
Transfer Time from:	80.0 µs	Transfer Time to:	80.0 µs
Timing from:	50 %	Timing to:	50 %
Collision Energy from:	100 %	Collision Energy to:	250 %
Timing from:	50 %	Timing to:	50 %
MS/MS			
Auto MS/MS:	On		
Precursor Ion List:	Exclude	Cycle Time:	0.5 sec
Threshold (per 1000 sum.)	400 cts	Active Exclusion:	On
Absolute:		Exclude after:	3 Spectra
		Reconsider Precursor:	On
Release after:	0.20 min.	Smart Exclusion:	Off
if Curent Intens./Prev. Intens.:	1.8		
Smart Exclusion:	2 x		
Exclude Mass List			

Mass Range Start	Mass Range End	
102.08	102.18	1.
621.98	622.08	2
643.96	644.06	3
659.94	660.04	4

HyStar 2019/03/14 13:12+0100

Auto MS/MS Preference

		Off			
Preferred Range L	.ow:	2	Preferred Range Hi	igh:	5
Exclude Singly:		Off	Exclude unknown:		Off
Group Length:		3	Strict Active Exclus	sion:	Off
Sort Precursors b	y:	Intensity	Preferred mass list	:	Empty list
Auto MS/MS Mul	ti CE				
Auto MS/MS Multi	CE:	Off			
SILE					
SILE SILE:		Off			
SILE SILE: CID		Off			
SILE SILE: CID Fallback Charge S	itate:	Off 1 z			
SILE SILE: CID Fallback Charge S Isolation + Fragme	itate: entation List	Off 1 z			
SILE SILE: CID Fallback Charge S Isolation + Fragme Type	itate: entation List Mass [m/z]	Off 1 z Width [m/z]	Collision Energy	Charge State	
SILE SILE: CID Fallback Charge S Isolation + Fragme Type Base	tate: entation List Mass [m/z] 100.00	Off 1 z Width [m/z] 4.00	Collision Energy [eV] 20.0	Charge State	1
SILE SILE: CID Fallback Charge S Isolation + Fragme Type Base Base	tate: entation List Mass [m/z] 100.00 500.00	Off 1 z Width [m/z] 4.00 5.00	Collision Energy [eV] 20.0 20.0	Charge State	1 2
SILE SILE: CID Fallback Charge S Isolation + Fragme Type Base Base Base Base	tate: mtation List Mass [m/z] 100.00 500.00 1000.00	Off 1 z Width [m/z] 4.00 5.00 6.00	Collision Energy [eV] 20.0 20.0 20.0 20.0	Charge State	1 2 3

Acquisition:	On	Spectra Rate MS:	8.00 Hz
MS/MS low (per 1000 sum.):	10000.0 cts.	MS/MS low:	1600 x
MS/MS high:	100000.0 cts.	MS/MS high:	800 x
Total Cycle Time Range:	n/a sec	Absolute Threshold :	n/a cts.
MRM			
MRM:	Off		
isCID			
isCID (MS-MS/MS):	Off		
bbCID			
bbCID (MS-MS/MS):	Off		

Bruker

HyStar 2019/03/14 13:12+0100

3 Overview of Hop-Off Intermediates

Figure S 2: Overview of the detected intermediates released from the assembly line of different mutants of *S. cinnamonensis* A495. DH: Dehydratase. KR: Ketoreductase. ER: Enoylreductase. M: Modules. Green denotes for detected intermediates released from the listed modules while red ones were not detectable. Earlier intermediates were not detected due to sample preparation and the hydrophilicity of corresponding intermediates. The last column represents the final product (a derivative of premonensin). For mutant KR11⁰ a cyclisation typical for the release of premonensin is not possible and the linear product was detected. In addition to null mutants, precursor directed biosynthesis was applied and released intermediates with a new-to-nature side chain introduced in module 5 were monitored.

4 Extracted Ion Chromatograms

This chapter illustrate the extracted ion chromatograms of intermediates released in fermentations of additional null mutants and in precursor directed biosynthesis not shown in the manuscript. All traces show extracted ion chromatograms ($[M+Na]^+ \pm 0.005 \text{ m/z}$). The intermediate released from module 4 is shown in green. In module 5 either a methyl or ethyl side is incorporated and hence intermediates A (blue, ethyl side chain) and B (red, methyl side chain) are detectable. Structures of detected intermediates are shown in chapter 5.

4.1 Further ER⁰ Mutants

In addition to the mutant *S. cinnamonensis* A495 ER2⁰ extensively discussed in the manuscript the variants ER6⁰ and ER8⁰ have been analyzed.

Figure S 3: Extracted ion chromatograms indicating the hop-off products (ER6⁰MX and MX) and the final products (ER6⁰Pre_{A/B}) in a fermentation extract of *S. cinnamonensis* A495 ER6⁰.

Figure S 4: Extracted ion chromatograms indicating the hop-off products (ER8⁰MX and MX) and the final products (ER8⁰Pre_{A/B}) in a fermentation extract of *S. cinnamonensis* A495 ER8⁰.

4.2 Further KR⁰ Mutants

In addition to the mutants *S. cinnamonensis* A495 KR4/5/6⁰ discussed in the manuscript the variants KR11⁰ and KR12⁰ have been analyzed.

Figure S 5: A. Extracted ion chromatograms indicating the hop-off products (KR11⁰MX and MX) and the final products (KR11⁰M12_{A/B}) in a fermentation extract of *S. cinnamonensis* A495 KR11⁰. A cyclization of the final products is not possible. **B.** For KR11⁰M11_{A/B} (decarboxylated) and KR11⁰M12_{A/B} two peaks each were observed with equal mass and MS² spectra.

Figure S 6: A. Extracted ion chromatograms indicating the native hop-off products (M4-M11) in a fermentation extract from *S. cinnamonensis* A495 KR12⁰. **B.** Extracted ion chromatograms indicating the final products (KR12⁰Pre_{A/B}) in a fermentation extract of *S. cinnamonensis* A495 KR12⁰. The decarboxylated M12 hop-off products (KR12⁰M12_{A/B}) elute over 2.5 minutes in the LC with identical HRMS and MS² spectra (see chapter 5).

4.3 DH⁰ Mutants

For null mutants targeting the dehydratase domain modules 2, 4, 5, 7 and 8 were chosen for analysis.

Figure S 7: Extracted ion chromatograms indicating the hop-off products (DH2⁰MX) and the final products (DH2⁰Pre_{A/B)} in a fermentation extract of *S. cinnamonensis* A495 DH2⁰.

Figure S 8: Extracted ion chromatograms indicating the hop-off product (DH4⁰M4) and the final products (DH4⁰Pre_{A/B)} in a fermentation extract of *S. cinnamonensis* A495 DH4⁰.

Figure S 9: Extracted ion chromatograms indicating the hop-off products (DH5⁰M5_{A/B} and the natural intermediate M4) and the final product (DH5⁰Pre_B) in a fermentation extract of *S. cinnamonensis* A495 DH5⁰. For DH5⁰Pre_A only trace amounts have been detected.

Figure S 10: Extracted ion chromatograms indicating the hop-off products (DH7⁰M7_A and the natural intermediates M4, M5_{A/B} and M6_{A/B}) and the final products (DH7⁰Pre_{A/B}) in a fermentation extract of *S. cinnamonensis* A495 DH7⁰. The intermediate DH7⁰M7_B was not detectable.

Figure S 11: Extracted ion chromatograms indicating the hop-off products (DH5⁰MX_{A/B} and the natural intermediate M4-7) and the final products (DH8⁰Pre_{A/B}) in a fermentation extract of *S. cinnamonensis* A495 DH8⁰.

4.4 **Double Null Mutants**

We investigated the combination of redox variations in engineered premonensin biosynthesis. Mutation ER2⁰ was individually combined with mutations KR4⁰, DH5⁰, KR8⁰ and DH8⁰. This miniature library combined the productive ER2⁰ mutation with one productive and one unproductive DH⁰ and KR⁰ variant, respectively. The assembly line regarding variants ER2⁰KR8⁰ and ER2⁰DH5⁰ ended in the targeted modules 8 and 5, respectively. By contrast, variants ER2⁰KR4⁰ and ER2⁰DH8⁰ gave rise to the corresponding doubly-modified premonensin derivatives.

Figure S 12: Extracted ion chromatograms indicating the hop-off products in a fermentation of *S. cinnamonensis* A495 ER2⁰DH8⁰. After the second targeted module (5) no further intermediates or the final products were detected.

Figure S 13: Extracted ion chromatograms indicating the hop-off products and the final products in a fermentation of *S. cinnamonensis* A495 ER2⁰KR4⁰. After the second targeted module (4) no further intermediates were detected.

Figure S 14: Extracted ion chromatograms indicating the hop-off products in a fermentation of *S. cinnamonensis* A495 ER2⁰KR8⁰. After the second targeted module (8) no further intermediates or the final products were detected.

4.5 **Precursor Directed Biosynthesis**

In addition to mutagenesis-induced redox derivatizations, structural alterations in premonensin and monensin were described to be amendable by precursor-directed biosynthesis. **S**ynthetic extender unit analogues were accepted by monAT5 and incorporated into the polyketide backbone.

S. cinnamonensis A495 was fermented in the presence of allyl(All)-, propargyl(Pg)-, propyl(Pr)-, butyl(Bu)-, and chloropropyl(Cl)-substituted malonic acid diethyl ester, as described previously. As expected, all previously reported corresponding premonensin derivatives (allyl-, propargyl-, propyl- and butylpremonensin) were detected by LC-HRMS, furthermore, very small quantities of the previously undescribed chloropropylpremonensin. The following extracted ion chromatograms indicate the detected intermediates with a non-natural side chain.

Figure S 15: Extracted ion chromatograms indicating the hop-off products in a fermentation of *S. cinnamonensis* A495 supplied with different new-to-nature building blocks. Chromatograms in green represent the released intermediates with a non-natural side chain. The usual final products $Pre_{A/B}$ are shown in the background in blue and red respectively.

5 Mass Spectrometric Data for Premonensin Derivatives and their Intermediates from the Biosynthetic Pathways

This chapter comprises all mass spectrometric data for the derivatized final products (Pre_{A/B}) altered trough null mutations or precursor directed biosynthesis. All mass spectrometric data of the detectable intermediates released from the respective assembly lines are shown. mSigma values represent the match of the measured and calculated isotope pattern for the sum formula calculated from the exact mass. <10: excellent agreement. <80 acceptable agreement. Especially for low intensities values are not representative or not determined (n.d.).

MS² data for the fragmentation of intermediates are given for the derivatized premonensin derivatives and intermediates released from modules 10 and 11. MS² data of earlier intermediates are omitted from the SI as they don't fragment under the given conditions. mSigma values for MS² data are not stated as low intensities in general resulted in not representative or not determined (n.d.) values.

In cases of very low intensities for fragment ions no high-resolution masses were obtained and are labeled with an asterisks.

5.1 Premonensin A and B (Pre_{A/B}) as Final Products of the Biosynthetic Assembly Line

	meas. <i>m/z</i>	ion formula	calc. <i>m/z</i>	err [ppm]	mSigma
		P	re _B		
	525.3933	C34H53O4	525.3938	1.0	9
mm	543.4039	C34H55O5	543.4044	1.0	1
	561.4146	C34H57O6	561.4150	0.7	1
I	578.4410	C34H60NO6	578.4415	1.0	42
	583.3966	C34H56NaO6	583.3969	0.6	3
	599.3707	C34H56KO6	599.3708	0.2	71
		P	reA		
	539.4087	C35H55O4	539.4095	1.5	42
mm	557.4196	C35H57O5	557.4201	0.8	3
	575.4302	C35H59O6	575.4306	0.7	2
	592.4567	C35H62NO6	592.4572	0.8	13
	597.4123	C35H58NaO6	597.4126	0.4	1
	613.3862	C35H58KO6	613.3865	0.4	74

Table S 1: Characteristic adducts of Pre_{A/B}.

Figure S 16: MS^2 spectra of $Pre_{A/B}$.

Table S 2: Mass spectrometric data of the fragment ions of $Pre_{A/B}$.

	0	FEC		-H ₂ O	
1,	Ĭ		Α	\ ──≻ (6
.,,.	်ဝု	OH O			O II
но	\checkmark		\sim	\checkmark	
110					i i
		AB	, ר		
		(-F		I	l I
-C₄H	₆ O ₃	,	-C(C ₂ -⊢	$ _{2}O$ $-C_{3}H_{6}O_{2}$
♦			. ↓	¥	4
ĸ			M	н	Ň
N.				1	
			-H2	0	
-H ₂ O			↓ -	-C	O ₂
V			H ₂ O '	-	
L		J		—	
		meas. m/z	ion formula	m/z	err [ppm]
			Pre	В	
	F	193.0832	C9H14NaO3	193.0835	1.8
	G	205.0832	C10H14NaO3	205.0835	1.4
	Α	223.0938	C10H16NaO4	223.0941	1.4
	С	237.1101	$C_{11}H_{18}NaO_4$	237.1097	-1.4
	D	263.1254	C13H20NaO4	263.1254	-0.1
	В	383.2913	C24H40NaO2	383.2921	1.9
	Ε	411.2872	$C_{25}H_{40}NaO_3$	411.2870	-0.5
	L	463.3531	C ₃₀ H ₄₈ NaO ₂	463.3547	3.3
	K	481.3650	C ₃₀ H ₅₀ NaO ₃	481.3652	0.5
	J	503.3848	C33H52NaO2	503.3860	2.2
	Ν	509.3588	C ₃₁ H ₅₀ NaO ₄	509.3601	2.5
	Ι	521.3976	$C_{33}H_{54}NaO_3$	521.3965	-2.2
	Μ	539.4077	C33H56NaO4	539.4071	-1.1
	Η	565.3860	C34H54NaO5	565.3863	0.6
			Pre	A	
	F	193.0832	C9H14NaO3	193.0835	1.7
	G	205.0829	$C_{10}H_{14}NaO_3$	205.0835	3.1
	Α	223.0940	C10H16NaO4	223.0941	0.2
	С	237.1092	$C_{11}H_{18}NaO_4$	237.1097	2.0
	D	263.1246	$C_{13}H_{20}NaO_4$	263.1254	3.0
	В	397.3074	$C_{25}H_{42}NaO_2$	397.3077	0.7
	Е	425.2996	$C_{26}H_{42}NaO_3$	425.3026	7.0
	L	477.3706	C ₃₁ H ₅₀ NaO ₂	477.3703	-0.6
	К	495.3814	C ₃₁ H ₅₂ NaO ₃	495.3809	-1.0
	J	517.4019	$C_{34}H_{54}NaO_2$	517.4016	-0.5
	Ν	523.3744	C32H52NaO4	523.3758	2.7
	Ι	535.4102	C34H56NaO3	535.4122	3.7
	Μ	553.4193	C34H58NaO4	553.4227	6.2
-	Η	579.4008	C35H56NaO5	579.4020	2.0

5.2 Hop-Off Products in Fermentations of *S. cinnamonensis* A495

Intermediates M4 and M5-11_{A/B} released from the biosynthetic pathway were detected in extracts of fermentations using LC-HRMS. Exemplary MS spectra are shown for the most abundant intermediates M8_B and M8_A. Mass spectrometric data for all intermediates are listed on the following page. Afterwards MS^2 analysis is given for intermediates $M10_{A/B}$, $M11_{A/B}$ and $M12_{A/B}$. $M12_{A/B}$ are non-cyclized final products detected in very low abundancies. MS^2 data of earlier intermediates are omitted from the SI as they do not fragment under the given conditions.

Figure S 17: Exemplary MS spectra of intermediates $M8_B$ and $M8_A$ from the premonensin biosynthetic pathway with characteristic adducts.

Figure S 18: Overview of the intermediates released from the assembly line of premonensin. Intermediates in grey were not detected due to sample preparation. LM = loading module.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
M4	209.1537	C13H21O2	C13H22O3	209.1536	-0.6	3
	227.1642	C13H23O3		227.1642	0.1	2
	249.1462	$C_{13}H_{22}NaO_3$		249.1461	-0.3	1
М5в	249.1851	C16H25O2	C16H26O3	249.1849	-0.9	17
	267.1953	$C_{16}H_{27}O_3$		267.1955	0.5	16
	289.1771	C ₁₆ H ₂₆ NaO ₃		289.1774	1.0	12
M5 _A	263.2004	$C_{17}H_{27}O_2$	$C_{17}H_{28}O_3$	263.2006	0.6	53
	281.2114	C17H29O3		281.2111	-1.0	28
	303.1929	C ₁₇ H ₂₈ NaO ₃		303.1931	0.7	26
М6в	277.2159	$C_{18}H_{29}O_2$	C18H30O3	277.2162	1.1	13
	295.2266	$C_{18}H_{31}O_3$		295.2268	0.6	5
	317.2084	C18H30NaO3		317.2087	1.1	6
M6A	291.2315	$C_{19}H_{31}O_2$	C19H32O3	291.2319	1.4	33
	309.2422	C19H33O3		309.2424	0.6	10
	331.2242	C ₁₉ H ₃₂ NaO ₃		331.2244	0.6	9
М7в	317.2472	$C_{21}H_{33}O_2$	$C_{21}H_{34}O_{3}$	317.2475	1.1	28
	335.2576	$C_{21}H_{35}O_3$		335.2581	1.3	19
	357.2400	C ₂₁ H ₃₄ NaO ₃		357.2400	0.1	5
M7 _A	331.2631	$C_{22}H_{35}O_2$	$C_{22}H_{36}O_3$	331.2632	0.3	8
	349.2735	C22H37O3		349.2737	0.7	26
	371.2555	C ₂₂ H ₃₆ NaO ₃		371.2557	0.5	6
М8в	345.2784	C23H37O2	C23H38O3	345.2788	1.3	5
	363.2891	C ₂₃ H ₃₉ O ₃		363.2894	0.9	6
	385.2708	C ₂₃ H ₃₈ NaO ₃	0.11.0	385.2713	1.3	2
M8A	359.2939	$C_{24}H_{39}O_2$	$C_{24}H_{40}O_3$	359.2945	1.4	5
	377.3047	$C_{24}H_{41}O_3$		377.3050	1.0	3
160	399.2864	C ₂₄ H ₄₀ NaO ₃	0.11.0	399.2870	1.4	3
M9B	343.2990	$C_{24}H_{39}O$	$C_{24}H_{40}O_2$	343.2995	1.5	452
	361.3095	$C_{24}H_{41}O_2$		361.3101	1.7	26
10	383.2913	C ₂₄ H ₄₀ NaO ₂	0.11.0	383.2921	1.9	0
M9A	357.3130	$C_{25}H_{41}O$	C25H42O2	357.3152	6.1 1.7	51
	3/5.3231	$C_{25}\Pi_{43}O_2$		3/3.3238	1./) 1
M10-	397.3070	C25H42INaO2	Cultur	397.3077	1.0	1
MITOB	443.3300	$C_{28}\Pi_{45}O_{4}$	C28H46O5	443.3312	1.0	2
	405.5411 485 3234	$C_{28}H_{47}O_5$		405.5410	1.0	3
M104	450.3254	C2811461VaO5	CasHuoOr	450.3460	0.0	5
WIIUA	439.3430	$C_{29}H_{4}/O_{4}$	C291148O5	439.3409	2.3	0
	477.5505	$C_{29}H_{49}O_5$		477.3373	2.0	4
M11 _P	485 3623	C21H40O4		485 3625	0.6	46
TATTD	503 3723	$C_{31}H_{51}O_{5}$	0311130003	503.3023	15	40 8
	525 3544	C31H50N2O5		525 3550	1.5	2
M114	400 3771	C32H51O4	C32H52O5	499 3782	91	34
MILIA	517,3881	C32H53O5	~J211J2~J	517,3888	13	6
	539,3700	C32H52NaO5		539,3707	1.3	10
М12в	601.4068	C34H58NaO7	C34H58O7	601.4075	1.1	11
M12A	615.4224	C35H60NaO7	C35H60O7	615.4231	1.2	11

Table S 3: Overview of the mass spectrometric data of different adducts of the hop-off intermediates released from the premonensin biosynthetic pathway in *S. cinnamonensis* A495.

