# Metal-free $\mathrm{POCl}_{3}$ Promoted Stereoselective Hydrochlorination of ethynylated azaheterocycles 

Ritush Kumar, ${ }^{\text {a,b* }}$ and Radhey M. Singh ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India.
${ }^{\text {b }}$ Department of Chemistry, Institute of Science, Centre of Advanced Study, Banaras Hindu University, Varanasi221005
*Email: rk.singh1987.bhu@gmail.com

## Supporting Information

## Contents

| General Considerations | S2 |
| :---: | :---: |
| Procedure for the synthesis of starting material (1, 3, 5 and 7) and reference | S3 |
| Experimental procedure for $\mathrm{POCl}_{3}$ promoted synthesis of $\mathbf{2}$ and $\mathbf{4}$ | S3 |
| Analytical data for compounds 2a-I and 4a-I | S3-S10 |
| Experimental procedure for $\mathrm{POCl}_{3}$ promoted synthesis of 6a-6f | S10 |
| Analytical data of 6a-6f | S10-S12 |
| Experimental procedure and Analytical data of 8 | S12 |
| Experimental procedure and Analytical data of 9 and 10 | S12-S13 |
| Experimental procedure and Analytical data of 11 and 12 | S13-S14 |
| Experimental procedure and Analytical data of 13a-d | S14-S15 |
| Analytical data of 17 | S15 |
| Experimental procedure and Analytical data of 18 | S15-S16 |
| Crystal structure and data for compounds $\mathbf{2 j}$ | S17-S18 |
| Spectra ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ ) of compounds | S19-S96 |
| Full HRMS and Isotopic pattern HRMS spectra of Compound 18 | S97-98 |
| HRMS of Intermediate step of Mechanism | S99 |
| HRMS spectrum of 2a-I, 4a-I, 6a-6f,8-12, 13a-13d and 17 | S100-S137 |

## General Methods

Unless otherwise stated, all reactions were performed under nitrogen atmosphere and air successively. Solvents were purified following standard literature procedures. Melting points were measured in an open capillary tube and are uncorrected. ${ }^{1} \mathrm{H}(300,400$ and 600 MHz ) and ${ }^{13} \mathrm{C}(75,100$ and 150 MHz ) NMR spectra were recorded $300 \mathrm{MHz}, 400 \mathrm{MHz}$ and 600 MHz spectrometer. Multiplicities are given as: $s$ (singlet), brs (broad singlet), $d$ (doublet), $t$ (triplet), dd (doublet of doublets) or m (multiplet). The chemical shifts ( $\delta \mathrm{ppm}$ ) and coupling constants ( $J \mathrm{~Hz}$ ) are reported in the standard fashion with reference to either internal tetramethylsilane (for ${ }^{1} \mathrm{H}$ ) or the central line ( 77.0 ppm ) of $\mathrm{CDCl}_{3}$ (for ${ }^{13} \mathrm{C}$ ). Moisture and residual peak of $\mathrm{CDCl}_{3}$ appear at $\delta 1.5$ and 7.2 respectively in ${ }^{1} \mathrm{H}$ NMR. High resolution mass spectra (HRMS) were obtained on TOF/6500 SRIES QTOF B. 05.00 (B5042.0) and Thermo Scientific Exactive mass spectrometer. Thin-layer chromatographies (TLC) were performed on glass plates ( $7.5 \times 2.5$ and $7.5 \times 5.0 \mathrm{~cm}$ ) coated with silica gel GF 254 and various combinations of ethyl acetate and hexane were used as eluent. Visualisation of spots was accomplished by exposure to UV light. Silica gel (60-120 mesh) was used for column chromatography (approximately $15-20 \mathrm{~g}$ per 1 g of the crude product).

## Procedure for the synthesis of starting material (1, 3, 5 and 7). ${ }^{1,2}$

The starting materials for final products were synthesized by the known literature procedures which was cited in reference. Individually, 2-arylethynylquinoline-3carbonitrile/carbaldehyde (1/3) was prepared accordingly know literature 1. Compound 2-phenylethynylquinoline-3-carboxylic acid methyl ester ${ }^{2 a}$ (7) was also prepared via reported literature 23a which is cited in reference. Further also, the starting compounds (5) ${ }^{2 b-e}$ were prepared by the different known literature procedure which is also cited in reference number 2.

## References:

(1) (a) A. Chandra, B. Singh, S. Upadhyay and R. M. Singh, Tetrahedron, 2008, 64, 11680-11685; (b) K. Mishra, J. B. Singh, T. Gupta, R. M. Singh, Org. Chem. Front. 2017, 4, 1926-1930; (c) A. K. Verma, T. Aggarwal, V. Rustagi, R. C. Larock, Chem Comm. 2010, 46, 4064-4066.
(2)(a) N. Sharma, M. Asthana, D. Nandini, R. P. Singh, R. M. Singh, Tetrahedron, 2013, 69, 1822-1829; (b) S. Shi, Y. Zhang, Synlett, 2007, 1843-1850; (c) U. S. Sørensen, E. PomboVillar, Tetrahedron, 2005, 61, 2607-2703; (d) M. Gazvoda, M. Virant, A. Pevec, D. Urankar, A. Bolje, M. Kočevar, J. Košmrlj, Chem. Commun. 2016, 52, 1571-1574. (e) M. Armengol, J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 2001, 154-158.

General procedure for synthesis of 2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile/ carbaldehyde (2/4).

To a solution of compound 2-phenylethynylquinoline-3-carbonitrile/carbaldehyde (1a/3a) ( 0.5 mmol ) in 3 equiv $\mathrm{POCl}_{3}$ and stirred at $80^{\circ} \mathrm{C}$ under aerobic condition. After completion of the reaction, chilled water was poured into the reaction mixture and extracted with ethyl acetate. The organic layer was washed with water, brine and dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated under vacuum to give product. The product was further recrystallized from ethanol.

## 2-(2-Chloro-2-phenylvinyl)quinoline-3-carbonitrile (2a).


light brown solid; yield $139.2 \mathrm{mg}, 96 \%$; mp $129-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45(\mathrm{t}, \mathrm{J}=2.1$ Hz, 3H), 7.53 (s, 1H), 7.69 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.92(\mathrm{~m}, 4 \mathrm{H})$, $8.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 107.4, 116.7, 121.5, 124.9, 127.2, 127.8, 128.3, 128.5, 129.8, 130.0, 132.9, 137.8, 140.6, 142.5, 148.3, 153.6 ppm; IR (KBr, cm-1) 1597, 2203, 2926; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$291.0684, found 291.0694.

## 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbonitrile (2b).


green solid; yield 133.8 mg , $88 \%$; mp $142-143{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.43(\mathrm{~s}$, $3 H), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.70(\mathrm{~m}, 3 \mathrm{H})$, $7.89(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.3,107.4,116.7,121.3,124.4$, $124.8,127.8,128.4,129.7,130.8,132.9,137.7,138.2,140.8,142.5,148.3,153.6 \mathrm{ppm} \operatorname{IR}(\mathrm{KBr}$, cm-1) 1607, 2213, 2903; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 305.0840$, found 305.0844.

## 2-(2-chloro-2-(p-tolyl)vinyl)quinoline-3-carbonitrile (2c).


light yellow solid; yield $136.8 \mathrm{mg}, 90 \%$; mp $132-133^{\circ} \mathrm{C} ; \mathrm{R}_{f}=$ 0.30 (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.44$ $(\mathrm{s}, 3 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.90$ ( $\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ) , 8.22 ( $\mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.3,107.4,116.8,121.3,124.5,124.9$, $127.9,128.5,129.8,130.9,133.0,137.8,138.3,140.9,142.7,148.4,153.7 \mathrm{ppm}$; IR (KBr, cm-1) 1613, 2221, 2908; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 305.0840$, found 305.0847.

## 2-[2-Chloro-2-(4-methoxyphenyl)vinyl]quinoline-3-carbonitrile (2d).


white solid; yield 144 mg , 90\%; mp $152-153{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.87$ (s, $3 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.8$,
104.7, 117.1, 120.3, 121.7, 121.9, 127.2, 128.5, 128.9, 130.0, 137.9, 140.3, 141.7, 150.5, 154.2, 163.5 ppm ; IR (KBr, cm-1) 1590, 2222, 2916; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$321.0789, found 321.0788.

## 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbonitrile (2e).


white solid; yield 143.2 mg , $93 \%$; mp 141-143 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.13(\mathrm{t}, \mathrm{J}=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.89(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) 8.19(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 107.3,115.5$ (d, J = 21.9 Hz ), 116.7, $121.4(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}), 124.9,127.8,128.4,129.1(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}), 129.8,131.3(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz})$, 132.9, 133.9 ( $\mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}$ ), 139.4, 142.5, 148.3, 153.4, 162.4, $164.9 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}, \mathrm{cm}-1) 1611$, 2218, 2925; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClFN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 309.0589$, found 309.0599.

## 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbonitrile (2f).


white solid; yield 138.6 mg , $90 \%$; mp 111-112 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.14(\mathrm{t}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.90(\mathrm{~m}$, 4 H ), 8.19 ( $\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 107.3,115.6(\mathrm{~d}, \mathrm{~J}=29.3 \mathrm{~Hz}), 116.8,121.4,124.9$, $127.9,128.4,129.2$ (d, $J=11.2 \mathrm{~Hz}$ ), 129.8, 133.0, 134.0, 139.5, 142.6, 148.4, 153.5, 162.1, 165.4 ppm ; IR (KBr, cm-1) 1621, 2214, 2902; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{ClFN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 309.0589, found 309.0593.

2-(2-Chloro-2-phenylvinyl)6-methyl-quinoline-3-carbonitrile (2h).

brown solid; yield $136.8 \mathrm{mg}, 90 \%$; mp $137-138{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.59$ (s, 3 H ), 7.42-7.46 (m, 3H), 7.51 ( $\mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.84(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~s}$, 1 H ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 22.3,106.2,115.9,121.8$, $124.0,127.3,127.4,128.5,128.6,129.9,130.7,137.9,140.7,142.5,144.0,148.6,154.6 \mathrm{ppm} ;$

IR (KBr, cm-1) 1609, 2212, 2923; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]+305.0840$ found 305.0849.

## 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbonitrile (2i).


light brown solid; yield $133.8 \mathrm{mg}, 88 \%$; $\mathrm{mp} 127-128^{\circ} \mathrm{C} ; \mathrm{R}_{f}=$ 0.30 (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.62$ $(\mathrm{s}, 3 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.99$ (s, 1H), $8.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 22.1,106.4$, 116.9, 121.6, 123.0, 127.2, 127.4, 128.5, 128.7, 129.9, 130.6, 137.9, 140.3, 142.0, 144.0, 148.5, 153.6 ppm ; IR (KBr, cm-1) 1614, 2217, 2927; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+} 305.0840$ found 305.0842 .

## 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbonitrile (2j).


white solid; yield 147.2 mg , $92 \%$; mp $162-163^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.97$ (s, $3 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.45(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 55.8,104.7,107.5$, $117.1,120.3,121.7,121.9,127.2,128.5,128.9,130.0,137.9,140.3,141.7,150.5,154.2$, 163.5 ppm ; IR (KBr, cm-1) 1601, 2223, 2914; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN} \mathrm{N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 321.0789 found 321.0794 .