Figure S 19: MS^2 spectra of the hop-off product $M10_{A/B}$

Table S 4: Mass spectrometric data of the fragment ions of $M10_{A/B}$.

	Meas. m/z	ion formula	m/z	err [ppm]
		М10в		
Α	383.2919	C24H40NaO2	383.2921	0.5
В	411.3233	C ₂₆ H ₄₄ NaO ₂	411.3234	0.2
С	423.3219	$C_{27}H_{44}NaO_2$	423.3234	3.5
D	467.3124	C ₂₈ H ₄₄ NaO ₄	467.3132	1.6
		M10A		
Α	397.3111	C25H42NaO2	397.3077	-8.7
В	425.3393	C ₂₇ H ₄₆ NaO ₂	425.3390	-0.8
С	437.3372	C ₂₈ H ₄₆ NaO ₂	437.3390	4.2
D	481.3591	$C_{29}H_{46}NaO_4$	481.3294	61.7

Figure S 20: MS^2 spectra of the hop-off product $M11_{A/B}$

Table S 5: Mass spectrometric data of the fragment ions of $\text{M11}_{\text{A/B}}$

Fragment	Meas. m/z	ion formula	m/z	err [ppm]
		M11 _B		
Α	165.0513	C7H10NaO3	165.0522	5.5
В	179.0672	C8H12NaO3	179.0679	3.8
С	207.0622	C ₉ H ₁₂ NaO ₄	207.0628	2.8
D	222.0858	C ₁₀ H ₁₅ NaO ₄	222.0863	2.3
		M11A		
Α	165.0560	C7H10NaO3	165.0522	-23.2
В	179.0693	C8H12NaO3	179.0679	-8.2
С	207.0622	C9H12NaO4	207.0628	2.6
D	222.0854	C10H15NaO4	222.0863	4.1

Figure S 21: MS^2 spectra of the hop-off product $M12_{A/B}$ without lactonization (only trace amounts compared to $Pre_{A/B}$)

Fragment	Meas. m/z	ion formula	m/z	err [ppm]
		M12	В	
Α	183.0625	C7H12NaO4	183.0628	1.7
В	223.0943	C10H16NaO4	223.0941	-0.9
С	241.1041	C10H18NaO5	241.1046	2.2
D	383.2902	C24H40NaO2	383.2921	4.8
Ε	411.2857	C25H40NaO3	411.2870	3.1
F	469.3250	C ₂₈ H ₄₆ NaO ₄	469.3288	8.1
G	539.4068	C33H56NaO4	539.4071	0.4
Н	583.3960	C34H56NaO6	583.3969	1.6
		M12	A	
Α	183.0630	C7H12NaO4	183.0628	-1.2
В	223.0947	C10H16NaO4	223.0941	-2.8
С	241.1043	C10H18NaO5	241.1046	1.5
D	397.3048	C25H42NaO2	397.3077	7.3
Ε	425.3033	C26H42NaO3	425.3026	-1.6
F	483.3410	C29H48NaO4	483.3445	7.2
G	553.4205	C34H58NaO4	553.4227	4.0
н	597.4102	C35H58NaO6	597.4126	3.9

Table S 6: Mass spectrometric data of the fragment ions of $M12_{A/B}$ without typical lactonization.

5.3 ER2⁰ Mutant – Premonensin Derivatives and Hop-Off Products

5.3.1 ER2⁰ Premonensin A and B (ER2⁰Pre_{A/B})

Tab. 1: Characteristic adducts of ER2⁰Pre_{A/B}.

	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
		ER2 ⁰ P	re _B		
	523.3776	C34H51O4	523.3782	1.1	39
mm	541.3881	C34H53O5	541.3888	1.1	8
	559.3988	C34H55O6	559.3993	0.9	1
I	576.4253	C34H58NO6	576.4259	0.9	42
	581.3808	C34H54NaO6	581.3813	0.9	3
	597.3557	C ₃₄ H ₅₄ KO ₆	597.3552	-0.8	71
		ER2ºP	re _A		
	537.3932	C35H53O4	537.3938	1.2	41
	555.4034	C35H55O5	555.4044	1.7	12
m	573.4149	C35H57O6	573.4150	0.2	4
Ĺ	590.4409	C35H60NO6	590.4415	1.0	45
	595.3963	C35H56NaO6	595.3969	1.0	3
	611.3714	C35H56KO6	611.3708	-0.9	75

Figure S 22: MS spectra of ER2⁰Pre_{A/B} with characteristic adducts.

Table S 7: Mass spectrometric data of the fragment ions of $ER2^{0}Pre_{A/B}$.

	o F,	EC	-H2	20	
1	····.	он о	~	₽ G	ö
нс			$\sim\sim\sim$	$\sim \sim \sim$	
TIC	´ I I'			Ē	
		A'B D			
1		(-H ₂ O)		1	1
-	-C ₄ H ₆ O ₃		-CO ₂	-H ₂ O	-C ₃ H ₆ O ₂
¥			*	*	*
к			М	н	Ν
			1	1	
_	HaO		-H ₂ O		
Ţ	1120		~ •	-CO ₂	
		-H₂	<u>,0 </u>		
с.	.	J	1 · · · · ·	,	<u> </u>
	Fragment	meas. m/z	10n formula	m/z	err [ppm]
		100.0000	ER2ºPi	eB	
	F	193.0828	$C_9H_{14}NaO_3$	193.0835	3.9
	G	205.0832	$C_{10}H_{14}NaO_3$	205.0835	1.5
	A	223.0938	$C_{10}H_{16}NaO_4$	223.0941	1.5
	C	237.1093	$C_{11}H_{18}NaO_4$	237.1097	1.6
	D	263.1248	C ₁₃ H ₂₀ NaO ₄	263.1254	2.2
	В	381.2755	C ₂₄ H ₃₈ NaO ₂	381.2764	2.4
	E	409.2693	C ₂₅ H ₃₈ NaO ₃	409.2713	4.8
	L	461.3419	C ₃₀ H ₄₆ NaO ₂	461.3390	-6.2
	K	479.3481	$C_{30}H_{48}NaO_3$	479.3496	3.0
	J	501.3716	$C_{33}H_{50}NaO_2$	501.3703	-2.5
	Ν	507*			
	I	519.3810	C33H52NaO3	519.3809	-0.2
	Μ	537*			
	H	563.3679	C34H52NaO5	563.3707	5.1
			ER2ºPı	eA	
	F	193.0839	C9H14NaO3	193.0835	-2.0
	G	205.0836	C ₁₀ H ₁₄ NaO ₃	205.0835	-0.4
	Α	223.0933	C10H16NaO4	223.0941	3.4
	С	237.1090	C11H18NaO4	237.1097	3.2
	D	263.1232	C13H20NaO4	263.1254	8.3
	В	395.291	C25H40NaO2	395.2921	2.8
	Ε	423*			
	L	475*			
	K	493.3682	C ₃₁ H ₅₀ NaO ₃	493.3652	-6.1
	J	515*			
	Ν	-			
	I	533*			
	Μ	-			
	Н	577.3807	C ₃₁ H ₅₄ NaO ₈	577.3711	-16.7

Figure S 23: MS^2 spectra of $ER2^0Pre_{A/B}$.

5.3.2 Hop-Off Products ER2⁰

Figure S 24: Overview of the intermediates released from the assembly line of premonensin. Intermediates released from module 6 and 7 were not detectable. LM = loading module.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
ER2ºM4	207.1362	$C_{13}H_{19}O_2$	$C_{13}H_{20}O_3$	207.1356	-3.3	173
	225.1483	C13H21O3		225.1485	0.8	20
	247.1312	C13H20NaO3		247.1305	-2.8	83
ER2 ⁰ M5 _B	247.1675	$C_{16}H_{23}O_2$	$C_{16}H_{24}O_{3}$	247.1693	7.2	20
	265.1800	C16H25O3		265.1798	-0.6	143
	287.1619	C ₁₆ H ₂₄ NaO ₃		287.1618	-0.5	15
ER2 ⁰ M5A	261.1842	C17H25O2	C17H26O3	261.1849	2.8	35
	279.1965	C17H27O3		279.1955	-3.9	50
	301.1771	$C_{17}H_{26}NaO_3$		301.1774	1.0	23
ER2 ⁰ M8 _B	361.2731	C23H37O3	C23H36O3	361.2737	1.7	23
	383.2550	C ₂₃ H ₃₆ NaO ₃		383.2557	1.6	10
ER2 ⁰ M8A	375.2887	C24H39O3	C24H38O3	375.2894	1.7	25
	397.2709	$C_{24}H_{38}NaO_3$		397.2713	1.1	23
ER2 ⁰ M9 _B	381.2760	$C_{24}H_{38}NaO_2$	$C_{24}H_{38}O_2$	381.2764	1.1	4
ER2 ⁰ M9A	395.2917	C25H40NaO2	$C_{25}H_{40}O_2$	395.2921	0.9	7
ER2ºM10 _B	443.3159	$C_{28}H_{43}O_4$	$C_{28}H_{44}O_5$	443.3156	-0.7	35
	461.3251	C28H45O5		461.3262	2.3	29
	483.3091	C ₂₈ H ₄₄ NaO ₅		483.3081	-2.0	29
ER2 ⁰ M10A	467.3125	C29H45NaO4	C29H46O5	467.3132	1.4	43
	475.3403	C29H47O5		475.3418	3.1	n.a.
	497.3240	C29H46NaO5		497.3237	-0.6	33
ER2 ⁰ M11 _B	501.3578	C31H49O5	C31H48O5	501.3575	-0.6	211
	523.3394	C ₃₁ H ₄₈ NaO ₅		523.3394	0.0	44
ER2 ⁰ M11 _A	515.3691	C32H51O5	C32H50O5	515.3731	7.8	111
	537.3517	C32H50NaO5		537.3550	6.1	51
ER2 ⁰ M12 _B	599.3913	C34H56NaO7	C34H56O7	599.3918	0.9	4
ER2ºM12A	613.4067	C35H58NaO7	C35H58O7	613.4075	1.3	3

Table S 8: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER2⁰.

Table S 9: Mass spectrometric data of the fragment ions of $ER2^{0}M12_{A/B}$ without the typical lactonization. For the fragmentation pattern see Figure S 21. For further hop-off products no MS² spectra were recorded due to very low intensity in MS1 ($ER2^{0}M12_{A/B}$).

		$B \xrightarrow{-H_2O} C$	~~~~	$\stackrel{O}{\stackrel{H_2O}{\longrightarrow}} H$
Fragmer	nt Meas. m/z	ion formula	m/z	err [ppm]
		ER2 ⁰ M	12 _B	
Α	183.0624	C7H12NaO4	183.0628	2.0
В	223.0935	C10H16NaO4	223.0941	2.8
С	241.1041	C10H18NaO5	241.1046	2.4
D	381.2749	C24H38NaO2	381.2764	4.0
Ε	409.2697	C25H38NaO3	409.2713	3.9
F	467.3136	C ₂₈ H ₄₄ NaO ₄	467.3132	-1.0
G	537.3895	C33H54NaO4	537.3914	3.5
H	581.3789	C ₃₄ H ₅₄ NaO ₆	581.3813	4.1
		ER2 ⁰ M	12A	
Α	183.0638	C7H12NaO4	183.0628	-5.7
В	223.0939	C10H16NaO4	223.0941	1.0
С	241.1035	C10H18NaO5	241.1046	4.5
D	395.2904	C25H40NaO2	395.2921	4.3
Ε	423.2855	C ₂₆ H ₄₀ NaO ₃	423.2870	3.5
F	481.3265	C29H46NaO4	481.3288	4.9
G	551.4059	C34H56NaO4	551.4071	2.2
н	595.3979	C35H56NaO6	595.3969	-1.7

5.4 Further ER⁰ Mutants – Premonensin Derivatives and Hop-Off Products

5.4.1 ER6⁰ Premonensin A and B

Tab. 2: Mass spectrometric data of characteristic adducts of ER6⁰Pre_{A/B}.

Figure S 25: MS² spectra of ER6⁰Pre_{A/B}.

Table S 10: Mass spectrometric data of the fragment ions of ER6⁰Pre_{A/B}.

HO			Q R		O	-C ₄ H ₆ O ₃
	Fragment	Meas. m/z	ion formula	m/z	err [ppm]	_
			ER6 ⁰ P	reB		
	S	193.0828	C9H14NaO3	193.0835	3.5	
	Α	223.0938	$C_{10}H_{16}NaO_4$	223.0941	1.2	
	Q	428.2551	$C_{24}H_{37}NaO_5$	428.2533	-4.1	
	В	381.2774	$C_{24}H_{38}NaO_2$	381.2764	-2.6	
	K	479.3476	C ₃₀ H ₄₈ NaO ₃	479.3496	4.2	_
			ER6 ⁰ P	reA		_
	S	193.0824	C9H14NaO3	193.0835	5.7	
	Α	223.0942	$C_{10}H_{16}NaO_4$	223.0941	-0.3	
	Q	442.2694	C25H39NaO5	442.2690	-1.0	
	В	395.2911	$C_{25}H_{40}NaO_2$	395.2921	2.4	
	K	493.3670	C31H50NaO3	493.3652	-3.6	

5.4.2 ER8⁰ Premonensin A and B

Table S 11: Mass spectrometric data of characteristic adducts of ER8⁰Pre_{A/B}.

Figure S 26: MS^2 spectra of $ER8^0Pre_{A/B}$.

Table S 12: Mass spectrometric data of the fragment ions of ER80Pre_{A/B}.

Fragment	Meas. m/z	ion formula	m/z	err [ppm]
	ER8 ⁰ Pre _B			
Р	165.0884	C ₈ H ₁₄ NaO ₂	165.0886	1.2
Α	223.0939	C10H16NaO4	223.0941	1.0
С	238.1174	C11H19NaO4	238.1176	0.8
0	346.1744	C ₁₈ H ₂₇ NaO ₅	346.1751	1.9
В	381.2755	C24H38NaO2	381.2764	2.4
К	479.3480	C ₃₀ H ₄₈ NaO ₃	479.3496	3.2
	ER8 ⁰ Pre _A			
Р	165.0886	C ₈ H ₁₄ NaO ₂	165.0886	0.0
Α	223.0944	C10H16NaO4	223.0941	-1.4
С	238.1177	C11H19NaO4	238.1176	-0.6
0	346.1751	C ₁₈ H ₂₇ NaO ₅	346.1751	0.0
В	395.2921	C25H40NaO2	395.2921	-0.2
К	493.3659	C ₃₁ H ₅₀ NaO ₃	493.3652	-1.4
5.4.3 Hop-Off Products from the Biosynthesis of ER6⁰ and ER8⁰ Premonensin A and B

	Mars m/z	ion formula	Sum Formula	m/z	err [nnm]	mSigma
	Wieas. III/Z	ion formula	Sull Pormula	111/ Z	en [ppm]	morgina
ER6 ⁰ M6b	295.2253	C18H31O3	C18H30O3	295.2268	5.1	n.a.
	317.2085	C18H30NaO3		317.2087	0.6	n.a.
ER6 ⁰ M6A	309.2413	C19H33O3	C19H32O3	309.2424	3.6	23
	331.2239	C19H32NaO3		331.2244	1.5	16
ER6 ⁰ M7 _B	355.2242	C21H32NaO3	C21H32O3	355.2244	0.6	22
ER6ºM7A	347.2584	$C_{22}H_{35}O_3$	$C_{22}H_{34}O_3$	347.2581	-1.1	n.a.
	369.2396	C22H34NaO3		369.2400	1.1	19
ER6 ⁰ M8 _B	383.2557	C23H36NaO3	$C_{23}H_{36}O_3$	383.2557	-0.1	222
ER6 ⁰ M8 _A	375.2887	C24H39O3	C24H38O3	375.2894	1.7	28
	397.2708	C24H38NaO3		397.2713	1.3	23
ER6ºM9 _B	381.2757	C24H38NaO2	$C_{24}H_{38}O_2$	381.2764	1.7	17
ER6 ⁰ M9 _A	373.3082	C25H41O2	C25H40O2	373.3101	5.1	n.a.
	395.2914	$C_{25}H_{40}NaO_2$		395.2921	1.6	24

Table S 13: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER6⁰.

Table S 14: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER6⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
ER8 ⁰ M8 _B	383.2553	C23H36NaO3	C23H36O3	383.2557	1.0	6
ER8 ⁰ M8A	397.2708	C24H38NaO3	C24H38O3	397.2713	1.4	14
ER8 ⁰ M9 _B	359.2939	$C_{24}H_{39}O_2$	$C_{24}H_{38}O_2$	359.2945	1.5	22
	381.2760	C24H38NaO2		381.2764	1.1	4
ER80M9A	373.3096	$C_{25}H_{41}O_2$	$C_{25}H_{40}O_2$	373.3101	1.4	3
	395.2915	C25H40NaO2		395.2921	1.3	3
ER8 ⁰ M10 _B	461.3255	C28H45O5	C ₂₈ H ₄₄ O ₅	461.3262	1.5	29
	483.3074	C ₂₈ H ₄₄ NaO ₅		483.3081	1.4	29
ER8 ⁰ M10A	475.3413	C29H47O5	C29H46O5	475.3418	1.0	8
	497.3232	C29H46NaO5		497.3237	1.2	7
ER2 ⁰ M11 _B	501.3570	C31H49O5	C31H48O5	501.3575	0.9	35
	523.3387	C31H48NaO5		523.3394	1.4	19
ER2 ⁰ M11 _A	515.3728	C32H51O5	C32H50O5	515.3731	0.7	6
	537.3546	C ₃₂ H ₅₀ NaO ₅		537.3550	0.8	4

5.5 KR⁰ Mutants – Premonensin Derivatives and Hop-Off Products

5.5.1 KR4⁰Pre_{A/B}

Table S 15: Mass spectrometric data of characteristic adducts of KR4⁰Pre_{A/B}.

	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
		KR4 ⁰ Pre _B			
mm	575.3938	C34H55O7	575.3942	0.7	48
	597.3761	C34H54NaO7	597.3762	0.1	11
	613.3495	C ₃₄ H ₅₄ KO ₇	613.3501	1.1	22
		KR4 ⁰ Pre _A			
mm	589.4090	C35H57O7	589.4099	1.4	8
	611.3911	C35H56NaO7	611.3918	1.1	1
	627.3649	C35H56KO7	627.3658	1.4	21

Table S 16: Mass spectrometric data of the fragment ions of KR4⁰Pre_{A/B}.

Fragment	Meas. m/z	ion formula	m/z	err [ppm]
	KR4	⁰ Pre _B		
Α	223.0931	C10H16NaO4	223.0941	4.2
В	397.2699	C24H38NaO3	397.2713	3.5
K	495.3431	C ₃₀ H ₄₈ NaO ₄	495.3445	2.8
	KR4	⁰ Pre _A		
Α	223.0933	C10H16NaO4	223.0941	3.7
В	411.2863	C25H40NaO3	411.2870	1.7
K	509.3602	C31H50NaO4	509.3601	-0.2

5.5.2 KR6⁰Pre_{A/B}

	оно	O R			o
	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
		KR6 ⁰ Pre _B			
····	575.393	C34H55O7	575.3942	2.2	48
	597.3761	C ₃₄ H ₅₄ NaO ₇	597.3762	0.2	8
	613.3508	C ₃₄ H ₅₄ KO ₇	613.3501	-1.0	n.a.
		KR6 ⁰ Pre _A			
mm	589.4096	C35H57O7	589.4099	0.5	9
l	611.3915	C35H56NaO7	611.3918	0.5	6
	627.3658	C35H56KO7	627.3658	0.0	n.a.