2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbonitrile (2k).

white solid; yield $142.4 \mathrm{mg}, 89 \%$; mp $167-168{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 4.01$ (s, $3 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 55.7$, 104.6, 107.5, 117.0, 120.2, 121.6, 121.8, 127.1, 128.4, 128.8, 129.2, 129.8, 137.8, 141.5,
150.4, 154.1, 163.4 ppm ; IR ( $\mathrm{KBr}, \mathrm{cm}-1$ ) 1596, 2218, 2924; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$321.0789, found 321.0797.

## 7-Chloro-2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile (21).


white solid; yield $137.7 \mathrm{mg}, 85 \%$; mp $124-125^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.50$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44-7.46$ (m, 3H), $7.52(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}$, $3 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 107.6, 116.4, 121.0, 123.2, 127.2, 128.6, 128.8, 128.9, 129.4, 130.1, 137.7, 139.1, 141.3, 142.2, 148.6, 154.6 ppm ; IR (KBr, cm-1) 1616, 2231, 2928; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$325.0294, found 325.0289.

## 2-(2-Chloro-2-phenylvinyl-quinoline-3-carbaldehyde (4a).


light brown solid; yield $131.8 \mathrm{mg}, 90 \%$; mp $123-124{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44-7.45(\mathrm{~m}$, $3 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.90(\mathrm{~m}, 3 \mathrm{H}), 8.01$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 10.33(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 122.7,126.3,126.8,127.6,127.7$, $128.5,129.2,129.3,129.7,132.6,137.1,139.0,139.5,149.4,154.7,190.5 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}$, cm-1) 1601, 2223, 2914; IR (KBr, cm-1) 1612, 1693, 2936; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$294.0680, found 294.0690 .

## 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbaldehyde (4b).


white solid; yield $130.5 \mathrm{mg}, 85 \%$; mp $135-136^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.42$ (s, $3 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.677$ $(\mathrm{m}, 4 \mathrm{H}), 7.86(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (d, J = 8.4 Hz, 1H), $8.77(s, 1 H), 10.32(s, 1 H) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,122.4,124.1,126.3,127.5,127.7,128.4,129.2,129.3,130.6,132.6$, 137.0, 138.2, 139.3, 149.4, 154.9, 190.5 ppm; IR (KBr, cm-1) 1621, 1687, 2908; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$308.0837, found 308.0844.
3.3.1.15 2-(2-Chloro-2-p-tolylvinyl)quinoline-3-carbaldehyde (4c).

white solid; yield 130.5 mg , $85 \%$; mp $125-126{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.39$ (s, 3 H ), 7.58-7.73 (m, 5H), 7.84 (s, 2H), 7.96 (d, J = 5.4 Hz, 1H), $8.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 21.1,121.6,126.2,126.7,127.6,127.6,129.1$, 129.3, 132.5, 134.2, 139.2, 139.2, 139.3, 140.0, 149.3, 154.9, 190.6 ppm; IR (KBr, cm-1) 1587, 1695, 2915; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 308.0837$, found 308.0839 .

## 2-[2-Chloro-2-(4-methoxy-phenyl)vinyl]quinoline-3-carbaldehyde (4d).


white solid; yield 135.7 mg , $84 \%$; mp 154- $155{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.96$ ( s , $3 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, 3 H ), 7.97 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.16 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.73 ( s , 1 H ), $10.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 55.6,115.6$, 122.8, 126.3, 127.7, 127.8, 128.8, 128.9, 129.2, 132.7, 137.7, 140.0, 149.3, 154.3, 161.8, 165.1, 190.3 ppm ; IR (KBr, cm-1) 1614, 1696, 2932; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 324.0786$, found 324.0788 .

## 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbaldehyde (4e).


white solid; yield 141.5 mg , $91 \%$; mp $156-157^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.00-7.05$ (m, 1H), 7.30-7.34 (m, 1H), 7.43-7.46 (m, 1H), $7.55(\mathrm{t}, \mathrm{J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 1 \mathrm{H}), 789(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 114.1(\mathrm{~d}, \mathrm{~J}=23.6 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 112.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 123.8,126.3$, $127.6,127.8,129.2(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}), 130.0(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 132.7,137.3(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 139.4(\mathrm{~d}, \mathrm{~J}$ $=7.8 \mathrm{~Hz}), 140.2,149.3,154.0,161.4,163.8,190.4 \mathrm{ppm}$; $\mathrm{IR}(\mathrm{KBr}, \mathrm{cm}-1) 1608,1690,2931$; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClFNO}[\mathrm{M}+\mathrm{H}]^{+} 312.0586$, found 312.0592 .

white solid; yield $136.8 \mathrm{mg}, 88 \%$; mp $137-138{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.12$ (t, J = 8.4 Hz, 2H), $7.64(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 115.5(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 122.8$, $126.4,127.7,129.0(d, J=8.4 \mathrm{~Hz}), 129.4,132.8,133.5(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 137.9,140.2,149.5$, 154.5, 162.0, 165.3, 190.6 ppm ; IR (KBr, cm-1) 1613, 1695, 2922; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{ClFNO}[\mathrm{M}+\mathrm{H}]^{+}$312.0586, found 312.0589.

## 2-(2-Chloro-2-phenylvinyl)-6-methyl-quinoline-3-carbaldehyde (4h).


white solid; yield 133.5 mg , $87 \%$; $\mathrm{mp} 147-148{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.59$ (s, $3 \mathrm{H}), 7.42-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 7.94 ( $s, 1 \mathrm{H}$ ), $8.68(\mathrm{~s}, 1 \mathrm{H}), 10.28(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 22.2,122.9,124.4,126.9,127.0,128.3,128.4,128.9$, $129.6,130.0,137.2,138.8,139.2,143.7,149.6,154.7 \mathrm{ppm}, 190.57$; IR ( $\mathrm{KBr}, \mathrm{cm}-1$ ) 1594 , 1691, 2906; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{CINO}[\mathrm{M}+\mathrm{H}]^{+}$308.0837, found 308.0839.

## 2-(2-Chloro-2-phenylvinyl)-8-ethyl-quinoline-3-carbaldehyde (4i).


light yellow solid; yield $133.2 \mathrm{mg}, 83 \%$; mp $101-102{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.45$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.40(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.56$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.89(\mathrm{~m}, 4 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H})$, 10.33 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 15.1,24.4,123.0$, $126.1,127.0,127.2,127.5,128.4,129.5,131.0,137.9,138.1,141.1,141.2,143.6,147.7$, 152.5, $191.1 \mathrm{ppm} ; \operatorname{IR}(\mathrm{KBr}, \mathrm{cm}-1) 1586,1689,2924$; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{CINO}$ $[\mathrm{M}+\mathrm{H}]^{+}$322.0993, found 322.0997 .

### 3.3.1.22 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbaldehyde (4j).


white solid; yield $140.5 \mathrm{mg}, 87 \%$; mp $163-164{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.96$ (s, $3 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.82(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H})$, $10.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 55.6,106.1,122.8$, $125.7,126.9,127.6,127.8,128.5,129.7,130.7,137.2,137.7,138.7,145.8,152.4,158.6$, 190.7 ppm; IR (KBr, cm-1) 1619, 1691, 2926; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{CINO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 324.0786, found 324.0785 .

## 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbaldehyde (4k).


white solid; yield 134 mg , $83 \%$; mp $169-170{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.02$ (s, $3 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 4 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 56.1,106.3,121.8,125.8,127.1,128.6,129.9,130.6$, 137.0, 139.6, 139.9, 150.6, 154.9, 163.9, 189.9 ppm ; IR (KBr, cm-1) 1591, 1687, 2933; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$324.0786, found 324.0790.

## 7-Chloro-2-(2-chloro-2-phenylvinyl)-quinoline-3-carbaldehyde (4I).


white solid; yield 132.4 mg , $81 \%$; $\mathrm{mp} 129-130{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.43(\mathrm{t}, \mathrm{J}=$ $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.83(\mathrm{~m}$, $2 H), 7.90(d, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 10.29(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 122.3,124.7,126.9,127.7$, $128.4,128.5,128.8,129.9,130.4,137.0,138.8,139.2,139.5,149.6,155.7,190.1 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}$, cm-1) 1594, 1693, 2911; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 328.0290$, found 328.0299.

General procedure for synthesis of hydrochlorination of other ethynylated azaheterocycles (6a-6f).

To a solution of compound (5a-5f) ( 0.5 mmol ) in 3 equiv $\mathrm{POCl}_{3}$ and stirred at $80^{\circ} \mathrm{C}$ under aerobic condition. After completion of the reaction, chilled water was poured into the reaction mixture and extracted with ethyl acetate. The organic layer was washed with water, brine and dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated under
vacuum to give the corresponding product (6a-6f). The product was further recrystallized from ethanol.

## 2-(2-chloro-2-phenylvinyl)pyridine (6a).


yellow liquid; yield $89.2 \mathrm{mg}, 83 \% ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.12(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.61(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 120.5,124.0,126.3,129.2,130.0,131.1,135.4,136.6,140.1,149.6,154.5 \mathrm{ppm} ; \mathrm{IR}$ ( KBr , cm-1) 1617, 2936; HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$216.0575, found 216.0583.

## 2-(2-chloro-2-phenylvinyl)-5-phenyInicotinonitrile (6b).


brown solid; yield 142.4 mg , $90 \%$; mp 161-162 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.46-7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.50-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=3.6$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 8.15 ( $\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $9.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 111.3,114.0,126.8,127.2,128.2,128.5,128.6,129.0,129.2,129.7,134.1,137.3,138.7$, 151.4, 153.7 ppm; IR (KBr, cm-1) 1584, 2207, 2906; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 317.0840$, found 317.0853 .

## 2-(2-chloro-2-phenylvinyl)quinoxaline (6c).


yellow gummy; yield $101.6 \mathrm{mg}, 77 \%$; $\mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.47(\mathrm{~m}, 3 \mathrm{H})$, $7.48(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 119.5,121.4,126.9,127.2,128.3,128.4,128.5,129.3$, 131.5, 133.1, 135.8, 136.4, 142.8, 145.8 ppm ; IR (KBr, cm-1) 1628, 1638, 2913; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]^{+}$265.0684, found 265.0697.

## 2-(2-chloro-2-phenylvinyl)pyrimidine (6d).



yellow liquid; yield $87.4 \mathrm{mg}, 81 \% ; \mathrm{R}_{f}=0.45$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.13(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H})$, $7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 118.2,125.4,127.8,128.9,129.6,129.5,136.3$, 137.9, 153.8, 161.8 ppm; IR (KBr, cm-1) 1594, 1617, 2923; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$217.0527, found 217.0533.

## 2-(2-chloro-2-phenylvinyl)-1-methyl-1H-benzo[d]imidazole (6e).


brown solid; yield 112.5 mg , $84 \%$; mp $145-147^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 30.0,112.4,120.1,126.2,126.9,128.0,128.8,129.2,132.4,133.8,138.6,143.3,147.5,150.4$ ppm; IR (KBr, cm-1) 1628, 2929; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClN}_{2}[\mathrm{M}+\mathrm{H}]^{+}$269.0840, found 269.0849

## 2-(2-chloro-2-phenylvinyl)benzo[d]thiazole (6f).


light yelllow solid; yield $117.8 \mathrm{mg}, 87 \%$; mp $158-159^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.13$ (d, J = 7.8 Hz, 1H), 7.19-7.22 (m, 2H), 7.44 (s, 1H), 7.55-7.57 (m, 3H), 7.73 (d, J $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 119.4$, $121.5,125.3,126.8,127.8,128.4,129.3,130.6,131.5,135.7,143.9,150.8,160.3 \mathrm{ppm} ; \mathrm{IR}(\mathrm{KBr}$, cm-1) 1636, 2918; HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{CINS}[\mathrm{M}+\mathrm{H}]^{+}$272.0295, found 272.0303.