Table S 17: Mass spectrometric data of characteristic adducts of KR6⁰Pre_{A/B}.

Figure S 28: MS² spectra of KR6⁰Pre_{A/B}.

Fragment	meas. m/z	ion formula	m/z	err [ppm]
		KR6 ⁰ P	reB	
F	193.0853	C9H14NaO3	193.0835	-9.3
G	205.09*			
Α	223.0937	C10H16NaO4	223.0941	1.8
С	237.11*			
В	383.2913	C24H40NaO2	383.2921	1.9
K	495.35*			
		KR6 ⁰ P	rea	
F	193.0839	C9H14NaO3	193.0835	-2.1
G	205.0830	C10H14NaO3	205.0835	2.7
Α	223.0937	C10H16NaO4	223.0941	1.9
С	237.1096	C11H18NaO4	237.1097	-0.4
В	397.3074	C25H42NaO2	397.3077	0.7
K	509.3586	C ₃₁ H ₅₀ NaO ₄	509.3601	3.0

Tab. 3: Mass spectrometric data of the fragment ions of KR6⁰Pre_{A/B}. *Only very low intensities detected.

5.5.3 KR11⁰Pre_{A/B}

Table S 18: Mass spectrometric data of characteristic adducts of $KR11^{0}Pre_{A/B}$. The typical lactonization of premonensin is not possible due to the missing hydroxy group.

HO OH O	OH O				
	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
		KR11 ⁰ Pre _B			
mym	575.393	C34H55O7	575.3942	2.2	48
	597.3761	C34H54NaO7	597.3762	0.2	8
	613.3508	C ₃₄ H ₅₄ KO ₇	613.3501	-1.0	n.a.
		KR11 ⁰ Pre _A			
mm	589.4096	C35H57O7	589.4099	0.5	9
l	611.3915	C35H56NaO7	611.3918	0.5	6
	627.3658	C35H56KO7	627.3658	0.0	n.a.

Figure S 29: MS² spectra of KR11⁰Pre_{A/B}.

Table S 19: Mass spectrometric data of the fragment ions of KR11 0 Pre_{A/B}.

Fragmen t	meas. m/z	ion formula	\mathbf{m}/\mathbf{z}	err [ppm]					
Modul KR11 ⁰ B									
В	239.0891	C10H16NaO5	239.0890	-0.5					
D	383.2917	$C_{24}H_{40}NaO_2$	383.2921	0.8					
Ε	411.2868	C25H40NaO3	411.2870	0.5					
F	497.3602	C ₃₀ H ₅₀ NaO ₄	497.3601	-0.1					
G	537.3908	C33H54NaO4	537.3914	1.2					
н	581.3812	C ₃₄ H ₅₄ NaO ₆	581.3813	0.1					
I	479.3512	C ₃₀ H ₄₈ NaO ₃	479.3496	-3.5					
	M	odul KR11º A							
В	239.0885	C10H16NaO5	239.0890	1.9					
D	397.3069	C25H42NaO2	397.3077	1.9					
Ε	425.3015	C ₂₆ H ₄₂ NaO ₃	425.3026	2.6					
F	511.3759	C ₃₁ H ₅₂ NaO ₄	511.3758	-0.3					
G	551.4076	C34H56NaO4	551.4071	-0.9					
н	595.3959	C35H56NaO6	595.3969	1.7					
Ι	493.3658	C ₃₁ H ₅₀ NaO ₃	493.3652	-1.1					

Figure S 30: MS² spectra of KR12⁰Pre_{A/B}.

Table S 20: Mass spectrometric data of the fragment ions of KR12⁰Pre_{A/B}

Fragment	Meas. m/z	ion formula	m/z	err [ppm]
		KR12 ⁰ P	reB	
F	192.1*	C9H13NaO3		
Α	221.0789	C10H14NaO4	221.0784	-2.0
В	383.2913	C24H40NaO2	383.2921	2.0
K	481.4*	C ₃₀ H ₅₀ NaO ₃		
		KR12 ⁰ P	rea	
F	192.0753	C9H13NaO3	192.0757	2.1
Α	221.0780	C10H14NaO4	221.0784	1.9
В	397.3074	C25H42NaO2	397.3077	0.7
K	495.3803	C ₃₁ H ₅₂ NaO ₃	495.3809	1.2

5.5.5 Hop-Off intermediates from KR⁰ Mutants

Figure S 31: Hop-off intermediates from the premonensin assembly line of different KR^0 mutants. All intermediates were detected in the decarboxylated form.

Table S 21: Mass spectrometric data of hop-of products from a fermentation of *S. cinnamonensis* A495 KR4⁰. After the targeted module no, released intermediate could be detected.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
KR4 ⁰ M4	179.1428	C12H19O	$C_{12}H_{20}O_2$	179.1430	1.5	19
	197.1533	$C_{12}H_{21}O_2$		197.1536	1.7	3
	219.1352	$C_{12}H_{20}NaO_2$		219.1356	1.5	7

Table S 22: Mass spectrometric data of hop-of products from a fermentation of *S. cinnamonensis* A495 KR5⁰. After the targeted module no, released intermediate could be detected.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
KR5 ⁰ M5 _B	221.1896	$C_{15}H_{25}O$	$C_{15}H_{26}O_2$	221.1900	1.7	9
	239.2004	$C_{15}H_{27}O_2$		239.2006	0.9	15
	261.1822	C15H26NaO2		261.1825	1.1	2
KR5 ⁰ M5 _A	235.2057	C16H27O	$C_{16}H_{28}O_2$	235.2056	-0.4	12
	253.2165	$C_{16}H_{29}O_2$		253.2162	-1.2	7
	275.1983	$C_{16}H_{28}NaO_2$		275.1982	-0.5	3

Table S 23: Mass spectrometric data of hop-of products from a fermentation of *S. cinnamonensis* A495 KR6⁰. After the targeted module no, released intermediate could be detected.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
KR6 ⁰ M6 _B	265.2161	$C_{17}H_{29}O_2$	$C_{17}H_{28}O_2$	265.2162	0.4	1
	287.1980	C17H28NaO2		287.1982	0.5	1
KR6 ⁰ M6 _A	261.2210	$C_{18}H_{29}O$	$C_{18}H_{30}O_2$	261.2213	1.2	12
	279.2317	C18H31O2		279.2319	0.6	2
	301.2136	$C_{18}H_{30}NaO_2$		301.2138	0.7	2

Table S 24: Mass spectrometric data of hop-of products from a fermentation of S. cinnamonensis A495 KR11⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
KR11 ⁰ M11 _B	457.3663	C30H49O3	C30H50O4	457.3676	2.9	6
	475.3771	C30H51O4		475.3782	2.3	14
	497.3592	$C_{30}H_{50}NaO_4$		497.3601	1.8	14
KR11 ⁰ M11 _A	471.3826	C31H51O3	$C_{31}H_{52}O_4$	471.3833	1.5	9
	489.3930	C31H53O4		489.3938	1.7	17
	511.3752	C31H52NaO4		511.3758	1.2	29

Table S 25: Mass spectrometric data of hop-of products from a fermentation of S. cinnamonensis A495 KR12⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
KR12 ⁰ M12 _B	555.4014	C33H56NaO5	C33H56O5	555.4020	1.0	48
KR12 ⁰ M12 _A	569.4174	C34H58NaO5	C34H58O5	569.4176	0.0	16

Figure S 32: MS^2 spectra of the hop-off intermediates $KR11^0M11_{A/B}$ in their typical decarboxylated form.

Table S 26: Mass spectrometric data of the fragment ions $KR11^{0}M11_{A/B.}$

Fragment	meas. m/z	ion formula	m/z	err [ppm]				
		KR11 ⁰ N	111 _B					
В	383.2918	C24H40NaO2	383.2921	0.6				
Α	411.2866	C25H40NaO3	411.2870	0.8				
	KR11 ⁰ M11 _A							
В	397.3073	C25H42NaO2	397.3077	1.0				
Α	425.3023	C ₂₆ H ₄₂ NaO ₃	425.3026	0.7				

Figure S 33: MS^2 spectra of the hop-off intermediates $KR12^0M12_{A/B}$ in their typical decarboxylated form.

Fragmen	meas.	ion formula	m/z	err [ppm]				
t	m/z			in i				
KK12°M12 _B								
F	109.0258	C4H6NaO2	109.0260	2.2				
Α	137.0570	C ₆ H ₁₀ NaO ₂	137.0573	2.0				
С	165.0881	$C_8H_{14}NaO_2$	165.0886	3.0				
Ε	195.0990	C9H16NaO3	195.0992	1.0				
н	383.2918	C24H40NaO2	383.2921	0.8				
D	411.2868	C25H40NaO3	411.2870	0.4				
В	439.3206	C ₂₇ H ₄₄ NaO ₃	439.3183	-5.4				
G-H20	451.3174	C ₂₈ H ₄₄ NaO ₃	451.3183	1.9				
G	469.3287	C ₂₈ H ₄₆ NaO ₄	469.3288	0.3				
J	519.3805	C33H52NaO3	519.3809	0.6				
I	537.3915	C33H54NaO4	537.3914	-0.1				
]	KR12 ⁰ M12 _A						
F	109.0259	C ₄ H ₆ NaO ₂	109.0260	1.0				
Α	137.0570	C ₆ H ₁₀ NaO ₂	137.0573	2.4				
С	165.0884	C ₈ H ₁₄ NaO ₂	165.0886	1.2				
Ε	195.0989	C9H16NaO3	195.0992	1.2				
н	397.3076	C25H42NaO2	397.3077	0.3				
D	425.3024	C ₂₆ H ₄₂ NaO ₃	425.3026	0.4				
			453.333					
В	453.3332	C ₂₈ H ₄₆ NaO ₃	9	1.7				
			465.333					
G-H20	465.3345	C29H46NaO3	9	-1.3				
G	483.3441	C29H48NaO4	483.3445	0.8				
J	533.3968	C34H54NaO3	533.3965	-0.6				
I	551.4070	C34H56NaO4	551.4071	0.2				

Table S 27: Mass spectrometric data of the fragment ions $KR12^{0}M12_{A/B.}$

5.6 DH⁰ Mutants – Premonensin Derivatives and Hop-Off Products

5.6.1 DH2⁰ Premonensin

Table S 28: Mass spectrometric data of characteristic adducts of DH2⁰Pre_{A/B}.

Figure S 34: MS² spectra of DH2⁰Pre_{A/B}.

Table S 29: Mass spectrometric data of the fragment ions of DH2⁰Pre_{A/B}.

Fragment	meas. m/z ion formula		m/z	err [ppm]
		DH2 ⁰ Pr	ea/b	
F	193.0840	C9H14NaO3	193.0835	-2.7
Α	223.0942	C10H16NaO4	223.0941	-0.3
В	399.2866	C24H40NaO3	399.2870	0.9
Р	499.3441	C29H48NaO5	499.3394	-9.5
0	527.3349	C ₃₀ H ₄₈ NaO ₆	527.3343	-1.1
		DH2ºPr	e _{A/B}	
F	193.0841	C9H14NaO3	193.0835	-2.7
Α	223.0941	C10H16NaO4	223.0941	0.0
В	413.3026	C25H42NaO3	413.3026	0.1
Р	513.3575	C ₃₀ H ₅₀ NaO ₅	513.3550	-4.8
0	541.3501	C ₃₁ H ₅₀ NaO ₆	541.3500	-0.2

5.6.2 DH4⁰ Premonensin

Figure S 35: MS² spectra of DH4⁰Pre_{A/B}.

Table S 31: Mass spectrometric data of the fragment ions of $DH4^{0}Pre_{A/B}$.

Fragmen t	meas. m/z	ion formula	m/z	err [ppm]			
DH4 ⁰ Pre _{A/B}							
Α	223.0940	C10H16NaO4	223.0941	0.2			
В	399.2866	C24H40NaO3	399.2870	0.9			
DH4 ⁰ Pre _{A/B}							
A	223.0936	C10H16NaO4	223.0941	2.3			
В	413.3017	C ₂₅ H ₄₂ NaO ₃	413.3026	2.1			

5.6.3 DH5⁰ Premonensin

Table S 32: Mass spectrometric data of characteristic adducts of DH5⁰Pre_{A/B}.

Figure S 36: MS^2 spectrum of $DH4^0Pre_B$. For the A form with an ethyl group only traces of the final product ($DH5^0Pre_A$) were detected.

Table S 33: Mass spectrometric data of the fragment ions of $DH5^{0}Pre_{B}$.

Fragment	meas. m/z	ion formula	m/z	err [ppm]		
	DH5 ⁰ Pre _{A/B}					
Α	223.0941	C10H16NaO4	223.0941	0.1		
В	401.3015	C24H42NaO3	401.3026	2.8		
К	499.3747	C ₃₀ H ₅₂ NaO ₄	499.3758	2.2		

5.6.4 DH7⁰ Premonensin

Table S 34: Mass spectrometric data of characteristic adducts of $DH7^{0}Pre_{A/B}$.

	но	OH R			0 L
	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
		DH7 ⁰ Pre _B			
····	561.4149	C34H57O6	561.4150	0.1	18
	601.4072	C34H58NaO7	601.4075	0.4	29
		DH7 ⁰ Pre _A			
	575.4302	C35H59O6	575.4306	0.7	9
	615.4225	C35H60NaO7	615.4231	1.0	35

Figure S 37: MS² spectra of DH7⁰Pre_{A/B}.

Table S 35: Mass spectrometric data of the fragment ions of DH7⁰Pre_{A/B}.

Fragment	meas. m/z	ion formula	m/z	err [ppm]			
		DH7 ⁰ Pr	eA/B				
Α	223.0941	C10H16NaO4	223.0941	-0.1			
$B-H_20$	383.2907	C24H40NaO2	383.2921	3.4			
В	401.3027	C24H42NaO3	401.3026	-0.2			
	DH7 ⁰ Pre _{A/B}						
Α	223.0937	C10H16NaO4	223.0941	1.6			
$B-H_20$	397.3070	C25H42NaO2	397.3077	1.8			
В	415.3169	C ₂₅ H ₄₄ NaO ₃	415.3183	3.3			

5.6.5 DH8⁰ Premonensin

Table S 36: Mass spectrometric data of characteristic adducts of DH8⁰Pre_{A/B}.

Figure S 38: MS² spectra of DH8⁰Pre_{A/B}.

Table S 37: Mass spectrometric data of the fragment ions of DH80PreA/B.

Fragment	meas. m/z	ion formula	m/z	err [ppm]				
		DH8 ⁰ Pr	ea/b					
Α	223.0941	C10H16NaO4	223.0941	0.1				
Q	281.1362	C13H22NaO5	281.1359	-1.0				
R	341.2448	C21H34NaO2	341.2451	1.0				
В	399.2876	$C_{24}H_{40}NaO_3$	399.287	-1.5				
		DH8 ⁰ Pre _{A/B}						
Α	223.0942	C10H16NaO4	223.0941	-0.5				
Q	281.1357	C13H22NaO5	281.1359	0.9				
R	355.2602	C22H36NaO2	355.2608	1.5				
В	413.3009	$C_{25}H_{42}NaO_3$	413.3026	4.2				

5.6.6 Hop-Off Intermediates from DH⁰ Mutants

Table S 38: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 DH2⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
DH2 ⁰ M4	225.1483	C13H21O3	C13H22O4	225.1485	0.8	10
	243.1589	$C_{13}H_{23}O_4$		243.1591	0.8	11
	265.1409	$C_{13}H_{22}NaO_4$		265.1410	0.4	24
DH2 ⁰ M5 _B	305.1721	$C_{16}H_{26}NaO_4$	$C_{16}H_{26}O_4$	305.1723	0.7	13
DH2 ⁰ M5 _A	319.1877	C ₁₇ H ₂₈ NaO ₄	C17H28O4	319.1880	0.8	20

Table S 39: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 DH4⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
DH4 ⁰ M4	265.1413	C13H22NaO4	C13H22O4	265.1410	-1.1	21

Table S 40: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 DH5⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
DH5 ⁰ M5 _B	307.1878	C18H27O4	C18H26O4	307.1904	8.3	69
DH5 ⁰ M5A	281.2109	C17H29O3	C17H30O4	281.2111	0.6	14
	299.2214	C17H31O4		299.2217	1.1	27
	321.2033	C17H30NaO4		321.2036	1.0	15

Table S 41: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 DH7⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
DH7 ⁰ M7 _B	not detected					
DH7 ⁰ M7 _A	223.0941	C10H16NaO4	C ₁₀ H ₁₆ NaO ₄	223.0941	-0.1	9.8
	383.2907	C24H40NaO2	$C_{24}H_{40}NaO_2$	383.2921	3.4	n.a.
	401.3027	C24H42NaO3	C24H42NaO3	401.3026	-0.2	n.a.