Procedure for synthesis of 2-(2-Chloro-2-phenylvinyl)-quinoline-3-carboxylic acid methyl ester (8).

To a solution of compound 2-phenylethynylquinoline-3-carboxylic acid methyl ester 7 (0.5 mmol ) in 3 equiv $\mathrm{POCl}_{3}$ and stirred at $80^{\circ} \mathrm{C}$ under aerobic condition. After completion of the reaction, chilled water was poured into the reaction mixture and extracted with ethyl acetate. The organic layer was washed with water, brine and dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated under vacuum to give product 8 . The product was washed with hexane and further recrystallized from ethanol.

## 2-(2-Chloro-2-phenylvinyl)-quinoline-3-carboxylic acid methyl ester (8).


white solid; yield 143.7 mg , $89 \%$; mp 119-120 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.20$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.96$ (s, 3H), 7.41 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 52.6,123.8,125.2,125.9,127.0,12.5,128.3,128.5,122.2,129.3$, 131.9, 136.1, 138.2, 140.0, 148.6, 153.8, 166.4 ppm; IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 1723, 2917, 3085; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 324.0786$, found 324.0795 .

General procedure for palladium-catalyzed Sonogashira coupling reaction of 2a.
A mixture of 2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile 2 aa ( 0.20 mmol ), ethynylcyclohexane ( 0.24 mmol ), $\mathrm{PdCl}_{2}(5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and TEA ( 0.3 mmol ) was stirred under $\mathrm{N}_{2}$ at $80^{\circ} \mathrm{C}$ for 2 h (as monitored by TLC). After completion of reaction, the reaction mixture was concentrated in vacuo and residue was purified by column chromatography on silica gel using EtOAc/hexane as eluent to afford product 9.

## 2-(4-cyclohexyl-2-phenyl-but-1-en-3-ynyl)-quinoline-3-carbonitrile (9).


red solid; yield $59.3 \mathrm{mg}, 82 \%$; mp 137-138 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 1.25-1.39 (m, 2H), 1.49-1.65 (m, 4H), 1.69-1.76 (m, 2H), 1.87-1.93 (m, 2H), 2.69-2.77 (m, 1H), 7.36-7.45 $(\mathrm{m}, 3 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 4 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.8,25.8,30.3,32.3,79.1,105.4,107.4,107.0,117.0,124.9,127.1$, 127.1, 127.8, 128.4, 128.9, 131.4, 132.6, 138.9, 142.3, 142.4, 148.4, 154.2 ppm; IR (KBr, cm ${ }^{-}$ ${ }^{1}$ ): 2213, 2231, 3034; HRMS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 363.1856$, found 363.1867 .

## General procedure for palladium-catalyzed Heck reaction of 2a.

A mixture of 2-( 6 -chloro- 8 -phenylvinyl)quinoline-3-carbonitrile $\mathbf{2 a}$ ( 0.20 mmol ), acrylonitrile ( 0.40 mmol ), $\mathrm{PdCl}_{2}(2.5 \mathrm{~mol} \%), \operatorname{BINAP}(2.5 \mathrm{~mol} \%), \mathrm{DMA}(1 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{COONa}(0.40 \mathrm{mmol})$ was stirred under $\mathrm{N}_{2}$ at $130^{\circ} \mathrm{C}$ for 2 h (as monitored by TLC). After completion of reaction, the mixture was cooled and extracted with ethyl acetate and purified by column chromatography on silica gel using EtOAc/hexane as eluent to afford product 10.

2-(4-cyano-2-phenyl-buta-1,3-dienyl)-quinoline-3-carbonitrile (10).

brown solid; yield 49.1 mg , $80 \%$; mp $106-107{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.14$ (t, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.90$ $(\mathrm{m}, 6 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 107.4,115.6,115.9$, 116.9, 121.5, 125.0, 128.0, 128.5, 129.3, 129.4, 129.9, 133.1, 134.1, 139.6, 142.7, 148.5, 153.6, 162.2, 165.5 ppm ; IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 2214, 2221, 2852; HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{1} \mathrm{~N}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 308.1182$, found 308.1189 .

## General procedure for synthesis of 3-Phenylbenzo[b][1,6]naphthyridine (11).

To a solution of 2-(2-Chloro-2-phenylvinyl-quinoline-3-carbaldehyde (4a) ( 0.2 mmol ) in EtOH $(2 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.30 \mathrm{mmol})$ and saturated with 5 mmol aq $\mathrm{NH}_{3}$. The reaction mixture was stirred at refluxed temperature. The reaction completed after 15 min (as monitored by TLC). The reaction mixture allowed to pour in chilled water and precipitate filtered out and dried. Further the product 11 was recrystallized from ethanol.

## 3-Phenylbenzo[b][1,6]naphthyridine (11).


light green solid; yield 47.6 mg , $93 \%$; mp $172-174{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25(05: 95$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.54 (m, 3H), 7.82 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.22 (m, 3H), $8.37(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $\left.{ }_{3}\right) \delta 116.3$, 120.9, 126.1, 126.8, 127.1, 128.8, 128.8, 129.1, 129.2, 132.4, 137.0, 138.6, 150.1, 151.8, 153.6, 154.5 IR (KBr, cm-1) 1441, 1613, 3052; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 257.1073, found 257.1081.