Table S 42: Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 DH8⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
DH8 ⁰ M8 _B	361.2730	C ₂₃ H ₃₇ O ₃	C ₂₃ H ₃₈ O ₄	361.2737	2.0	n.a.
	401.2655	C ₂₃ H ₃₈ NaO ₄		401.2662	1.9	23
DH8 ⁰ M8A	375.2886	C ₂₄ H ₃₉ O ₃	C24H40O4	375.2894	2.1	18
	415.2816	$C_{24}H_{40}NaO_4$		415.2819	0.8	6

5.7 Double Mutants Nulling Two Reductive Domains

5.7.1 ER2⁰DH8⁰

		R			D
	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
	EI	R2 ⁰ DH8 ⁰ Pre _B			
~~~~~	557.3834	$C_{34}H_{53}O_{6}$	557.3837	0.5	4
	575.3949	C34H55O7	575.3942	-1.2	n.a.
·	597.3763	C34H54NaO7	597.3762	-0.2	3
	613.3502	C ₃₄ H ₅₄ KO ₇	613.3501	-0.1	72
	EI	R2 ⁰ DH8 ⁰ Pre _B			
····	571.3989	C35H55O6	571.3993	0.7	4
l	589.4099	C35H57O7	589.4099	0.0	n.a.
	611.3919	C ₃₅ H ₅₆ NaO ₇	611.3918	-0.1	8
	627.3665	C35H56KO7	627.3658	-1.2	74

Table S 43: Mass spectrometric data of characteristic adducts of  $ER2^{0}DH8^{0}Pre_{A/B}$ .

Table S 44: Mass spectrometric data of characteristic adducts of ER2⁰DH8⁰Pre_{A/B} (dehydrated).

	OH O	Y R		O I I I I I	
	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
	ER2º	DH8 ⁰ Pre _B (-H ₂ C	))		
····	557.3831	C34H53O6	557.3837	1.0	10
	579.3653	$C_{34}H_{52}NaO_6$	579.3656	0.5	14
	595.3417	C34H52KO6	595.3395	-3.6	72
	ER2 ⁰	DH8 ⁰ Pre _B (-H ₂ C	))		
····	571.3978	C35H55O6	571.3993	2.6	40
	593.3806	$C_{35}H_{54}NaO_6$	593.3813	1.1	19

#### 5.7.2 ER2⁰KR4⁰

	но	Y R	O	O	
	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
	El	R2 ⁰ KR4 ⁰ Pre _B			
m	555.3691	C34H51O6	555.3680	-1.9	45
	573.3778	C34H53O7	573.3786	1.4	13
	595.3596	C ₃₄ H ₅₂ NaO ₇	595.3605	1.5	11
	El	R2 ⁰ KR4 ⁰ Pre _B			
mm	569.3839	C35H53O6	569.3837	-0.5	34
	587.3941	C35H55O7	587.3942	0.2	18
	609.3764	C ₃₅ H ₅₄ NaO ₇	609.3762	-0.4	9

Table S 45: Mass spectrometric data of characteristic adducts of ER2⁰KR4⁰Pre_{A/B}.

#### 5.7.3 Hop-Off Intermediates from Double Null Mutants



**Figure S 39:** New hop-off intermediates from the premonensin assembly line of different double null mutants. The intermediates from  $KR^0$  mutants decarboxylated as shown.  $ER2^0M7_{A/B}$  were not detectable in the single mutant  $ER2^0$ .

**Table S 46:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER2⁰DH8⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
ER2 ⁰ M7 _B	333.2421	C ₂₁ H ₃₃ O ₃	C21H32O3	333.2424	0.9	19
	355.2238	C21H32NaO3		355.2244	1.6	2
ER2 ⁰ M7A	347.2587	C22H35O3	C22H34O3	347.2581	-1.9	21
	369.2395	C22H34NaO3		369.24	1.4	6

**Table S 47:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER2⁰DH5⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
ER2 ⁰ DH5 ⁰ M5 _B	283.1896	C16H27O4	C16H26O4	283.1904	2.8	70
	305.1717	C ₁₆ H ₂₆ NaO ₄		305.1723	2.0	53
ER2 ⁰ DH5 ⁰ M5 _A	297.2052	C17H29O4	C17H28O4	297.2060	2.7	64
	319.1877	C17H28NaO4		319.1880	0.8	46

**Table S 48:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER2⁰KR4⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
ER2ºKR4ºM4	177.1273	C ₁₂ H ₁₇ O	$C_{12}H_{18}O_2$	177.1274	0.5	6
	195.1379	$C_{12}H_{19}O_2$		195.1380	0.2	5
	217.1198	$C_{12}H_{18}NaO_2$		217.1199	0.4	56

**Table S 49:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 ER2⁰KR8⁰.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
ER2 ⁰ KR8 ⁰ M8 _B	331.2645	C22H35O2	C22H34O2	331.2632	-4.2	188
	353.2448	$C_{22}H_{34}NaO_2$		353.2451	0.9	23
ER2 ⁰ KR8 ⁰ M8A	345.2809	C23H37O2	C23H36O2	345.2788	-6.2	n.a.
	367.2628	C ₂₃ H ₃₆ NaO ₂		367.2608	0.5	23

#### 5.8 Precursor Directed Biosynthesis – Premonensin Derivatives and Hop-Off Intermediates

## 5.8.1 Premonensin Derivatives (Prex) Resulting from a Precursor Directed Biosynthesis

**Table S 50**: Overview of the mass spectrometric data of different premonensin derivatives resulting from a precursor directed biosynthesis in fermentations of *S. cinnamonensis* A495. Bu: Butyl. Prg: Propargyl. All: Allyl. Pr: Propyl. Cl: 3-chloropropyl.

	meas. m/z	ion formula	calc. m/z	err [ppm]	mSigma
		]	Pre _{Bu}		
····	585.4499	C37H61O5	585.4514	2.4	16
	603.4612	C37H63O6	603.4619	1.1	10
	625.4439	C37H62NaO6	625.4439	-0.1	3
	641.4242	C37H62KO6	641.4178	-10.0	31
		l	Preprg		
~~~~~~	567.4044	C36H55O5	567.4044	0.1	10
	585.4145	C ₃₆ H ₅₇ O ₆	585.4150	0.7	6
	607.3970	C36H56NaO6	607.3969	-0.2	5
1	623.3713	C36H56KO6	623.3708	-0.8	7
]	Pre _{All}		
mpm	569.4188	C ₃₆ H ₅₇ O ₅	569.4201	2.1	9
Ĺ	587.4298	C36H59O6	587.4306	1.4	3
Ì	609.4120	C ₃₆ H ₅₈ NaO ₆	609.4126	0.9	6
	625.3857	C ₃₆ H ₅₈ KO ₆	625.3865	1.2	4
			Pre _{Pr}		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	571.4341	C ₃₆ H ₅₉ O ₅	571.4357	2.8	7
Ĺ	589.4453	C36H61O6	589.4463	1.6	4
	611.4273	C36H60NaO6	611.4282	1.6	5
	627.4018	C36H60KO6	627.4021	0.6	75
			Pre _{Cl}		
	605.3965	C ₃₆ H ₅₈ ClO ₅	605.3967	0.5	67
	623.4063	C ₃₆ H ₆₀ ClO ₆	623.4073	1.6	21
	645.3898	C ₃₆ H ₅₉ ClNaO ₆	645.3892	-0.8	14
Cl	661.3627	C36H59ClKO6	661.3632	0.7	78



Figure S 40: Detection of typical adducts of premonensin derivatives from a precursor directed biosynthesis with the example of  $Pre_{Cl}$ . The adducts show a characteristic isotope pattern for the chloride containing derivative.

Fragment	meas. m/z	ion formula	m/z	err [ppm]
		Prep	r	
F	193.0833	C9H14NaO3	193.0835	1.0
G	$205.08^{*}$			
Α	223.0935	C10H16NaO4	223.0941	2.5
С	237.1092	$C_{11}H_{18}NaO_4$	237.1097	2.4
D	261.13*			
В	411.3222	C ₂₆ H ₄₄ NaO ₂	411.3234	2.8
Ε	439.3219	C ₂₇ H ₄₄ NaO ₃	439.3183	-8.3
L	491.3845	C32H52NaO2	491.3860	2.9
К	509.3947	C ₃₂ H ₅₄ NaO ₃	509.3965	3.5
J	531.4138	$C_{35}H_{56}NaO_2$	531.4173	6.5
Ν	537.39*			
Ι	549.4273	C35H58NaO3	549.4278	1.0
М	567.43*			
H	593.4207	C ₃₆ H ₅₈ NaO ₅	593.4176	-5.2
		Preal	1	
F	193.0837	C9H14NaO3	193.0835	-1.2
G	$205.10^{*}$			
Α	223.0939	C10H16NaO4	223.0941	0.7
С	437.3005	C ₂₇ H ₄₂ NaO ₃	437.3026	4.9
D	$263.12^{*}$			
В	409.3069	C ₂₆ H ₄₂ NaO ₂	409.3077	1.8
Ε	437.30*			
L	489.3687	C ₃₂ H ₅₀ NaO ₂	489.3703	3.2
К	507.3787	C32H52NaO3	507.3809	4.3
J	529.3998	C35H54NaO2	529.4016	3.5
Ν	535.3760	C33H52NaO4	535.3758	-0.4
I	547.4127	C ₃₅ H ₅₆ NaO ₃	547.4122	-1.0
Μ	565.4180	C35H58NaO4	565.4227	8.3
<u> </u>	591.4037	C ₃₆ H ₅₆ NaO ₅	591.4020	-2.9
		Prepr	g	
F	193.0843	C9H14NaO3	193.0835	-4.3
G	-			
Α	223.0942	C10H16NaO4	223.0941	-0.3
С	-			
D	$263.14^*$			
В	407.2905	$C_{26}H_{40}NaO_2$	407.2921	3.8
Ε	435.2869	C ₂₇ H ₄₀ NaO ₃	435.2870	0.1
L	487.36*			
K	505.3666	C ₃₂ H ₅₀ NaO ₃	505.3652	-2.7
J	527.37*			
Ν	533.36*			
I	545.3935	C35H54NaO3	545.3965	5.6
Μ	563.41*			
Н	589,3865	C36H54NaO5	589,3863	-0.3

**Table S 51:** Mass spectrometric data of the fragment ions premonensin derivatives resulting from a precursor directed biosynthesis. Bu: Butyl. Prg: Propargyl. All: Allyl. Pr: Propyl. Cl: 3-chloropropyl. *Only very low intensities were detected.

Frag	gment	meas. m/z	ion formula	m/z	err [ppm]	
			Pre _{Bu}			
	F	193.0855	$C_9H_{14}NaO_3$	193.0835	-10.1	
	G	205.0833	$C_{10}H_{14}NaO_3$	205.0835	0.8	
	Α	223.0941	$C_{10}H_{16}NaO_4$	223.0941	0.0	
	С	237.11*				
	D	263.12*				
	В	425.3372	$C_{27}H_{46}NaO_2$	425.3390	4.2	
	E	453.3357	$C_{28}H_{46}NaO_3$	453.3339	-3.9	
	L	505.4003	$C_{33}H_{54}NaO_2$	505.4016	2.6	
	К	523.4108	$C_{33}H_{56}NaO_3$	523.4122	2.6	
	J	545.4363	$C_{36}H_{58}NaO_2$	545.4329	-6.2	
	Ν	551.39*				
	I	563.4435	$C_{36}H_{60}NaO_3$	563.4435	-0.1	
	М	581.46*				
	H	607.4390	$C_{37}H_{60}NaO_5$	607.4333	-9.3	
		Pre _{ci}				
	F	193.08*				
	G	205.08*				
	Α	223.0947	$C_{10}H_{16}NaO_4$	223.0941	-2.7	
	С	-				
	D	-				
	В	445.2873	$C_{26}H_{43}CINaO_2$	445.2844	-6.6	
	Е	-				
	L	-				
	к	543.38*				
	1	-				
	N	_				
		-				
		601.40*				
_	H	-		400 2077		
В	-HCI	409.30//	$C_{26}H_{42}NaO_2$	409.3077	-0.1	
К	-HCI	507.39*				
ŀ	HCI	547.41*				
	HCI	609.4138	$C_{36}H_{58}NaO_6$	609.4126	-2.0	



**Figure S 41:** Fragmentation pattern of premonensin and its derivatives from the precursor directed biosynthesis. For Pre_{Cl} additional loss of HCl was observed.



**Figure S 42:**  $MS^2$  spectra of premonensin derivatives from a precursor directed biosynthesis in *S. cinnamonensis* A495. From top to bottom:  $Pre_{Bu}$ ,  $Pre_{Prg}$ ,  $Pre_{All}$ ,  $Pre_{Pr}$  and  $Pre_{Cl}$ . For  $Pre_{Cl}$  the isotope pattern of fragments is in accord to the presence or absence of chlorine in the respective fragment.

# 5.8.2 Hop-Off Intermediates from the Premonensin Biosynthesis with New-to-Nature Side Chains



**Figure S 43:** Hop-off intermediates from the premonensin assembly line after incorporation of new-to-nature side chains (in module 5) by precursor directed biosynthesis. All fragments in green have been detected by LC-HRMS.

**Table S 52:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 supplying allyl (All) malonic acid as a building block.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
M5 _{All}	293.2110	C18H29O3	C18H28O3	293.2111	0.5	344
	315.1915	$C_{18}H_{28}NaO_3$		315.1931	5.0	17
M6 _{All}	303.2331	C20H31O2	C20H32O3	303.2319	-4.1	63
	321.2419	C20H33O3		321.2424	1.5	25
	343.2227	C20H32NaO3		343.2244	4.8	7
M7All	343.2629	C23H35O2	C23H36O3	343.2632	0.8	32
	361.2729	C23H37O3		361.2737	2.3	22
	383.2552	C23H36NaO3		383.2557	1.3	13
M8All	371.2944	C25H39O2	C25H40O3	371.2945	0.1	3
	389.3047	$C_{25}H_{41}O_3$		389.3050	0.8	3
	411.2865	C25H40NaO3		411.2870	1.2	6
M9 _{All}	387.3250	$C_{26}H_{43}O_2$	$C_{26}H_{42}O_2$	387.3258	2.0	32
	409.3074	C ₂₆ H ₄₂ NaO ₂		409.3077	0.8	1
M10 _{All}	511.3391	C ₃₀ H ₄₈ NaO ₅	C30H48O5	511.3394	0.7	42
M11 _{All}	511.3781	$C_{33}H_{51}O_4$	$C_{33}H_{52}O_5$	511.3782	0.2	26
	539.3706	C32H52NaO5		539.3707	0.2	28
	551.3702	C33H52NaO5		551.3707	0.9	4

**Table S 53:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 supplying butyl (Bu) malonic acid as a building block. *M11_{Bu} was atypically mainly detected in the linear form.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
M6 _{Bu}	337.2726	C ₂₁ H ₃₇ O ₃	C21H36O3	337.2737	3.2	25
	359.2562	C21H36NaO3		359.2557	-1.5	19
M8 _{Bu}	405.3352	C ₂₆ H ₄₅ O ₃	C26H44O3	405.3363	2.7	n.a.
	427.3175	C ₂₆ H ₄₄ NaO ₃		427.3183	1.9	19
M10 _{Bu}	527.3707	C31H52NaO5	C31H52O5	527.3707	0.0	11
M11 _{Bu}	563.4309	C34H59O6	C34H58O6	563.4306	-0.6	10
*	585.4114	C34H58NaO6		585.4126	2.0	18

**Table S 54:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 supplying propyl (Pr) malonic acid as a building block.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
M5 _{Pr}	295.2256	C ₁₆ H ₃₂ NaO ₃	C18H30O3	295.2244	-4.0	n.a.
	317.2083	C18H30NaO3		317.2087	1.2	17
M6 _{Pr}	305.2474	C20H33O2	C20H34O3	305.2475	0.4	25
	323.2583	C20H35O3		323.2581	-0.7	4
	345.2392	C20H34NaO3		345.2400	2.4	7
M8 _{Pr}	373.3104	$C_{25}H_{41}O_2$	C25H42O3	373.3101	-0.9	14
	391.3203	C25H43O3		391.3207	1.0	1
	413.3023	C25H42NaO3		413.3026	0.8	8
M9 _{Pr}	389.3405	C26H45O2	C26H44O2	389.3414	2.2	n.a.
	411.3215	C ₂₆ H ₄₄ NaO ₂		411.3234	4.5	29
M10 _{Pr}	513.3544	C ₃₀ H ₅₀ NaO ₅	C30H50O5	513.3550	1.3	9
M11 _{Pr}	513.3940	C33H53O4	C33H54O5	513.3938	-0.3	n.a.
	531.4033	C33H55O5		531.4044	2.1	39
	553.3862	C33H54NaO5		553.3863	0.3	20

**Table S 55:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 supplying propargyl (Prg) malonic acid as a building block.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
M5 _{Prg} (traces)	273.1884	C18H25O2	C18H26O3	273.1849	-12.8	18
	291.1973	$C_{18}H_{27}O_3$		291.1955	-6.3	15
	313.1776	C18H26NaO3		313.1774	-0.6	24
M6Prg (traces)	341.2084	C20H30NaO3	C20H30O3	341.2087	0.8	23
M8 _{Prg}	369.2779	$C_{25}H_{37}O_2$	C ₂₅ H ₃₈ O ₃	369.2788	2.6	24
	387.2892	C25H39O3		387.2894	0.4	11
	409.2704	C25H38NaO3		409.2713	2.3	7
M10 _{Prg}	509.3230	C ₃₀ H ₄₆ NaO ₅	C30H46O5	509.3237	1.5	45
M11 _{Prg}	527.3716	C33H51O5	C33H50O5	527.3731	2.9	688
	549.3535	C33H50NaO5		549.3550	2.7	23

**Table S 56:** Overview of the mass spectrometric data of different adducts of the hop-off intermediates from the premonensin biosynthetic pathway in *S. cinnamonensis* A495 supplying 3-chloropropyl (Cl) malonic acid as a building block.

	Meas. m/z	ion formula	Sum Formula	m/z	err [ppm]	mSigma
M8 _{Cl}	425.2813	C ₂₅ H ₄₂ ClO ₃	C ₂₅ H ₄₁ ClO ₃	425.2817	0.9	10
	447.2631	C25H41ClNaO3		447.2636	1.2	10
M9 _{Cl}	445.2841	C26H43ClNaO2	$C_{26}H_{43}ClO_2$	445.2844	0.6	44
M10Cl	547.3157	C30H49ClNaO5	C30H49ClO5	547.3161	0.7	14



**Figure S 44:** Exemplary MS spectrum showing two adducts of the hop-off intermediate M8_{Cl} with the characteristic isotope patterns.



Figure S 45: ¹H-NMR of isolated ER2⁰DH8⁰Pre_B dehydrated during the purification.



Figure S 46: COSY spectrum of isolated ER2⁰DH8⁰Pre_B dehydrated during the purification.



Figure S 47: HSQC spectrum of isolated ER2⁰DH8⁰Pre_B dehydrated during the purification.



Figure S 48: HMBC spectrum of isolated ER2⁰DH8⁰Pre_B dehydrated during the purification.



Figure S 49: ¹H-NMR of isolated ER2⁰DH8⁰Pre_A dehydrated during the purification.

**Table S 57:** Signal assignment for the NMR of ER2⁰DH8⁰Pre_B (dehydrated). ¹³C data were assigned using the HSQC-spectrum if possible.

$\begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$						
		10	20	26		
Position	¹ H [ppm]		<i>J</i> [Hz]	¹³ C [ppm]		
1	-	-	-	174.0		
2	2.47	m	-			
2′	1.41	d	7.1			
3	3.87	dd	4.2/10.3	74.0		
4	2.79	m	-			
4′	0.96	d	7.0	4.8		
5	4.26	m	-	66.4 or 81.5		
6	1.79	m	-			
6′	1.14	m	-			
7	4.26	m	-	66.4 or 81.5		
8	2.74/2.47	m/m	-			
9	-	-	-	197.4 or 201.8		
10	6.10	d	15.3	123.9		
11	7.21	dd	3.0/15.4	148.6		
12	-	-	-			
12′	1.79	m	-			
13	6.00	t	7.5	144.9		
14	2.33	m	-			
15	2.09	m	-			
16	-	-	-			
16´	1.61	S	-	16.2		
17	4.96	d	9.3	131.8		
18	2.42	m	-			
18′	0.93	d	6.8	20.2		
19	2.04	m	-			
20	5.60	dt	7.2/15.2	128.1		
21	6.03	d	7.5	134.8		
22	-	-	-			
22′	1.80	m	-			
23	5.21	d	9.9	128.8		
24	3.48	dq	6.8/9.6	47.0		
24′	1.15	m	-			
25	-	-	-	210.2		
26	2.10	m	-			

#### 7 Ketosynthase Alignments and Phylogenetic Tree



**Figure S 50:** Phylogenetic tree of ketosynthase sequences from 5 different gene clusters of polyether antibiotics.^[4] Mon: Monensin.^[5, 6] Lsd: Lasalocid.^[7, 8] Sal: Salinomycin.^[9] Nan: Nanchangmycin.^[10] Tmn: Tetronomycin.^[11] Numbers indicate the module number of elongation modules in the respective gene cluster. The color used for ketosynthase names represent the redox state of the incoming intermediate from upstream modules. K: Ketone. H: Hydroxyl. O: Olefin. A: Alkane. Modules in grey represent KS from the first elongation module always accepting a  $\beta$ -ketone as incoming intermediate. The sequence alignment represents a part of the whole domain with a highly variable region. The region labeled in red was used by Zhang et. al^[12] establishing fingerprint regions for the type of incoming polyketide intermediate.
## 8 MonAIX, MonAX and Orf31, Streptomyces Manipulation

## 8.1 Cloning

The gene of interest was amplified by PCR using the primer pair 1711 and 1712 and genomic DNA of *Streptomyces cinnamonensis* (1 ng of gen. DNA, 1 M Betain, 1  $\mu$ M of each Primer, Phusion High-Fidelity PCR Master Mix). PCR was performed using 2xPhusion Flash Master Mix in an Pico thermal Cycler (Finnzym). MonAIX, MonAX and Orf31 were amplified from the genomic DNA *S. cinnamonensis* A495 using oligos 1464/1465, 1431/1432 and 1711/1712 respectively. All PCR products were DpnI digested and gel purified (PeqGold gel extraction kit, Peqlab). MonAIX and MonAX were cloned into expression vector pET28(+) (Novagen) with N-terminalHis-tag into the NdeI/XhoI restriction sites. Orf31 was cloned into pETM60 as a fusion protein with NusA using NcoI and HindIII restriction sites. Screening of the positive clones was done by colony PCR and confirmed by the sequencing. Oligonucleotides are listed in table S58.