General procedure for synthesis of 3-Phenyl-1H-pyrano[4,3-b]quinolin-1-one (12).
To a solution of 2-(2-Chloro-2-phenylvinyl)-quinoline-3-carboxylic acid methyl ester (6) (0.2 mmol ) in 2 mL MeOH was added $10 \%$ aq KOH and stirred at $80^{\circ} \mathrm{C}$. After completion of the reaction, monitored by TLC, the reaction mixture was pour in chilled water and precipitate filtered out and dried. The product 12 was recrystallized from ethanol.

## 3-Phenyl-1H-pyrano[4,3-b]quinolin-1-one (12).


green solid; yield $47.5 \mathrm{mg}, 87 \%$; mp $129-131^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.36$ (s, 1H), 7.45-7.64 $(\mathrm{m}, 4 \mathrm{H}), 7.87-8.02(\mathrm{~m}, 4 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 103.2,115.4,125.6,127.0,128.3,128.9$, $130.1,130.7,131.2,133.6,140.5,140.7,151.3,152.4,156.9,161.8,170.0 \mathrm{ppm}$; IR (KBr, cm-1) 1705, 2930, 3052; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 274.0863$, found 274.0876.

## General procedure for synthesis of 13

To a solution of compound 2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile $\mathbf{2 a}$ ( 0.20 mmol ), in water ( 2 mL ) were added 3 equiv alkyl amine and 2 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was heated at $90^{\circ} \mathrm{C}$ for $3-9 \mathrm{~h}$ under aerobic condition. After completion of the reaction, chilled water was poured into the reaction mixture and extracted with ethyl acetate. The organic layer was washed with water, brine and dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated under vacuum to give product. The pure product 13(a-d) were obtained after recrystalization in ethanol.

## N-methyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13a).


light brown solid yield 51.4 mg , $90 \%$; mp $108-109^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.45(\mathrm{~s}, 3 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.84(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-8.14$ (m, 2H), $9.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 34.0, 109.2, $119.6,126.1,126.6,128.5,128.6,128.7,129.3,129.4,132.3,135.7,138.5,148.3,151.1$, 151.7, 163.8 ppm ; IR ( $\mathrm{KBr}, \mathrm{cm}-1$ ) 1664, 2917, 3023; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$287.1179, found 287.1183.

## N-ethyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13b).


light yellow solid yield $49.8 \mathrm{mg}, 83 \%$; mp $97-98{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.35(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.68(\mathrm{t}, \mathrm{J}=81 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 14.5,36.5,110.5,114.0,125.7,126.5$,
126.8, 128.4, 128.6, 129.0, 129.1, 132.0, 134.2, 138.8, 151.1, 151.4, 152.8, $160.7 \mathrm{ppm} ; \mathrm{IR}$ (KBr, cm-1) 1657, 2923, 3007; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 301.1335$, found 301.1343.

## N-butyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13c).


light green solid yield $50.5 \mathrm{mg}, 77 \%$; mp $90-91^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.74$ (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.19(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.85(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}$, 1 H ), $8.04(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $=13.3,19.7,30.6,45.1,109.5,109.5,119.9,126.1,126.7,128.6,128.8,129.2,129.4,132.4$, 135.8, 138.6, 148.2, 151.2, 151.7, 163.4 ppm; IR (KBr, cm-1) 1661, 2913, 3012; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 329.1654$ found 329.1646 .

## N-benzyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13d).


green solid; yield $58.6 \mathrm{mg}, 81 \%$; mp 121-122 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.26(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.35-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.35(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 48.4$, 110.1, 119.8, 126.2, 126.7, 126.8, 127.1, 128.4, 128.7, 128.9, 129.2, 129.5, 132.5, 135.5, 137.3, 139.0, 148.3, 151.3, 151.8, 163.9 ppm; IR (KBr, cm-1) 1659, 2923, 3016; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 363.1497$, found 363.1496.

## 2-(2-chloro-2-phenylvinyl)quinoline (17).


yellow liquid; yield $108.6 \mathrm{mg}, 82 \%$; $\mathrm{R}_{f}=0.30$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.27(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H})$, $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.88(\mathrm{~m}$, 2 H ), $8.15(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 120.4, 124.0, 126.4, 127.4, 127.9, 128.2, 128.3, 129.4, 129.8, 130.4, 131.2, 139.9, 146.2, 150.0, 154.7 ppm ; IR (KBr, cm-1) 1603, 2923; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{CIN}[\mathrm{M}+\mathrm{H}]^{+}$ 266.0731, found 266.0738 .

General procedure for synthesis of 2-(2-chloro-2-phenylvinyl-1-d)quinoline-3-carbaldehyde (18).

To a solution of compound 2-phenylethynylquinoline-3-carbaldehyde (3a) ( 0.25 mmol ) in 3 equiv $\mathrm{POCl}_{3}$ and stirred at $80^{\circ} \mathrm{C}$ under aerobic condition. After completion of the reaction, 1 $\mathrm{mL} \mathrm{D}_{2} \mathrm{O}$ was poured into the reaction mixture and extracted with ethyl acetate. The organic layer was washed with water, brine and dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was evaporated under vacuum to give product 18. The product was further recrystallized from ethanol.

## 2-(2-chloro-2-phenylvinyl-1-d)quinoline-3-carbaldehyde (18).


white solid; yield $67 \mathrm{mg}, 91 \%$; $\mathrm{mp} 156-157^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (05:95 EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.46-7.68 (m, 1H), $7.72(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 3 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 10.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 122.4,126.4,126.9,127.7,127.9,128.3,128.5,129.0$, 129.4, 129.9, 132.9, 137.0, 139.8, 149.1, 154.7, 190.3 ppm; IR (KBr, cm-1) 1591, 1696, 2923, 3033; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{12}$ DCINO [M+H] ${ }^{+}$295.0743, found 295.0739.