## 8.2 **Expression and Purification**

For Expressions BL21-CodonPlus (DE3)-RP was used. While soluble expression of Orf31 and fusion proteins in pETM30 and pETM40 failed under varying conditions, Orf31_NusA (pETM60) could be express as a soluble fusion protein. 1 L of medium was inoculated with 10 mL of an overnight culture and was supplemented with kanamycin and cultivated with 180 rpm at 30 °C. Expression was induced with 0.1 mM IPTG at OD₆₀₀ of 0.7 and the culture was shaken with 180 rpm at 18 °C for 14-18 h. Expression of MonAIX and MonAX (pET-28a(+)) was done as described for Orf31_NusA. Cells where harvested by centrifugation (3900 xg, 4 °C, 20 min) and cell pellets stored at -20 °C until further usage. Cell pellets of 1 L culture were resuspended in 15 mL of lysis buffer (50 mM Na₂HPO₄, 300 mM NaCl, 10 % Glycerol, 0.5 % Triton X-100, pH=7.8) and lysed by sonication on ice (4x 20 sec, 50% duty cycle). Cell debris was removed by centrifugation (3900 xg, 4 °C, 20 min), the supernatant was supplied with 10 mM of imidazole and transferred to Ni-NTA columns for enrichment and purification. Five column volumes of lysis buffer with 20 mM of imidazole were used for washing and elution was done with 120 mM imidazole. Fractions containing the desired proteins were pooled, concentrated by centrifugation and a MWCO of 10 kDa. Desalting and buffer exchange were done on PD10 columns.

Protein concentration was determined using Bradford reagents with a BSA standard for calibration. Due to the impurity of Orf31_NusA densitometry was used to determine percentage of 40 % target protein. Proteins were frozen in liquid nitrogen and stored in assay buffer (50 mM Tris, 1 mM EDTA, 10 % glycerol, pH=7.5) at -20 °C.



**Figure S 51:** SDS-PAGE of samples from the purification of MonAIX (left, 30.3 kDa) and MonAX (right, 32.1 kDa) with the crude extract (CE), flow through (FT) and fractions from washing with different imidazole concentrations to determine purification conditions.



**Figure S 52:** SDS-PAGE of samples from the purification of the fusion protein Orf31_NusA with the insoluble fraction (P) crude extract (CE), flow through (FT) and fractions from washing with different imidazole concentrations to determine purification conditions. The percentage of the target protein was determined to be 40 % in pooled and concentrated fraction.

# 8.3 Oligonucleotides Used in this Study

**Table S 58:** List of oligonucleotides used for cloning of the three hydrolases and genetic manipulation of *S. cinnamonensis.*

1102_pl-14thio-fr	atgacatgattacgaattcaccaccaccggctcagaaaccaccaccggctc	
1103_pl-14thio-rev	acggccagtgccaagctaaggaggccaagccgttcgacatcggcggcctggtg	AmonAIX
1104_14thio-jun-fr	ttcgcgggcggttcgttcgatctgcgggtgctgcccggcgggcacttctacctc	
1105_14thio-jun-rev	agcacccgcagatcgaacgaaccgcccgcgaacggaaagcagaccagccgcac	
1106_pl-29thio-fr	atgacatgattacgaatttctgctcgatctggaagagctcgactccgggcatgc	
1107_pl-29thio-rev	acggccagtgccaagctcaggacttctcctcgaacggcgcgcaccacc	AmonAX
1108_29thio-jun-fr	actaccaccccttgcgcaacacttctatctgaacacgcaccagcagggcgtcacg	
1109_29thio-jun-rev	tgcgtgttcagatagaagtgttgcgcaaggggggggggg	
1110_pl-31lip-fr	atgacatgattacgaattaccaacatgaccaactacagccgccccgagcag	
1111_pl-31lip-rev	acggccagtgccaagctcccatcctttattccgcgattcttacgtgatcgaatcccggc	A auf21
1112_31lip-jun-fr	aagccgaccgtcctcttcgtgctgctgaacttcccgatcgagctgctgatccacagc agctcgatcgggaagttcagcagcacgaagaggacggtcggcttgtcaccggcgtcac	∆orf31
1113_31lip-jun-rev	g	
1141_pr14_seq_for	acgtcgtacgaggcgccatcggc	ΔmonAIX
1142_pr14_seq_rev	atcggagatcgcttcgagtaccgggc	sequencing
1143_pr29_seq_for	aaccgggcaccttgaggaacttgcg	∆monAX sequencing
1144_pr29_seq_rev	aggccatcacggctggcaggg	
1145_pr31_seq_for	accacgtgtggcagcgggccc	∆orf31
1146_pr31_seq_rev	accgtccacccaggtcacggacc	sequencing
1195_pr14_seq_long_rev 1196_pr14-screen-	atcggagatcgcttcgagtaccgggctcatcg	∆monAIX screening
for	atgttctccgacgaggagcggccgaaggcc	
1154_pr29-screen_for	acctggtcgacccgtcgttctgggcg	∆monAX screening
1170_pr29-screen-new_rev	atgatcgtccggtacttgccgccgg	
1197_pr31-screen_long_for	aagcagaccaggcgaacgacggcttccggtcg	∆orf31
1198_pr31_seq_long_rev	accgtccacccaggtcacggacccctcgcg	screening
1431pro29exp_for	agcggcctggtgccgcgcggcagccatatgtctgccttccccccacccgatatgtcgg	MonAX
1432pro29exp_rev	tctcagtggtggtggtggtggtggtgctcgagttcaccgagcgttcccccttgctgtcgc	
1464pro14exp_for	agcggcctggtgccgcggcggcagccatatggacaggggcacggcggggcggggc	MonAIX
1465pro14exp_rev	tctcagtggtggtggtggtggtggtgctcgagttcagacgcccggccccgccgtcagcgc	
1711_ORF31_pETM21-60_rv	agggcgacatgttcgtgaaggttcctgtggaggtcaccgtgc	Orf31
1712_ORF31_pETM30-60_fw	gaattcggatcctcaccgcgcgtacgggcgcagc	
1670_codA-Bam_for	attattcggatccgctcgaggttgacatcttttgccgattctgg	codA
1671_codA-Bam_rev	aataatcggatccggcatgctcagcgcttgtagtcgatggcc	
111_KR11/12_Y-F_for	aagtggttggccgcaccgaaggcgccctgctggccactgcccc	Null mutations of
112_KR11/12_Y-F_rev	agtggccagcagggcgccttcggtgcggccaaccacttcctcgacgcc	KR11 and KR12

## 8.4 In vitro Activity Assay of Hydrolases

The activity assay was run in a microtiter plate in a volume of 100  $\mu$ L. For measurement 70  $\mu$ L of assay buffer supplemented with DTNB (50 mM Tris, 1 mM EDTA, 10 % glycerol, 7 mM DTNB, pH=7.5) were mixed with 10  $\mu$ L of the substrates in DMSO (5 mM final concentration). In a first attempt activity was tested with five different SNAC-esters (compounds **1-5**). As a next step compounds **6** and **7** were used.

The reaction was started by adding 20  $\mu L$  of enzyme (MonAIX: 0.36 mg/mL, MonAX: 0.17 mg/mL, Orf31_NusA: 0.40 mg/mL) in assay buffer.

Absorbance at 412 nm was observed for 15 minutes after adding the enzyme. Reaction speed in the linear range at the beginning of the monitoring (2-8 minutes after starting the reaction) were measured in at least triplicates and values were corrected by background hydrolysis of SNAC-esters which was also measured in triplicates.

## 9 Synthesis

## 9.1 General Information

### 9.1.1 Solvents and Reagents

Dry solvents (Et₂O, CH₂Cl₂, THF) were collected from a Solvent-Drying-System from *Mbraun* (SPS-800). In order to dry toluene, freshly distilled toluene was stored for 24h over CaCl₂. The predried toluene was distilled, whereas the first 10% of distillate were discarded. Then, toluene was distilled under argon and stored over activated molecular sieve 4 Å. Dry DMF was purchased from *Sigma Aldrich*. Technical grade solvents (PE, CH₂Cl₂, EtOAc, *n*-hexane, acetone) used for flash chromatography or moisture sensitive reactions, were distilled with the rotation evaporator. HPLC-grade solvents were purchased from *Fisher Scientific*. Triethylamine was dried by adding CaH₂ followed by distillation under argon atmosphere. DMSO was dried by storing it over activated molecular sieve 3 Å in a flame-dried Schlenk flask. MeMgBr was purchased from *Sigma Aldrich* as a 3M solution in diethyl ether.

## 9.1.2 Experimental Setup

Moisture sensitive reactions were performed in flasks, which were flame-dried with a heat gun (630 °C), evacuated and flushed with argon using a Schlenk-system. This procedure was repeated three times. The addition of reagents and solvents was done using syringes and cannulas into septum equipped flasks. Solids were added under an argon-counter stream.

### 9.1.3 Reaction Control and Purification

Thin layer chromatography (TLC) was performed to monitor the course of the reaction using silica gel coated alumina plates from *Merk* (DC Silicagel 60 F₂₅₄). For staining, potassium permanganate solution (9 g KMnO₄, 60 g K₂CO₃, 15 ml 5% aq. NaOH, 900 ml H₂O) was used. For flash chromatography glass columns packed with silica gel from *Macherey-Nagel* (Particle size 40-63  $\mu$ m) as stationary phase were used. As mobile phase eluent mixtures were used (petrol ether, ethyl acetate, CH₂Cl₂, MeOH). The exact ratios are listed in the experimental part.

## 9.2 Characterization Methods

### 9.2.1 NMR-Spectroscopy

The NMR spectra of the ¹H- and ¹³C-nuclei were measured with spectrometers from *Bruker* type DPX 200 (200 MHz), DPX 250 (250 MHz), DRX-400 (400 MHz). The processing of the spectrums was preformed using *MesterLab MestReNova* 10.0. Deuterated chloroform from *Deutero GmbH* was used as a solvent for NMR samples. Chemical shifts  $\delta$  are reported in parts per million (ppm) and coupling constants  $\mathcal{J}$  in Hertz (Hz). The standardization of the spectra was achieved using the chloroform peak from not completely deuterated solvent (CDCl₃:  $\delta$  (¹H) = 7.26 and  $\delta$  (¹³C) = 77.16). Signal multiplicities were reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet, dq = doublet of quartet, bs = broad singlet.

## 9.2.2 Melting Point Determination

The determination of the melting points was achieved using a melting point meter from *Büchi* (M-565). All measurements were performed under atmospheric pressure.

## 9.2.3 Specific Rotation $[\alpha]_D^{20}$

The specific rotation was measured using an *Anton Paar* Propol polarimeter. The measurements were conducted using a halogen lamp in a 5 cm cuvette. The used concentrations c for each measurement are listed in the procedures and are stated in g / 100 ml.

## 9.3 Synopsis ER2⁰-Triketide Thioester



Figure S 53: Synesis synopsis of ER2⁰-type triketide.

### 9.4 Synthetic Procedures for ER2⁰-Triketide Thioester



Synthesis of ethyl (25,35)-3-hydroxy-2-methylbutanoate (17)^[13]

The reaction was performed under argon atmosphere. Freshly distilled diisopropylamine (*i*-Pr₂NH) (31.9 ml, 227 mmol, 3.0 equiv.) was dissolved in dry THF (100 ml) in a flame-dried flask. The solution was cooled to 0 °C and 2.5 M *n*-butyllithium (*n*-BuLi) in hexanes (87.6 ml, 219 mmol, 2.9 equiv.) was added over 30 min. The resulting yellow solution was stirred for another 15 min at 0 °C. Then, the mixture was cooled to -50 °C using a dry ice-acetone bath and ethyl (*S*)-3-hydroxybutanoate **16** (10.0 g, 76 mmol, 1.0 equiv.) dissolved in dry THF (60 ml) was added over 30 min. The solution was stirred for 30 min at -50 °C, before it was cooled to -65 °C. Then, methyl iodide (MeI) (28.4 ml, 454 mmol, 6.0 equiv.) was added over 15 min. The reaction mixture was stirred for 30 min at -65 °C and 15 min at 0 °C. After full conversion of **16** (TLC-control), the reaction mixture was quenched with sat. aq. NH₄Cl (100 ml) and acidified to pH 7 using conc. HCl. Organic and aqueous phase was separated, and the aqueous phase was extracted with diethyl ether (3 x 80 ml). The combined organic phases were washed with brine (150 ml) dried over Na₂SO₄ and concentrated under reduced pressure to give 10.7 g of a yellow liquid. After flash chromatography (PE/EtOAc 9:1  $\rightarrow$  7:3) **17** (8.50 g, 58.1 mmol, 77%) was isolated as a pale-yellow liquid. The diastereomeric ratio was determined using ¹H NMR integration of the corresponding signals *dr* = 10:1.

**TLC:**  $R_f = 0.67$  (PE:EtOAc = 1:1).

**Specific rotation:**  $[\alpha]_D^{20} = +31.7^{\circ}$  (c = 1.01, CH₂Cl₂).

¹**H** NMR (250 MHz, CDCl₃):  $\delta$ (ppm) = 4.16 (q, ³ $\mathcal{J}$  = 7.1 Hz, 2H, C⁶-H), 3.87 (quint, ³ $\mathcal{J}$  = 6.4 Hz, 1H, C³-H), 2.58 (s, 1H, O-H), 2.42 (quint, ³ $\mathcal{J}$  = 7.2 Hz, 1H, C²-H), 1.26 (t, ³ $\mathcal{J}$  = 7.1 Hz, 3H, C⁷-H), 1.20 (d, ³ $\mathcal{J}$  = 6.4 Hz, 3H, C⁴-H), 1.17 (d, ³ $\mathcal{J}$  = 7.3 Hz, 3H, C⁵-H).

¹³C NMR (63 MHz, CDCl₃):  $\delta$ (ppm) = 176.0 (C¹), 69.6 (C³), 60.7 (C⁶), 47.1 (C²), 20.9 (C⁴), 14.3 (C⁷), 14.2 (C⁵).

#### Synthesis of ethyl (2S,3S)-3-((tert-butyldimethylsilyl)oxy)-2-methylbutanoate (18)^[14]



The reaction was performed under argon atmosphere. Ethyl (2*S*,3*S*)-3-hydroxy-2-methylbutanoate (**17**) (8.40 g, 57.4 mmol, 1.0 equiv.) of was dissolved in dry DMF (85 ml), the solution was cooled to 0 °C and imidazole (8.57 g,1.26 mmol, 2.2 equiv.) was added. After the mixture stirred for 15 min at 0 °C, *tert*-butyldimethylsilyl chloride (TBS-Cl) (10.2 g, 68.0 mmol, 1.2 equiv.) in dry DMF (85 ml) was added over 5 min. Subsequently, the reaction mixture was stirred at rt for 3 d. After full conversion of **17** (TLC-control) the reaction was quenched with water (350 ml) and reaction mixture and the product was extracted with EtOAc (3 x 250 ml). The combined organic phases were washed with 1 M HCl (2 x 100 ml), sat. aq. NH₄Cl (100 ml) and brine (150 ml). Then, the organic phase was dried over MgSO₄ · H₂O and concentrated *in vacuo* to give 16.0 g of a pale-yellow liquid. After flash chromatography (PE/EtOAc 30:1) **18** (14.1 g, 54.2 mmol, 94%) was obtained as a colorless liquid.

**TLC:**  $R_f = 0.82$  (PE/EtOAc 9:1).

Specific rotation:  $[\alpha]_D^{20} = +24.6^{\circ}$  (c = 0.29, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃):  $\delta$ (ppm) = 4.11 (q, ³ $\mathcal{J}$  = 7.1 Hz, 2H, C⁶-H), 4.02 (quint, ³ $\mathcal{J}$  = 6.2 Hz, 1H, C³-H), 2.47 (quint, ³ $\mathcal{J}$  = 7.1 Hz, 1H, C²-H), 1.25 (t, ³ $\mathcal{J}$  = 7.1 Hz, 3H, C⁷-H), 1.12 (d, ³ $\mathcal{J}$  = 6.2 Hz, 3H, C⁴-H), 1.08 (d, ³ $\mathcal{J}$  = 7.1 Hz, 3H, C⁵-H), 0.86 (s, 9H, C^{9/10/11}-H), 0.05 (s, 3H, C¹²-H or C¹³-H)[.] 0.03 (s, 3H, C¹²-H or C¹³-H).

¹³**C** NMR (101 MHz, CDCl₃):  $\delta$ (ppm) = 175.2 (C¹), 70.3 (C³), 60.3 (C⁶), 48.3 (C²), 25.9 (C^{9/10/11}), 20.7 (C⁴), 18.1 (C⁸), 14.3 (C⁷), 12.8 (C⁵), -4.2 (C^{12/13}).

Synthesis of (2R,3S)-3-((tert-butyldimethylsilyl)oxy)-2-methyl-butan-1-ol (19)^[15]



The reaction was performed under argon atmosphere. Ethyl (2*S*,3*S*)-3-((*tert*-butyldimethylsilyl)oxy)-2-methylbutanoate (**18**) (10.7 g, 41.1 mmol, 1.0 equiv.) was dissolved in dry toluene (67 ml) and dry CH₂Cl₂ (34 ml) in a flame-dried flask. The solution was cooled to -66 °C with a dry ice/acetone bath and1 M diisobutylaluminium hydride (DIBAL-H) in hexane (123 ml, 123 mmol, 3.0 equiv.) was added over 30 min. The reaction mixture was stirred for 90 min at -66 °C and 60 min at -20 °C. After full conversion of **18** (TLC-control) the reaction was quenched with methanol (42 ml) at -66 °C. After the mixture was stirred for 10 min at -66 °C, then warmed to rt. Then sat. aq. potassium sodium tartrate was added, and the heterogeneous mixture was stirred for 60 min at rt. Then, the phases were separated, and the aqueous phase was extracted with CH₂Cl₂ (2 x 100 ml). The combined organic phases were washed with water (200 ml), brine (200 ml) and dried over Na₂SO₄. After the solvent was removed under reduced pressure **19** (8.94 g, 40.9 mmol, >99%) was isolated as a colourless liquid. **TLC**: R_f = 0.22 (PE/EtOAc 19:1).

**11C.**  $N_f = 0.22$  (1 E/EtOAC 17.1).

Specific rotation:  $[\alpha]_D^{20} = +44.8^{\circ}$  (c = 0.20, CH₂Cl₂).

¹**H NMR** (200 MHz, CDCl₃):  $\delta$ (ppm) = 3.85-3.79 (m, 1H, C¹-H^a), 3.77-3.74 (m, 1H, C³-H), 3.59-3.50 (m, 1H, C¹-H^b), 2.67 (bs, 1H, O-H), 1.70-1.49 (m, 1H, C²-H), 1.21 (d, ³ $\mathcal{J}$  = 6.2 Hz, 3H, C⁴-H), 0.96 (d, ³ $\mathcal{J}$  = 7.0 Hz, 3H, C⁵-H), 0.89 (s, 9H, C^{7/8/9}-H), 0.09 (s, 6H, C^{10/11}-H).

¹³C NMR (50 MHz, CDCl₃):  $\delta$ (ppm) = 74.2 (C³), 66.0 (C¹), 41.8 (C²), 25.9 (C^{7/8/9}), 22.3 (C⁴), 18.0 (C⁶), 14.8 (C⁵), -4.1 (C¹⁰ or C¹¹), -4.8 (C¹⁰ or C¹¹).

#### Synthesis of (2*S*,3*S*)-3-((*tert*-butyldimethylsilyl)oxy)-2-methyl-butanal (20)^[15]



The reaction was performed under argon atmosphere. Oxalyl chloride (0.42 ml, 4.88 mmol, 2.5 equiv.) was dissolved in dry  $CH_2Cl_2$  (9.4 mL) and cooled to -60 °C using a dry ice/acetone bath. Then dry DMSO (0.62 ml, 8.78 mmol, 4.5 equiv.) was added over 5 min and the solution was stirred for 20 min at -60 °C. Subsequently, (2*R*,3*S*)-3-((*tert*-butyldimethylsilyl)oxy)-2-methylbutan-1-ol (SM, **19**) (425 mg, 1.95 mmol, 1.0 equiv.) in dry  $CH_2Cl_2$  (4.7 ml) was added over 10 min and the mixture was stirred for 60 min at -60 °C. Freshly distilled triethylamine (Et₃N) (1.76 ml, 12.7 mmol, 6.5 equiv.) was added over 5 min and the reaction mixture was stirred for 30 min at -60 °C before it was allowed to reach rt. After full conversion of alcohol **19** (TLC-control), the reaction mixture was diluted with  $CH_2Cl_2$  (20 ml) and quenched with water (10 ml) and sat. aq. NH₄Cl. Then, the aqueous phase was extracted with  $CH_2Cl_2$  (3 x 100 ml), the combined organic phases were washed with brine (100 ml) and dried over MgSO₄ x H₂O. The solvent was removed under reduced pressure to give 677 mg of yellow needles. Flash chromatography (PE/EtOAc 50:1) yielded **20**(342 mg, 1.58 mmol, 81%) as a yellow oil. The aldehyde **20** was stored in an aluminium foil covered flask at -80 °C under argon atmosphere, because it was observed to be unstable at air, light, and rt (on TLC)

**TLC:** R_f = 0.57 (PE/EtOAc 19:1).

**Specific rotation:**  $[\alpha]_D^{20} = +33.6^{\circ}$  (c = 1.27, CH₂Cl₂).

¹**H** NMR (250 MHz, CDCl₃):  $\delta$ (ppm) = 9.75 (d, ³j = 2.6 Hz, 1H, C¹), 4.03 (quint, ³j = 6.2 Hz, 1H, C³-H), 2.44-2.30 (m, 1H, C²-H), 1.22 (d, ³j = 6.2 Hz, 3H, C⁴-H), 1.07 (d, ³j = 7.0 Hz, 3H, C⁵-H), 0.87 (s, 9H, C^{7/8/9}-H), 0.07 (s, 3H, C¹⁰-H or C¹¹-H), 0.05 (s, 3H, C¹⁰-H or C¹¹-H).

¹³**C** NMR (101 MHz, CDCl₃):  $\delta$ (ppm) = 205.3 (C¹), 70.0 (C³), 53.8 (C²), 25.9 (C^{7/8/9}), 21.9 (C⁴), 18.1 (C⁶), 10.8 (C⁵), -4.1 (C^{10/11}).

#### Synthesis of N-acetylcysteamine (HSNAC)^[16]



To a solution of cysteamine hydrochloride (11.4 g, 100 mmol, 1.0 equiv.) in water (250 ml) NaHCO₃ (25.2 g, 300 mmol, 3.0 equiv.) and KOH (5.63 g, 100 mmol, 1.0 equiv.) were added. After stirring for 5 min at rt, the solution was cooled to 0 °C using an ice bath and acetic anhydride (Ac₂O) (9.50 ml, 100 mmol, 1.0 equiv.) was added over 5 min, during which gas formation could be observed. Subsequently, the reaction mixture was stirred for 3 d. After full conversion of the startingmaterial (TLC-control), the reaction mixture was acidified to pH 1 with conc. HCl and the aqueous phase was extracted with EtOAc (3 x 150 ml), dried over MgSO₄ x H₂O and concentrated under reduced pressure to give **HSNAC** (6.98 g, 58.6 mmol, 59%) as a colorless oil.

**TLC:**  $R_f = 0.76$  (CH₂Cl₂/MeOH 9:1).

¹**H NMR** (500 MHz, CDCl₃):  $\delta$ (ppm) = 6.02 (bs, 1H, N-H), 3.42 (q,  ${}^{3}\mathcal{J}$  = 6.2 Hz, 2H, C³-H), 2.70-2.63 (dt,  ${}^{3}\mathcal{J}$  = 8.4 Hz,  ${}^{3}\mathcal{J}$  = 6.4 Hz, 2H, C⁴-H), 2.00 (s, 3H, C²-H), 1.35 (t,  ${}^{3}\mathcal{J}$  = 8.5 Hz, 1H, S-H).

¹³C NMR (126 MHz, CDCl₃):  $\delta$ (ppm) = 170.3 (C₁), 42.6 (C₃), 24.8 (C₄), 23.4 (C₂).

### Synthesis of *rac*-(1-ethoxy-1-oxopropan-2-yl)triphenyl-phosphonium bromide^[17]



*rac*-ethyl 2-bromopropanoate (6.96 g, 38.4 mmol, 1.0 equiv.) and triphenylphosphine (PPh₃) (10.1 g, 38.4 mmol, 1.0 equiv.) were combined in a flask and the suspension was heated to 50 °C. The paleyellow slurry was stirred at 50 °C for 21 h, after which it became a white-yellow solid. The solid was crushed with a scalpel and pulverized using mortar and pestle. The powder was washed with *n*-hexane (4 x 50 ml) filtered over a sintered glass and air-dried overnight. Product *rac*-(1-ethoxy-1oxopropan-2-yl)triphenyl-phosphonium bromide (15.0 g, 33.8 mmol, 88%) was obtained as a creamwhite solid.

**TLC:**  $R_f = 0.52$  (CH₂Cl₂/MeOH 9:1).

**MP:** 139°C.

¹**H NMR** (200 MHz, CDCl₃): δ(ppm) = 8.04-7.83 (m, 6H, C^{arom}-H (*meta*)), 7.83-7.57 (m, 9H, C^{arom}-H (*ortho, para*)), 6.64 (dq, ²*f*^{HP} = 14.4 Hz, ³*f* = 7.1 Hz, 1H, C²-H), 4.10-3.84 (m, 2H, C⁴-H), 1.65 (dd, ³*f*^{HP} = 18.5 Hz, ³*f* = 7.1 Hz, 3H, C³-H), 0.97 (t, ³*f* = 7.1 Hz, 3H, C⁵-H).

¹³**C** NMR (50 MHz, CDCl₃):  $\delta$ (ppm) = 168.0 (d, ² $\mathcal{J}_{CP}$  = 1.5 Hz, C₁), 135.0 (d, ⁴ $\mathcal{J}_{CP}$  = 3.1 Hz, C_{arom} (*para*)), 134.4 (d, ² $\mathcal{J}_{CP}$  = 10.0 Hz, C_{arom} (*ortho*)), 130.3 (d, ³ $\mathcal{J}_{CP}$  = 12.8 Hz, C_{arom} (*meta*)), 117.8 (d, ¹ $\mathcal{J}_{CP}$  = 86.3 Hz, C_{arom} (*ipso*)), 63.0 (s, C₄), 36.8 (d, ¹ $\mathcal{J}_{CP}$  = 50.2 Hz, C₂), 13.7 (s, C₅), 13.1 (d, ² $\mathcal{J}_{CP}$  = 2.9 Hz, C₃).

#### Synthesis of ethyl 2-(triphenyl- $\lambda^5$ -phosphanylidene)-propanoate (R1)^[17]



NaOH (5.25 g, 131 mmol, 2.0 equiv.) was dissolved in water (100 ml) and the solution was cooled to 0 °C using an ice bath. Then, *rac*-(1 ethoxy-1-oxopropan-2-yl)triphenylphospho-nium bromide (*rac*-**27**) (29.1 g, 65.6 mmol, 1.0 equiv.) in CH₂Cl₂ (50 ml) was added over 10 min and the heterogeneous reaction mixture was stirred for 60 min at 0 °C before it was allowed to reach rt over 45 min. Afterwards, the phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 50 ml), the combined organic phases were washed with brine (100 ml) and dried over Na₂SO₄. The solvent was removed under reduced pressure to yield **R1** (23.2 g, 64.1 mmol, 98%) as a neon-yellow solid **R1**. By ¹H NMR integration, the diastereomeric ratio was determined to be *E*:*Z* = 1:2.

**TLC:**  $R_f = 0.52$  (CH₂Cl₂/MeOH 9:1).

#### **MP:** 160 °C.

*Z*-Diastereomer: ¹H NMR (200 MHz, CDCl₃):  $\delta$ (ppm) = 7.69-7.35 (m, 15H, C^{arom}-H), 3.71 (q, 2H, ³J = 7.1 Hz, C⁴-H), 1.61 (d, ³J^{HP} = 13.8 Hz, 3H, C³-H), 0.45 (t, ³J = 7.1 Hz, 3H, C⁵-H).

*E*-Diastereomer: ¹**H** NMR (200 MHz, CDCl₃):  $\delta$ (ppm) = 7.69-7.35 (m, 15H, C^{arom}-H), 4.05 (q, 2H, ³ $\mathcal{J}$  = 7.0 Hz, C⁴-H), 1.60 (d, ³ $\mathcal{J}$ ^{HP} = 14.4 Hz, 3H, C³-H), 1.24 (t, ³ $\mathcal{J}$  = 7.1 Hz, 3H, C⁵-H).

*Z*-Diastereomer: ¹³**C** NMR (63 MHz, CDCl₃):  $\delta$ (ppm) = 170.8 (s, C₁), 133.7 (d, ² $f_{CP}$  = 9.5 Hz, C_{arom} (*ortho*)), 131.6 (d, ⁴ $f_{CP}$  = 2.8 Hz, C_{arom} (*para*)), 128.5 (d, ³ $f_{CP}$  = 12.0 Hz, C_{arom} (*meta*)), 128.4 (d, ¹ $f_{CP}$  = 90.4 Hz, C_{arom} (*ipso*)), 57.6 (s, C₄), 32.1 (d, ¹ $f_{CP}$  = 121.8 Hz, C₂), 14.6 (s, C₅), 12.8 (d, ² $f_{CP}$  = 12.8 Hz, C₃).

*E*-Diastereomer: ¹³**C** NMR (63 MHz, CDCl₃):  $\delta$ (ppm) = 171.0 (s, C¹), 132.2 (d, ²*J*^{CP} = 9.9 Hz, C^{arom} (*ortho*)), 132.0 (d, ⁴*J*^{CP} = 2.8 Hz, C^{arom} (*para*)), 128.6 (d, ³*J*^{CP} = 12.1 Hz, C^{arom} (*meta*)), 128.4 (d, ¹*J*^{CP} = 90.4 Hz, C^{arom} (*ipso*)), 57.6 (s, C⁴), 32.1 (d, ¹*J*^{CP} = 121.8 Hz, C²), 14.6 (s, C⁵), 12.8 (d, ²*J*^{CP} = 12.8 Hz, C³).

Synthesis of ethyl (4R,5S,E)-5-((tert-butyldimethylsilyl)oxy)-2,4-dimethylhex-2-enoate (21)^[18]



The reaction was performed under argon atmosphere. Prior to the reaction dry toluene (20 ml) was degassed through a flow of argon gas. (2*S*,3*S*)-3-((*tert*-butyldimethylsilyl)oxy)-2-methyl-butanal (**20**) (1.00 g, 4.62 mmol, 1.0 equiv.) and 2-(triphenyl-l5-phosphanylidene)-propanoate (**R1**) (2.85 g, 7.86 mmol, 1.7 equiv.) was added. The reaction mixture was stirred for 22 h at 70 °C. After full conversion of **20** (TLC-control) *n*-hexane (70 ml) was added to the reaction mixture, after which a white solid precipitated in the yellow solution. The suspension was filtered over 3 cm celite and washed with *n*-hexane/EtOAc (4:1; 150 ml). The remaining yellow solution was concentrated under reduced pressure to give 2.81 g of a moist neon-yellow solid. Flash chromatography (PE  $\rightarrow$  PE/EtOAc 16:1) yielded **21** (1.34 g, 4.46 mmol, 97%) as a pale-yellow oil. By ¹H NMR integration, the *E*/*Z* ratio was determined to be *E*:*Z* = 11:1.

**TLC:** R_f = 0.77 (PE/EtOAc 9:1).

**Specific rotation:**  $[\alpha]_D{}^{20} = +53.3^\circ (c = 0.30, CH_2Cl_2).$ 

¹**H** NMR (250 MHz, CDCl₃):  $\delta$ (ppm) = 6.68 (dd, ³ $\mathcal{I}$  = 10.2 Hz, ⁴ $\mathcal{I}$  = 1.4 Hz, 1H, C³-H), 4.18 (dq, ³ $\mathcal{I}$  = 7.1 Hz, 2H, C⁹-H^{a/b}), 3.78-3.60 (m, 1H, C⁵-H), 2.58-2.40 (m, 1H, C⁴-H), 1.83 (d, ⁴ $\mathcal{I}$  = 1.4 Hz, 3H, C⁷-H), 1.28 (t, ³ $\mathcal{I}$  = 7.1 Hz, 3H, C¹⁰-H), 1.09 (d, ³ $\mathcal{I}$  = 6.2 Hz, 3H, C⁶-H), 0.98 (d, ³ $\mathcal{I}$  = 6.8 Hz, 3H, C⁸-H), 0.87 (s, 9H, C^{12/13/14}-H), 0.04 (s, 3H, C¹⁵-H or C¹⁶-H), 0.03 (s, 3H, C¹⁵-H or C¹⁶-H).

¹³C NMR (63 MHz, CDCl₃):  $\delta$ (ppm) = 168.5 (C¹), 145.1 (C³), 127.6 (C²), 71.8 (C⁵), 60.5 (C⁹), 41.2 (C⁴), 26.0 (C^{12/13/14}), 21.6 (C⁶), 18.2 (C¹¹), 16.2 (C⁸), 14.4 (C¹⁰), 12.7 (C⁷), -4.2 (C¹⁵ or C¹⁶), -4.7 (C¹⁵ or C¹⁶).

Synthesis of (4*R*,5*S*,*E*)-5-((*tert*-butyldimethylsilyl)oxy)-2,4-dimethylhex-2-enoic acid (22)^[18]



To a solution of ethyl (4*R*,5*S*,*E*)-5-((*tert*-butyl-dimethylsilyl)-oxy)-2,4-dimethylhex-2-enoate (**21**) (3.51 g, 11.7 mmol, 1.00 equiv.) in MeOH (460 ml) was added  $K_2CO_3$  (25.5 g, 185 mmol, 15.8 equiv.) dissolved in water (150 ml). The reaction mixture was stirred and refluxed for 3.5 h. TLC (PE/EtOAc 9:1) showed the full conversion of starting material **21**. After MeOH had been removed *in vacuo*, the remaining aqueous solution was acidified to pH 1 and was immediately extracted with EtOAc (3 x 300 ml). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure to give 3.03 g (11.1 mmol, 95%) of a colourless oil **22**. Acid **22** crystallized in the freezer (-25 °C).

**TLC:** R_{*f*} = 0.76 (CH₂Cl₂/MeOH 9:1).

**Specific rotation:**  $[\alpha]_{D}^{20} = +47.0^{\circ}$  (c = 0.41, MeOH).

¹**H NMR** (250 MHz, CDCl₃):  $\delta$ (ppm) = 10.62 (bs, 1H, O-H), 6.84 (dd, ³ $\mathcal{J}$  = 10.2 Hz, ⁴ $\mathcal{J}$  = 1.4 Hz, 1H, C³-H), 3.80-3.61 (m, 1H, C⁵-H), 2.60-2.44 (m, 1H, C⁴-H), 1.85 (d, ⁴ $\mathcal{J}$  = 1.4 Hz, 3H, C⁷-H), 1.10 (d, ³ $\mathcal{J}$  = 6.2 Hz, 3H, C⁶-H), 0.99 (d, ³ $\mathcal{J}$  = 6.8 Hz, 3H, C⁸-H), 0.87 (s, 9H, C^{10/11/12}-H), 0.04 (s, 3H, C¹³-H or C¹⁴-H), 0.03 (s, 3H, C¹³-H or C¹⁴-H).

¹³C NMR (63 MHz, CDCl₃):  $\delta$ (ppm) = 173.9 (C¹), 148.0 (C³), 126.9 (C²), 71.7 (C⁵), 41.5 (C⁴), 26.0 (C^{10/11/12}), 21.6 (C⁶), 18.2 (C⁹), 16.1 (C⁸), 12.4 (C⁷), -4.2 (C¹³ or C¹⁴), -4.7 (C¹³ or C¹⁴).

Synthesis of *S*-(2-acetamidoethyl) (4*R*,5*S*,*E*)-5-((*tert*-butyl-dimethylsilyl)oxy)-2,4-dimethylhex-2enethioate (23)^[18]



The reaction was performed under argon atmosphere in a flame-dried flask. (4*R*,5*S*,*E*)-5-((*tert*-butyldimethylsilyl)oxy)-2,4-dimethylhex-2-enoic acid (**22**) (3.46 g, 12.7 mmol, 1.0 equiv.) was dissolved in dry DMF (70 ml) and the solution was cooled to 0 °C with an ice bath. Then diphenylphosphoryl azide (DPPA) (4.12 ml, 19.1 mmol, 1.5 equiv.) and triethylamine (Et₃N) (3.52 ml, 25.4 mmol, 2.0 equiv.) were added and the mixture was stirred for 2 h at 0 °C. Afterwards, *N*-acetylcysteamine (**HSNAC**) (1.62 ml, 15.2 mmol, 1.20 equiv.) was added and the mixture was stirred at rt for 17 h. After full conversion of **22** (TLC-control) the reaction was quenched with water (300 ml) was added and the product was extracted with EtOAc (3 x 150 ml). The combined organic phases were washed with water (100 ml), brine (100 ml) and dried over MgSO4. The solvent was removed under reduced pressure yielding 6.10 g of a pale-yellow oil. The crude product was purified using a flash chromatography (PE/EtOAc 1:1) to afford **23** (4.20 g, 11.3 mmol, 89%) as a viscous, colorless oil. **TLC**: R_f = 0.27 (PE/EtOAc 3:2).

**Specific rotation:**  $[\alpha]_D^{20} = +7.5^{\circ}$  (c = 1.18, CH₂Cl₂).

Position	δH ppm (J in Hz)	δC (ppm)	Position	δH ppm (J in Hz)	δC (ppm)
1	-	194.3	8	1.01 (d, 6.8)	16.4
2	-	135.6	9	3.06 (t, 6.4)	28.4
3	6.73 (dd, 9, 1.2)	144.8	10	3.45 (q, 6.0)	40.1
4	2.61-2.44 (m)	41.4	11	-	170.7
5	3.81-3.63 (m)	71.5	12	1.97 (s)	23.2
6	1.09 (d, 6.2)	21.9	13	-	18.1
N-H	6.06 (bs)	-	14-15	(0.88, s)	25.9
7	1.87 (d, 1.3)	12.8	17-18	(0.05, s and/or 0.03, s)	4.2 or 4.7

Table S 59: 1H (250 MHz) and 13C NMR (56 MHz) of 23.