## Crystal structure and Data of compound (2j):



Table S-2: Summary of crystallographic data for compound $\mathbf{2 j}$.

| Parameters | $\mathbf{2 i}$ |
| :--- | :--- |
| Compound name | 2-(2-Chloro-2-phenylvinyl)-6- |
|  | methoxy-quinoline-3-carbonitrile |


| Formula | $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$ |
| :---: | :---: |
| M | 320 |
| Crystal system | Monoclinic |
| Temperature | 293 K |
| Space group | P 21/n |
| a/ $\AA$ | 7.943 (5) |
| $b / \AA$ | 8.981 (5) |
| c/ $\AA$ | 22.131 (5) |
| $\alpha\left({ }^{\circ}\right)$ | $90^{\circ}(5)$ |
| $\beta\left({ }^{\circ}\right)$ | $96.657^{\circ}(5)$ |
| $v\left({ }^{\circ}\right)$ | $90^{\circ}(5)$ |
| $V / \AA^{3}$ | 1568.1 (14) |
| $z$ | 4 |
| R (int.) | 0.0635 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Melting Point | $162-163{ }^{\circ} \mathrm{C}$ |
| R Indices (Index ranges) | $\begin{aligned} & -10 \leq h \leq 10,-12 \leq k \leq 12, \\ & -30 \leq 1 \leq 28 \end{aligned}$ |
| GoF | 0.877 |
| $w R_{2}$ | 0.1738 |
| Wavelength | $0.71073 \mathrm{~A}^{\circ}$ |
| Largest Diff. Peak and Hole (eA ${ }^{-3}$ ) | 0.9264 and -0.288 |

The crystallographic data for compounds $\mathbf{2 j}$ has been deposited at the Cambridge Crystallographic Data Centre. CCDC number 1832991 contain the supplementary crystallographic data's for compound $\mathbf{2} \mathbf{j}$, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Spectra $\left({ }^{1} \mathbf{H} \&{ }^{13} \mathbf{C}\right)$ of compounds
${ }^{1} \mathrm{H}$ spectrum of 2-(2-Chloro-2-phenylvinyl)quinoline-3-carbonitrile (2a)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)quinoline-3-carbonitrile (2a)

${ }^{1}$ H spectrum of 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbonitrile (2b)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbonitrile (2b)

${ }^{1}$ H NMR spectrum of 2-(2-chloro-2-(p-tolyl)vinyl)quinoline-3-carbonitrile (2c)

${ }^{13}$ C NMR spectrum of 2-(2-chloro-2-(p-tolyl)vinyl)quinoline-3-carbonitrile (2c)

${ }^{1}$ H spectrum of 2-[2-Chloro-2-(4-methoxyphenyl)vinyl]quinoline-3-carbonitrile (2d)

${ }^{13}$ C NMR spectrum of 2-[2-Chloro-2-(4-methoxyphenyl)vinyl]quinoline-3-carbonitrile (2d)

${ }^{1} \mathrm{H}$ spectrum of 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbonitrile (2e)

${ }^{13}$ C NMR spectrum of 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbonitrile (2e)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbonitrile (2f)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbonitrile (2f)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-phenylvinyl)6-methyl-quinoline-3-carbonitrile (2h)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)6-methyl-quinoline-3-carbonitrile (2h)

${ }^{1} \mathrm{H}$ spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbonitrile (2i)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbonitrile (2i)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbonitrile (2j)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbonitrile (2j)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbonitrile (2k)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbonitrile (2k)

${ }^{1} \mathrm{H}$ spectrum of 7-Chloro-2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile (21)

${ }^{13}$ C NMR spectrum of 7-Chloro-2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile (21)

${ }^{1} \mathrm{H}$ spectrum of 2-(2-Chloro-2-phenylvinyl-quinoline-3-carbaldehyde (4a)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl-quinoline-3-carbaldehyde (4a)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbaldehyde (4b)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbaldehyde (4b)

${ }^{1} \mathbf{H}$ spectrum of 2-(2-Chloro-2-p-tolylvinyl)quinoline-3-carbaldehyde (4c)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-p-tolylvinyl) quinoline-3-carbaldehyde (4c)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-[2-Chloro-2-(4-methoxy-phenyl) vinyl]quinoline-3-carbaldehyde (4d)

${ }^{13}$ C NMR spectrum of 2-[2-Chloro-2-(4-methoxy-phenyl)vinyl]quinoline-3-carbaldehyde (4d)

${ }^{1} \mathbf{H}$ spectrum of 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbaldehyde (4e)

${ }^{13}$ C NMR spectrum of 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbaldehyde (4e)

${ }^{1}$ H NMR spectrum of 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbaldehyde (4f)

${ }^{13}$ C NMR spectrum of 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbaldehyde (4f)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbaldehyde (4h)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbaldehyde (4h)

${ }^{1}$ H NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-8-ethyl-quinoline-3-carbaldehyde (4i)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-8-ethyl-quinoline-3-carbaldehyde (4i)

${ }^{1}$ H NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbaldehyde (4j)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbaldehyde (4j).
(
${ }^{1}$ H NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbaldehyde (4k)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbaldehyde (4k)

${ }^{1}$ H NMR spectrum of 7-Chloro-2-(2-chloro-2-phenylvinyl)-quinoline-3-carbaldehyde (41)

${ }^{13}$ C NMR spectrum of 7-Chloro-2-(2-chloro-2-phenylvinyl)-quinoline-3-carbaldehyde (41)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl)pyridine (6a)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl)pyridine (6a)

${ }^{1}$ H NMR spectrum of 2-(2-chloro-2-phenylvinyl)-5-phenylnicotinonitrile (6b)

${ }^{13}$ C NMR spectrum of 2-(2-chloro-2-phenylvinyl)-5-phenylnicotinonitrile (6b)

${ }^{1} \mathrm{H}$ spectrum of 2-(2-chloro-2-phenylvinyl)quinoxaline (6c)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl)quinoxaline (6c)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl)pyrimidine (6d)