Synthesis of S-(2-acetamidoethyl) (4R,5S,E)-5-hydroxy-2,4-dimethylhex-2-enethioate (24)^[18]



To a solution of *S*-(2-acetamidoethyl) (4*R*,5*S*,*E*)-5-((*tert*-butyl-dimethylsilyl)oxy)-2,4-dimethylhex-2enethioate (**23**) (2.50 g, 6.69 mmol, 1.0 equiv.) in MeOH (90 ml) pyridinium *p*-toluenesulfonate (PPTS) (25.1 g, 100 mmol, 15.0 equiv.) was added. The reaction mixture was stirred for 15 h at 50 °C. After full conversion of **23** (TLC-control) water (50 ml) was added to the reaction mixture and MeOH was removed *in vacuo*. The aqueous solution was extracted with EtOAc (7 x 150 ml). The combined organic phases were washed with brine (150 ml), dried over MgSO₄ and concentrated under reduced pressure to give 1.95 g of a colorless oil. The crude product was purified by flash chromatography (EtOAc) to give **24** (1.62 g, 6.25 mmol, 93%) of a very viscous, colourless oil.

**TLC:**  $R_f = 0.64$  (CH₂Cl₂/MeOH 9:1).

**Specific rotation:**  $[\alpha]_D{}^{20} = +9.9^{\circ}$  (c = 1.06, CH₂Cl₂).

Position	δH ppm (J in Hz)	δC (ppm)	Position	δH ppm (J in Hz)	δC (ppm)
1	-	194.0	7	1.91 (d, 1.4)	12.9
2	-	136.6	8	1.05 (d, 6.8)	16.3
3	6.69 (dd, 9.9, 1.4)	143.6	9	3.13-3.01 (m)	28.4
4	2.66-2.45 (m)	41.1	10	3.45 (q, 6.1)	40.2
5	3.74 (quint, 6.2)	71.3	11	-	171.6
6	1.20 (d, 6.3)	21.2	12	2.00 (s, 3H)	22.8
NH	6.34 (bs)	-			

Table S 60:  1 H (200 MHz) and  13 C NMR (63 MHz) of 24.

Synthesis of S-(2-Acetamidoethyl)(4R,E)-5-oxo-2,4-dimethylhex-2-enthioat (7)



Under an argon atmosphere **24** (56 mg, 215 µmol, 1.0 equiv.) was dissolved in dry  $CH_2Cl_2$  (40 ml), cooled to 0 °C and Dess-Martin periodinane (DMP) (182 mg, 430 µmol, 2.0 equiv.) were added. The mixture was stirred for 30 min at 0 °C. After full conversion of **24** (TLC-control) water (40 ml) was added and the phases were separated. The organic phase was washed with sat. aq. NaHCO₃ (40 ml) and dried over Na₂SO₄ and the solvent was removed under reduced pressure at 30 °C and purification via flash chromatography (CH₂Cl₂:MeOH = 100:0  $\rightarrow$  97.5:2.5) yielded the product *S*-(2-Acetamidoethyl)(4*R*,*E*)-5-oxo-2,4-dimethylhex-2-enthioat (7) (43 mg, 78%) as a colorless oil. **TLC:** R*f* = 0.66 (CH₂Cl₂:MeOH = 9.4:0.6).

Position	δH ppm (J in Hz)	δC (ppm)	Position	δH ppm (J in Hz)	δC (ppm)
1	2.10 (s)	21.0	7	3.01 (t, 6.3)	39.3
2	-	207.2	8	3.36 (q, 6.1)	28.5
3	3.41-3.56 (m	47.1	9	-	170.3
4	6.58 (dq, 9.6, 1.3)	138.2	10	1.91 (s)	23.0
5	-	137.1	11	1.19 (d, 6.8)	15.9
6	-	193.4	12	1.88 (d, 1.3)	12.7
NH	6.37 (bs)	-	-	-	-

Table S 61:  1 H (250 MHz) and  13 C NMR (101 MHz) of

#### Table S 62: Mass spectrometric data of compound 1.





## 9.5 Synopsis Wildtype Triketide Thioester

Ö

**6** (*dr* = 5.8:1)

Figure S 54: Synopsis.

## 9.6 Synthesis Wildtype Triketide Thioester



Synthesis of meso-4,6-dimethylcyclohexane-1,3-dione (meso-10)^[19]

The reaction was performed under argon atmosphere. 2-Butanone (9) (12.0 g, 166 mmol, 1.2 equiv.) and *tert*-butyl methacrylate (8) (19.7 g, 139 mmol, 1.0 equiv.) were dissolved in dry THF (120 ml) in a flame-dried flask. The resulting solution was cooled to 0 °C and potassium *tert*-butoxide (*t*-BuOK) (18.6 g, 166 mmol, 1.2 equiv.) was added. The upcoming thick, cream-colored suspension was the stirred at rt for 50 min. After full conversion of 8 (TLC-control) sat. aq. NH₄Cl (100 ml) was added and the product was extracted with CH₂Cl₂ (9 x 130 ml), EtOAc (9 x 130 ml) and Et₂O (6 x 150 ml). The combined organic phases were dried over MgSO₄ x H₂O and concentrated under reduced pressure to give 16.0 g of a white solid. The crude product was purified by flash chromatography (PE/EtOAc 6:1  $\rightarrow$  3:2) to give *meso*-**10** (11.0 g, 78.6 mmol, 57%) as a white solid.

**TLC:** R_f = 0.48 (PE/EtOAc 1:1).

#### **MP:** 115°C.

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 3.53-3.24 (m, 2H, C¹-H), 2.78-2.55 (m, 2H, C³ H), 2.12 (dt,  ${}^{2}\mathcal{J}$  = 13.8 Hz,  ${}^{3}\mathcal{J}$  = 5.6 Hz, 1H, C⁴-H^a), 1.27-1.04 (m, 1H, C⁴-H^b), 1.11 (d,  ${}^{3}\mathcal{J}$  = 6.5 Hz, 6H, C⁵-H). ¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 204.7 (C²), 58.3 (C¹), 44.8 (C³), 35.9 (C⁴), 13.9 (C⁵).

#### Synthesis of meso-2,4-dimethylpentanedioic acid (meso-11)^[20]



*meso*-4,6-dimethylcyclohexane-1,3-dione (*meso*-10) (7.54 g, 53.8 mmol, 1.0 equiv.) was suspended in water (750 ml). The mixture was cooled to 0 °C and NaIO₄ (75.7 g, 354 mmol, 6.6 equiv.) was added portion-wise. The resulting suspension was stirred for 90 min at 0 °C and at rt for for 16 h. After full conversion of *meso*-10 (TLC-control), the reaction mixture was quenched with sat. aq. Na₂SO₃ (500 ml) and Na₂SO₃ were added. The aqueous solution (pH 6) was acidified to pH 3 using approximately conc. HCl (400 ml). The aqueous phase was extracted with Et₂O (5 x 600 ml) and the combined organic phases were washed with water (200 ml) and dried over MgSO₄ x H₂O. After solvent removal *in vacuo*, 7.13 g of a white solid was obtained. The crude product was recrystallized from toluene yielding *meso*-11 (6.47 g, 40.4 mmol, 75%) as a cream-white solid.

**TLC:** R_f = 0.33 (CH₂Cl₂/MeOH 9:1).

**MP:** 126°C.

¹**H NMR** (200 MHz, CDCl₃):  $\delta$ (ppm) = 11.28 (bs, 2H, O-H), 2.54 (dqd, ³ $\mathcal{J}$  = 10.4, 7.0, 3.4 Hz, 2H, C²-H), 2.11 (dt, ² $\mathcal{J}$  = 13.9 Hz, ³ $\mathcal{J}$  = 11.1 Hz, 1H, C³ H^a), 1.49 (dt, ² $\mathcal{J}$  = 13.9 Hz, ³ $\mathcal{J}$  = 3.4 Hz, 1H, C³-H^b), 1.20 (d, ³ $\mathcal{J}$  = 7.0 Hz, 6H, C⁴-H).

¹³C NMR (50 MHz, CDCl₃):  $\delta$ (ppm) = 183.3 (C¹), 39.4 (C²), 38.4 (C³), 18.6 (C⁴).

#### Synthesis of meso-2,4-dimethylpentane-1,5-diol (meso-12)[21]



The reaction was performed under a continuous argon flow. LiAlH₄ (4.39 g, 116 mmol, 3.0 equiv.) was suspended in dry THF (120 ml) in a flame-dried flask. The grey suspension was cooled to 0 °C and *meso*-2,4 dimethylpentanedioic acid (*meso*-11) (6.17 g, 38.5 mmol, 1.0 equiv.) was added dissolved in dry THF (16 ml) over 25 min, during which gas formation (H₂) could be observed. The reaction mixture was stirred at rt for 1 h. Then, the mixture was heated to 65°C and was stirred for 2 h. After full conversion of *meso*-11 the reaction mixture was cooled 0 °C and the excess LiAlH₄ was quenched very slowly with H₂O (9 ml), 15% NaOH (9 ml) and H₂O (20 ml), during which strong gas development was observed (process of quenching under a continuous argon flow). The precipitated aluminium salts were separated by filtration and washed with Et₂O (3 x 15 ml; 1 x 50 ml). The filtrate was concentrated under reduced pressure and the resulting residue was dissolved in water (50 ml). The aqueous phase was extracted with Et₂O (9 x 60 ml) and the combined organic phases were washed with brine (70 ml) and dried over MgSO₄ x H₂O. After concentration under reduced pressure *meso*-12(4.71 g, 35.6 mmol, 93%) was isolated as a colourless oil. Diol *meso*-12 crystallized in the freezer (- 25 °C). **TLC:** R_f = 0.50 (CH₂Cl₂/MeOH 9:1).

¹H NMR (200 MHz, CDCl₃): δ(ppm) = 3.53-3.32 (m, 4H, C¹-H), 2.99 (s, 2H, O-H), 1.82-1.60 (m, 2H, C²-H), 1.54 (q,  ${}^{3}\mathcal{J}$  = 6.6 Hz, 1H, C³-H^a), 0.92-0.76 (m, 1H, C³-H^b), 0.91 (d,  ${}^{3}\mathcal{J}$  = 6.5 Hz, 6H, C⁴ H). ¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 67.6 (C¹), 37.0 (C³), 33.1 (C²), 17.8 (C⁴).

#### Synthesis of (2*S*,4*R*)-5-hydroxy-2,4-dimethylpentyl acetate (13)^[22]



The reaction was performed under argon atmosphere. To a solution of meso-2,4-dimethylpentane-1,5diol (*meso*-12) (4.42 g, 33.4 mmol, 1.0 equiv.) of in vinyl acetate (3.09 ml, 33.4 mmol, 1.0 equiv.), Amano Lipase from *Pseudomonas fluorescens* (668 mg, 15% w/w) was added in a flame-dried flask. The reaction mixture was stirred at rt for 4 h. Then water (60 ml) was added and the product was extracted with Et₂O (4 x 40 ml). The combined organic phases were dried over MgSO₄ x H₂O and concentrated in vacuo to give 5.22 g of a milky, pale yellow oil. After flash chromatography (PE/EtOAc 7:3) 13 (2.35 g, 13.5 mmol, 41%) was isolated as a pale-yellow liquid.

TLC: Rf = 0.29 (PE/EtOAc 7:3).

**Specific rotation**:  $[\alpha]_D^{20} = +3.9^{\circ}$  (c = 1.41, CH₂Cl₂).

¹H NMR (200 MHz, CDCl₃):  $\delta$ (ppm) = 3.94 (dd, ² $\mathcal{J}$  = 10.8 Hz, ³ $\mathcal{J}$  = 5.4 Hz, 1H, C¹-H^a), 3.81 (dd, ² $\mathcal{J}$  = 10.8 Hz, ³ $\mathcal{J}$  = 6.7 Hz, 1H, C¹-H^b), 3.47 (dd, ² $\mathcal{J}$  = 10.5 Hz, ³ $\mathcal{J}$  = 5.4 Hz, 1H, C⁵-H^a), 3.37 (dd, 2J = 10.5 Hz, ³ $\mathcal{J}$  = 6.3 Hz, 1H, C⁵-H^b), 2.03 (s, 3H, C⁹-H), 2.02 (bs, 1H, O-H), 1.97-1.77 (m, 1H, C²-H), 1.81-1.60 (m, 1H, C⁴-H), 1.41 (dt, ² $\mathcal{J}$  = 13.7 Hz, ³ $\mathcal{J}$  = 6.8 Hz, 1H, C³-H^a), 1.05-0.87 (m, 1H, C³-H^b), 0.93 (d, ³ $\mathcal{J}$  = 6.7 Hz, 3H, C⁶ H), 0.92 (d, ³ $\mathcal{J}$  = 6.7 Hz, 3H, C⁷ H).

¹³C NMR (50 MHz, CDCl₃): δ(ppm) = 171.5 (C⁸), 69.3 (C¹), 68.1 (C⁵), 37.4 (C³), 33.1 (C⁴), 30.1 (C²), 21.1 (C⁹), 18.0 (C⁶), 17.4 (C⁷).

The enantiomeric excess of (13) (ee = 98.2%) was determined by HPLC. Therefore, the 4-nitro-benzoate derivative (25) and (rac-25) (*vide infra*) were synthesized and analyzed via HPLC-UV. For this purpose, a small amount of racemic monoacetate ((±)-13) was prepared.

#### Synthesis of (2*S*,4*R*)-2,4-dimethylhexane-1,5-diol (14)^[23]



Under argon atmosphere and in a flame-dried flask (2S,4R)-5-hydroxy-2.4-dimethylpentyl acetate (13) (904 mg, 5.19 mmol, 1.0 equiv.) was dissolved in dry CH₂Cl₂ (150 ml) and cooled to 0 °C. Then Dess-Martin periodinane (DMP) (4.40 g, 10.4 mmol, 2.0 equiv.) was added. The reaction mixture was stirred at 0 °C for 2.5 h and at rt for 5 min. After full conversion of 13 (TLC-control), the heterogeneous mixture was washed with water (150 ml) and sat. aq. NaHCO₃ (2 x 125 ml) and was dried over MgSO₄ x H₂O. Concentration under reduced pressure gave 2.69 g of a moist white solid. The crude product was filtered through a silica plug (approximately 5 cm in height), using PE/EtOAc (7:3) as the eluent. The corresponding aldehyde (736 mg) was isolated as a pale-yellow liquid, which was observed to be unstable at air, light, and rt (on TLC). Therefore, the aldehyde was directly used for the subsequent reaction. The crude aldehyde intermediate was dissolved in a flame-dried flask under an argon atmosphere in dry Et₂O (10 ml) and cooled to 0 °C. Then, 3 M methylmagnesium bromide (MeMgBr) in Et₂O (2.85 ml, 8.55 mmol, 2.0 equiv.) was added over 30 min. The reaction mixture was stirred at 0 °C for 2 h, during which a hard, brown solid formed, which prevented a good mixing. After full conversion of aldehyde intermediate, the reaction was quenched with water (100 ml) and the aqueous phase was extracted with Et₂O (12 x 50 ml) and the combined organic phases were dried over MgSO₄ x H₂O and concentrated under reduced pressure to give 500 mg of an orange-yellow oil. Flash chromatography (EtOAc/PE 1:1  $\rightarrow$  7:3) afforded 14 (318 mg, 2.17 mmol, 42% over 2 steps) as a 1:1 mixture of syn/anti diastereomers (determined by ¹H NMR integration).

**TLC:** R_f = 0.15 (EtOAc/PE 1:1).

**Specific rotation:**  $[\alpha]_D^{20} = +3.6^{\circ}$  (c = 0.44, CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃):  $\delta$ (ppm) = 3.76 (qd, ³*J* = 6.4, 3.2 Hz, 1H, C⁵-H (*syn* or *anti*)), 3.58 (quint, ³*J* = 6.2 Hz, 1H, C⁵-H (*anti* or *syn*)), 3.50-3.39 (m, 2H, C¹-H^{a/b}), 2.44 (s, 2H, O-H), 1.75-1.64 (m, 1H, C²-H), 1.64-1.52 (m, 2H, C⁴-H and C³-H^a), 1.12 (d, ³*J* = 6.4 Hz, 3H, C⁶-H), 0.94 (d, ³*J* = 6.7 Hz, 3H, C⁷ H (*syn* or *anti*)), 0.91 (d, ³*J* = 6.7 Hz, 3H, C⁷ H (*anti* or *syn*)), 0.91-0.84 (m, 1H, C³-H^b), 0.86 (d, ³*J* = 6.6 Hz, 3H, C⁸ H).

¹³**C NMR** (101 MHz, CDCl₃):  $\delta$ (ppm) = 72.2 (C⁵ (syn or anti)), 70.1 (C⁵ (anti or syn)), 67.7 (C¹ (syn or anti)), 67.2 (C¹ (anti or syn)), 37.9 (C⁴ (syn or anti)), 37.1 (C⁴ (anti or syn)), 36.8 (C³ (syn or anti)), 36.0 (C³ (anti or syn)), 33.5 (C² (syn or anti)), 33.1 (C² (anti or syn)), 19.8 (C⁶ (syn or anti)), 19.7 (C⁶ (anti or syn)), 18.3 (C⁷ (syn or anti)), 18.0 (C⁷ (anti or syn)), 15.9 (C⁸ (syn or anti)), 15.1 (C⁸ (anti or syn)).

Synthesis of (2S,4R)-2,4-dimethyl-5-oxohexanoic acid (15)^[24]



Under argon atmosphere in a flame-dried flask oxalyl chloride (247 µl, 2.87 mmol, 5.0 equiv.) was dissolved in dry  $CH_2Cl_2$  (15 ml) and cooled to -64 °C using a dry ice/acetone bath. Then dry DMSO (408 µl, 5.74 mmol, 10.0 equiv.) was added over 5 min and the solution was stirred for at 64 °C for 1 h. Then, a solution of (2*S*,4*R*)-2,4-dimethylhexane-1,5-diol (**14**) (84.0 mg, 0.574 mmol, 1.0 equiv.) in dry  $CH_2Cl_2$  (3 ml) was added and the mixture was stirred at -64°C for 2 h. Afterwards, freshly distilled triethylamine (Et₃N) (1.08 ml, 7.76 mmol, 13.5 equiv.) was added and the reaction mixture was stirred at -64°C for 1 h and at -30 °C for 1 h. After full conversion of diol **14** (TLC-control) PE/toluene 3:1 (30 ml) was added and a white solid precipitated. The solid was separated by filtration using celite and washed with PE/toluene 3:1 (30 ml). After the solvents were removed *in vacuo*, the **intermediate** (204 mg) was obtained as a pale-yellow oil. Because keto-aldehyde **intermediate** was assumed to be unstable at air, light, and rt, the crude product was directly used for the subsequent reaction.

The crude keto-aldehyde **intermediate** was dissolved in *tert*-butanol (12 ml) and 25 drops of 2-methyl-2-butene. Then, NaClO₂ (639 mg, 7.06 mmol, 12.3 equiv.) and Na₂HPO₄ (1.00 g, 5.63 mmol, 9.80equiv.) dissolved in water (12 ml) were added over 10 min. The reaction mixture was stirred for 60 min at rt. After full conversion of the keto-aldehyde **intermediate** (TLC-control) the reaction mixture was supplemented with water (25 ml), brine (50 ml), sat. aq. Na₂S₂O₃ (50 ml) and the aqueous phase (pH 7) was washed with Et₂O (50 ml) (product remains in the aqueous phase). Then, the aqueous phase was acidified to pH 3 using conc. HCl, and it was extracted with Et₂O (2 x 80 ml). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo* to give 39 mg of a pale yellow solid. After flash chromatography (CH₂Cl₂/MeOH 19:1) **15** (25 mg, 0.16 mmol, 28%) was isolated as a yellow oil. Due to epimerization, product **15** was obtained as a mixture of diastereomers. By ¹H NMR integration, the diastereomeric ratio was determined to be dr = 3.8:1.

**TLC:** R_{*f*} = 0.40 (CH₂Cl₂/MeOH 9:1).

¹**H** NMR (250 MHz, CDCl₃):  $\delta$ (ppm) = 2.71-2.39 (m, 2H, C²-H and C⁴-H), 2.18-2.04 (m, 1H, C³-H^a), 2.16 (s, 3H, C⁶-H), 1.44-1.31 (m, 1H, C³-H^b), 1.21 (d, ³ $\mathcal{J}$  = 7.0 Hz, 3H, C⁷-H), 1.13 (d, ³ $\mathcal{J}$  = 7.0 Hz, 3H, C⁸ H). ¹³C NMR (50 MHz, CDCl₃):  $\delta$ (ppm) = 212.1 (C⁵), 181.7 (C¹), 45.1 (C⁴), 37.3 (C²), 36.2 (C³), 28.1 (C⁶), 17.7 (C⁷), 16.4 (C⁸). Synthesis of S-(2-acetamidoethyl) (2S,4R)-2,4-dimethyl-5-oxo-hexanethioate (6)^[25]



The reaction was performed under argon atmosphere in a flame-dried flask. (2*S*,4*R*)-2,4-dimethyl-5oxohexanoic acid (**15**, dr = 3.8:1) (25 mg, 0.16 mmol, 1.0 equiv.) was dissolved in dry DMF (1 ml). The solution was cooled to 0 °C and diphenylphosphoryl azide (DPPA) (51 µl, 0.24 mmol, 1.5 equiv.) and triethylamine (Et₃N) (44 µl, 0.32 mmol, 2.0 equiv.) were added and stirred for 0 °C for 2 h. Subsequently, *N*-acetylcysteamine (**HSNAC**) (20 µl, 0.19 mmol, 1.2 equiv.) was added stirred and the reaction mixture was stirred at rt for 3 h. After full conversion of the acid **15** (TLC-control) sat. aq. NH₄Cl (20 ml) was added and the aqueous phase was extracted with EtOAc (13 x 30 ml). The combined organic phases were dried over MgSO₄ and concentrated under reduced pressure to give 91 mg of a viscous orange oil. The crude product was purified using flash chromatography (CH₂Cl₂/MeOH 99:1  $\rightarrow$  32:1) yielding **6** (10 mg, 0.039 mmol, 24%) as a viscous, colourless oil. Product **6** was obtained as a mixture of diastereomers. By ¹H NMR integration, the diastereomeric ratio was determined to be dr = 5.8:1.

**TLC:** R_f = 0.54 (CH₂Cl₂/MeOH 9:1).

**Specific rotation:**  $[\alpha]_D^{20} = +7.4^{\circ}$  (c = 0.37, CH₂Cl₂).

Position	δH ppm (J in Hz)	δC (ppm)	Position	δH ppm (J in Hz)	δC (ppm)
1	-	203.8	7	1.18 (d, 6.9)	18.7
2	2.69 (dqd, 8.9, 7.0, 5.6)	46.8	8	1.11 (d, 7.0)	16.9
3	2.19-2.10 (m) and 1.36 (ddd,	36.7	9	3.02 (t, 6.4)	28.6
	14.0, 7.0, 5.6)				
4	2.54 (sext, 7.0)	45.2	10	3.50-3.36 (m)	39.5
5	-	211.8	11	-	170.4
6	2.14 (s)	28.0	12	1.97 (s)	23.3
NH	6.02 (bs)	-	-	-	-

Table S 63: 1H (CDCl₃, 400 MHz) and 13C NMR (CDCl₃, 101 MHz) of 2

 Table S 64: Mass spectrometric data of compound 2.







Compound **13** (100 mg, 0.57 mmol, 1.0 equiv.) and 4-nitrobenzoic acid (143 mg, 0.86 mmol, 1.5 equiv.) were dissolved in  $CH_2Cl_2$  (5 mL). Subsequently, EDC·HCl (164 mg, 0.86 mmol, 1.5 equiv.) and DMAP (17 mg, 0.14 mmol, 0.25 equiv.) were added and the mixture was stirred at rt until complete conversion of the starting material was observed (TLC-Control after 16 h). The reaction was quenched by adding sat. aq. NaHCO₃ (5 mL) and the organic phase was separated and immediately washed with sat. aq. NaHCO₃ (5 mL), sat. aq. NH₄Cl (2 x 5 mL) and brine (5 mL) and dried over Na₂SO₄. The crude product was purified using flash chromatography (petrol ether/EtOAc 7:3 isocratic) yielding **25** (138 mg, 0.43 mmol, 75%) as a viscous, colorless oil.

**TLC:**  $R_f = 0.76$  (petrol ether/EtOAc 7:3).

**Specific rotation:**  $[\alpha]_D^{20} = -1.16^{\circ}(c = 1.2, CHCl_3).$ 

¹**H NMR** (400 MHz, CDCl₃):  $\delta$ (ppm) = 8.30 (d,  $\tilde{\jmath}$  = 8.7 Hz, 2H), 8.20 (d,  $\tilde{\jmath}$  = 8.8 Hz, 2H), 4.26 (dd,  $\tilde{\jmath}$  = 10.8, 5.4 Hz, 1H), 4.15 (dd,  $\tilde{\jmath}$  = 10.8, 6.6 Hz, 1H), 3.97 (dd,  $\tilde{\jmath}$  = 10.8, 5.6 Hz, 1H), 3.88 (dd,  $\tilde{\jmath}$  = 10.8, 6.5 Hz, 1H), 2.14 – 2.05 (m, 1H), 2.03 (s, 3H), 2.00 – 1.91 (m, 1H), 1.53 (dt,  $\tilde{\jmath}$  = 13.8, 6.9 Hz, 1H), 1.14 (dt,  $\tilde{\jmath}$  = 14.4, 7.4 Hz, 1H), 1.07 (d,  $\tilde{\jmath}$  = 6.7 Hz, 3H), 1.00 (d,  $\tilde{\jmath}$  = 6.7 Hz, 3H).

¹³**C NMR** (50 MHz, CDCl₃): δ(ppm) = 171.3, 164.8, 150.7, 135.9, 130.8, 123.7, 70.6, 69.1, 37.7, 30.3, 30.2, 21.1, 17.9, 17.8.

#### HRMS (LCMS-ESI):

Sum Formula	ion formula	found m/z	calc'd m/z	error [ppm]	mSigma
$C_{16}H_{22}NO_{6}$	[M+H] ⁺	324.1442	324.1442	-0.1	2
$C_{16}H_{21}NNaO_6$	[M+Na] ⁺	346.1261	346,1261	0.1	3.3

(2R,4S)-5-acetoxy-2,4-dimethylpentyl 4-nitrobenzoate ((±)-13)



Compound *meso*-**12** (18 mg, 136 µmol, 1.0 equiv.) and Ac₂O (14.5 µL , 150 µmol, 1.1 equiv.) were dissolved in CH₂Cl₂ (5 mL). Subsequently, DMAP (0.5 mg, 4.3 µmol, 0.01 equiv.) was added and the mixture was stirred at rt until complete conversion of the starting material was observed (TLC-Control after 16 h). The reaction was quenched by adding sat. aq. NaHCO₃ (1 mL) and the organic phase was separated and immediately washed with sat. aq. NaHCO₃ (1 mL), sat. aq. NH₄Cl (2 x 1 mL) and brine (1 mL) and dried over Na₂SO₄. The crude product was purified using flash chromatography (petrol ether/EtOAc 95:5  $\rightarrow$  70:30) yielding (±)-13 (15 mg, 88.4 µmol, 65%) as a viscous, colorless oil. The observed data was consistent in all regards (except for optical rotation) with that reported for compound 13.

#### 5-acetoxy-2,4-dimethylpentyl 4-nitrobenzoate ((±)-25)



Compound **13** (3 mg, 17 µmol, 1.0 equiv.) and 4-nitrobenzoic acid (4.3 mg, 26 µmol, 1.5 equiv.) were dissolved in  $CH_2Cl_2$  (5 mL). Subsequently, EDC·HCl (5 mg, 26 µmol, 1.5 equiv.) and DMAP (0.5 mg, 4.3 µmol, 0.25 equiv.) were added and the mixture was stirred at rt until complete conversion of the starting material was observed (TLC-Control after 16 h). The reaction was quenched by adding sat. aq. NaHCO₃ (5 mL) and the organic phase was separated and immediately washed with sat. aq. NaHCO₃ (5 mL), sat. aq. NH₄Cl (2 x 5 mL) and brine (5 mL) and dried over Na₂SO₄. The crude product was purified using flash chromatography (petrol ether/EtOAc 7:3 isocratic) yielding **rac-25** (8 mg, 24.7 µmol, 95%) as a viscous, colorless oil.

The observed data was consistent in all regards (except for optical rotation) with that reported for compound **25**.

#### Determination of enantiomeric excess of compound 25 (13)

**HPLC device:** Dionex Ultimate 3000 HPLC System (consisting of a pump, autosampler, column oven and UV detector)

Column: Chiralpak AGP Analytic 5#m, 100 mm x 4 mm

Sample: Compounds were dissolved in mobile phase buffer system (10 mm NH₄Ac-buffer (pH 5.7):2-

PrOH = 95:5)

### Method:

Mobile phase: 10 mM NH₄Ac-buffer (pH 5.7):2-PrOH = 95:5 isocratic.

UV-Absorption: 270 nm.

Total Runtime: 10 min.

#### **Retentiontime:**

25 major enantiomer = 3.2 min; Area = 79.21

**25** minor enantiomer = 5.7 min; Area = 0.73

$$\mathbf{ee} = \frac{79.21 - 0.73}{79.21 + 0.73} = 98.2 \%.$$



Figure S 55: UV chromatograms of rac-25 (top) and 25 (bottom).



## 9.7 VCD Spectrum of Compound 13 to Verify Absolute Configuration

**Figure S 56:** Verification of absolute configuration of key intermediate **13** by comparison of the measured VCD (vibrational circular dichroism) spectrum (black line in **A**) and IR (infrared) spectrum (black line in **B**) with the respective calculated spectra (red lines). Measurement was conducted with a *Bruker* Vertex 70 IR spectrometer coupled with a *Bruker* PMA50 VCD spectrometer (run in a 0.1 mm thick BaF₂ cell, solvent: CDCl₃, c = 50 mg/ml). The VCD spectrum shows the average value over 34080 scans (the two missing parts originate from a too high sample concentration). Calculation was performed using *Wavefunction* Spartan software. All possible conformers of compound **13** were generated via a force field optimization (functional: B3LYP, basis set: 6-311+G(2d,p). Solvation effects were modelled using the polarizable continuum model (PCM). Band assignment: 1709 cm⁻¹ (C=O stretch, 1), 1476 cm⁻¹ (C-H deformation, 2), 1390 cm⁻¹ (C-H wagging, 3), 1386 cm⁻¹ (C-H wagging, 4), 1359 cm⁻¹ (C-H wagging, 5), 1355 cm⁻¹ (C-H asymmetric stretch, 6), 1233 cm⁻¹ (C-H asymmetric stretch, 7), 1045 cm⁻¹ (C-H rocking, 8). The 3D structures of the three most populated conformers of compound **13** at room temperature are shown on the right with the percentage of population in brackets. Measurements and calculations were performed by the Merten group.

## 9.8 NMR-Spectra of the Synthesis Part (Following Pages)



Figure S 57: ¹H NMR of Cpd *meso-***10**.








































**Figure S 76:** ¹³C NMR of Cpd **19**.















**Figure S 82:** ¹H NMR of **ethyl 2-(triphenyl-λ⁵-phosphanylidene)-propanoate (R1)**.



Figure S 83: ¹³C NMR of ethyl 2-(triphenyl- $\lambda^5$ -phosphanylidene)-propanoate (R1).



Figure S 84: ¹H NMR of Cpd 21.






















## 10 References

- 1. Ojanperä, S., A. Pelander, M. Pelzing, I. Krebs, E. Vuori, and I. Ojanperä, Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry. *Rapid Communications in Mass Spectrometry*, **2006**. 20: 1161-1167
- 2. Rockwood, A.L., S.L. Van Orden, and R.D. Smith, Rapid Calculation of Isotope Distributions. *Analytical Chemistry*, **1995**. 67: 2699-2704
- 3. Tenhosaari, A., Computer-assisted composition analysis of unknown compounds by simultaneous analysis of the intensity ratios of isotope patterns of the molecular ion and daughter ions in low-resolution mass spectra. *Organic Mass Spectrometry*, **1988**. 23: 236-239
- 4. Gallimore, A.R., The biosynthesis of polyketide-derived polycyclic ethers. *Natural Product Reports*, **2009**. 26: 266--280
- Leadlay, P.F., J. Staunton, M. Oliynyk, C. Bisang, J. Cortés, E. Frost, Z.A. Hughes-Thomas, M.A. Jones, S.G. Kendrew, J.B. Lester, P.F. Long, H.A. McArthur, E.L. McCormick, Z. Oliynyk, C.B. Stark, and C.J. Wilkinson, Engineering of complex polyketide biosynthesisinsights from sequencing of the monensin biosynthetic gene cluster. *Journal of Industrial Microbiology and Biotechnology*, **2001**. 27: 360--367
- 6. Bhatt, A., C.B.W. Stark, B.M. Harvey, A.R. Gallimore, Y.A. Demydchuk, J.B. Spencer, J. Staunton, and P.F. Leadlay, Accumulation of an E,E,E-triene by the monensin-producing polyketide synthase when oxidative cyclization is blocked. *Angewandte Chemie-International Edition*, **2005**. 44: 7075-7078
- 7. Minami, A., H. Oguri, K. Watanabe, and H. Oikawa, Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton. *Current Opinion in Chemical Biology*, **2013**. 17: 555--561
- 8. Migita, A., M. Watanabe, Y. Hirose, K. Watanabe, T. Tokiwano, H. Kinashi, and H. Oikawa, Identification of a Gene Cluster of Polyether Antibiotic Lasalocid from Streptomyces lasaliensis. *Biosci. Biotechnol., Biochem.*, **2009**. 73: 169--176
- 9. Yurkovich, M.E., P.A. Tyrakis, H. Hong, Y. Sun, M. Samborskyy, K. Kamiya, and P.F. Leadlay, A Late-Stage Intermediate in Salinomycin Biosynthesis Is Revealed by Specific Mutation in the Biosynthetic Gene Cluster. *ChemBioChem*, **2012**. 13: 66--71
- Sun, Y., X. Zhou, H. Dong, G. Tu, M. Wang, B. Wang, and Z. Deng, A Complete Gene Cluster from Streptomyces nanchangensis NS3226 Encoding Biosynthesis of the Polyether Ionophore Nanchangmycin. *Chemistry & Biology*, **2003**. 10: 431--441
- 11. Demydchuk, Y., Y. Sun, H. Hong, J. Staunton, J.B. Spencer, and P.F. Leadlay, Analysis of the tetronomycin gene cluster: insights into the biosynthesis of a polyether tetronate antibiotic. *ChemBioChem*, **2008**. 9: 1136--1145
- 12. Zhang, L., T. Hashimoto, B. Qin, J. Hashimoto, I. Kozone, T. Kawahara, M. Okada, T. Awakawa, T. Ito, Y. Asakawa, M. Ueki, S. Takahashi, H. Osada, T. Wakimoto, H. Ikeda, K. Shin-ya, and I. Abe, Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. *Angewandte Chemie International Edition*, **2017**. 56: 1740-1745
- 13. Gallenkamp, D. and A. Fürstner, Stereoselective Synthesis of E,Z-Configured 1,3-Dienes by Ring-Closing Metathesis. Application to the Total Synthesis of Lactimidomycin. *Journal of the American Chemical Society*, **2011**. 133: 9232-9235
- 14. Barrish, J.C., H.L. Lee, T. Mitt, G. Pizzolato, E.G. Baggiolini, and M.R. Uskokovic, Total synthesis of pseudomonic acid C. *The Journal of Organic Chemistry*, **1988**. 53: 4282-4295
- 15. Jacolot, M., M. Jean, N. Levoin, and P. van de Weghe, The Prins Reaction Using Ketones: Rationalization and Application toward the Synthesis of the Portentol Skeleton. *Organic Letters*, **2012**. 14: 58-61
- 16. Galkin, K.I., E.A. Krivodaeva, L.V. Romashov, S.S. Zalesskiy, V.V. Kachala, J.V. Burykina, and V.P. Ananikov, Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on

the Utility of Biomass Conversion in Organic Synthesis. *Angewandte Chemie-International Edition*, **2016**. 55: 8338-8342

- 17. Petr, K. and K. Martin, Enantioselective Allylation of (2E,4E)-2,4-Dimethylhexadienal: Synthesis of (5R,6S)-(+)-Pteroenone. *Chemistry – A European Journal*, **2015**. 21: 7408-7412
- Kinoshita, K., P.G. Williard, C. Khosla, and D.E. Cane, Precursor-directed biosynthesis of 16membered macrolides by the erythromycin polyketide synthase. *Journal of the American Chemical Society*, 2001. 123: 2495-2502
- Ishikawa, T., R. Kadoya, M. Arai, H. Takahashi, Y. Kaisi, T. Mizuta, K. Yoshikai, and S. Saito, Revisiting [3 + 3] Route to 1,3-Cyclohexanedione Frameworks: Hidden Aspect of Thermodynamically Controlled Enolates. *The Journal of Organic Chemistry*, 2001. 66: 8000-8009
- 20. Wolfrom, M.L. and J.M. Bobbitt, Periodate Oxidation of Cyclic 1,3-Diketones. *Journal of the American Chemical Society*, **1956**. 78: 2489-2493
- 21. Fotiadou, A.D. and A.L. Zografos, Accessing the Structural Diversity of Pyridone Alkaloids: Concise Total Synthesis of Rac-Citridone A. *Organic Letters*, **2011**. 13: 4592-4595
- 22. Yadav, J.S., D.N. Chary, N.N. Yadav, S. Sengupta, and B.V.S. Reddy, Divergent Enantioselective Total Synthesis of Siphonarienal, Siphonarienone, and Pectinatone. *Helvetica Chimica Acta*, **2013**. 96: 1968-1977
- 23. Gray, K.C., D.S. Palacios, I. Dailey, M.M. Endo, B.E. Uno, B.C. Wilcock, and M.D. Burke, Amphotericin primarily kills yeast by simply binding ergosterol. *Proceedings of the National Academy of Sciences of the United States of America*, **2012**. 109: 2234-2239
- Guo, X., T.G. Liu, C.R. Valenzano, Z.X. Deng, and D.E. Cane, Mechanism and Stereospecificity of a Fully Saturating Polyketide Synthase Module: Nanchangmycin Synthase Module 2 and Its Dehydratase Domain. *Journal of the American Chemical Society*, 2010. 132: 14694-14696
- 25. Block, M.H. and D.E. Cane, Synthesis of Proposed Chain-Elongation Intermediates of the Monensin Biosynthetic-Pathway. *Journal of Organic Chemistry*, **1988**. 53: 4923-4928