${ }^{13}$ C NMR spectrum of 2-(2-chloro-2-phenylvinyl)pyrimidine (6d)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl)-1-methyl-1H-benzo[d]imidazole (6e)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl)-1-methyl-1H-benzo[d]imidazole (6e)

${ }^{1}$ H NMR spectrum of 2-(2-chloro-2-phenylvinyl)benzo[d]thiazole (6f)

${ }^{1}$ H NMR spectrum of 2-(2-chloro-2-phenylvinyl)benzo[d]thiazole (6f)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-quinoline-3-carboxylic acid methyl ester (8)

${ }^{13}$ C NMR spectrum of 2-(2-Chloro-2-phenylvinyl)-quinoline-3-carboxylic acid methyl ester (8)

${ }^{1}$ H NMR spectrum of 2-(4-cyclohexyl-2-phenyl-but-1-en-3-ynyl)-quinoline-3-carbonitrile (9)

${ }^{13}$ C NMR spectrum of 2-(4-cyclohexyl-2-phenyl-but-1-en-3-ynyl)-quinoline-3-carbonitrile (9)

${ }^{1}$ H NMR spectrum of 2-(4-cyano-2-phenyl-buta-1,3-dienyl)-quinoline-3-carbonitrile (10)

${ }^{13}$ C NMR spectrum of 2-(4-cyano-2-phenyl-buta-1,3-dienyl)-quinoline-3-carbonitrile (10)

${ }^{1} H$ NMR spectrum of 3-phenylbenzo[b][1,6]naphthyridine (11)

${ }^{13}$ C NMR spectrum of 3-phenylbenzo[b][1,6]naphthyridine (11)

${ }^{1}$ H NMR spectrum of 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (12)

${ }^{13} \mathrm{C}$ NMR spectrum of 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (12)

${ }^{1} \mathrm{H}$ NMR spectrum of N -methyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13a)

${ }^{13}$ C NMR spectrum of N-methyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13a)

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of N -Ethyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13b)

${ }^{13} \mathrm{C}$ NMR spectrum of N-Ethyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13b)

${ }^{1} \mathrm{H}$ NMR spectrum of N-Butyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13c)

${ }^{13} \mathrm{C}$ NMR spectrum of N -Butyl-3-phenylbenzo[b][1,6]naphthyridin- $\mathbf{1 ( 2 H )}$-one (13c)

${ }^{1} H$ NMR spectrum of N -Benzyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13d)

${ }^{13} \mathrm{C}$ NMR spectrum of N -Benzyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13d)

${ }^{1}$ H NMR spectrum of 2-(2-chloro-2-phenylvinyl)quinoline (17)

${ }^{13}$ C NMR spectrum of 2-(2-chloro-2-phenylvinyl)quinoline (17)

${ }^{1} \mathrm{H}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl-1-d)quinoline-3-carbaldehyde (18)

${ }^{13} \mathrm{C}$ NMR spectrum of 2-(2-chloro-2-phenylvinyl-1-d)quinoline-3-carbaldehyde (18)


Full HRMS spectrum of 2-(2-chloro-2-phenylvinyl-1-d)quinoline-3-carbaldehyde (18)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl-1-d)quinoline-3-carbaldehyde (For Isotopic pattern mass) (18)


## Identification of the reaction intermediates: HRMS spectra after 10 min .

In order to detect the intermediate species involved in the reaction mechanism an HRMS analysis of crude reaction mixture was performed. After stirring the reaction for $10 \mathrm{~min} .20 \mu \mathrm{~L}$ reaction mixture was taken out and diluted with HPLC grade acetonitrile. The diluted solution was then injected to run ESI-MS analysis. Intermediates (A) and (B) were detected in the MS analysis as shown below. Based on this reaction experiment, the initial step is likely to suggested that the co-ordination of $\mathrm{POCl}_{3}$ with nitrogen of quinoline ring was proposed. Since both the intermediate have same $\mathrm{m} / \mathrm{z}$ value that may be the reason the peak remains consistent even after in 50 min of reaction mixture.


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)quinoline-3-carbonitrile (2a)


HRMS spectrum of 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbonitrile (2b)


HRMS spectrum of 2-(2-chloro-2-(p-tolyl)vinyl)quinoline-3-carbonitrile (2c).


HRMS spectrum of 2-[2-Chloro-2-(4-methoxyphenyl)vinyl]quinoline-3-carbonitrile (2d).


HRMS spectrum of 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbonitrile (2e).


HRMS spectrum of 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbonitrile (2f)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)6-methyl-quinoline-3-carbonitrile (2h)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbonitrile (2i)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbonitrile (2j)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbonitrile (2k)


HRMS spectrum of 7-Chloro-2-(2-chloro-2-phenylvinyl)quinoline-3-carbonitrile (21)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl-quinoline-3-carbaldehyde (4a)


HRMS spectrum of 2-(2-Chloro-2-m-tolylvinyl)quinoline-3-carbaldehyde (4b)


HRMS spectrum of 2-(2-Chloro-2-p-tolylvinyl)quinoline-3-carbaldehyde (4c)


HRMS spectrum of 2-[2-Chloro-2-(4-methoxy-phenyl)vinyl]quinoline-3-carbaldehyde (4d)


HRMS spectrum of 2-(2-chloro-2-(3-fluorophenyl)vinyl)quinoline-3-carbaldehyde (4e)


HRMS spectrum of 2-[2-Chloro-2-(4-fluoro-phenyl)vinyl]quinoline-3-carbaldehyde (4f)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methyl-quinoline-3-carbaldehyde (4h)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-8-ethyl-quinoline-3-carbaldehyde (4i)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-6-methoxy-quinoline-3-carbaldehyde (4j).


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-7-methoxy-quinoline-3-carbaldehyde (4k)


HRMS spectrum of 7-Chloro-2-(2-chloro-2-phenylvinyl)-quinoline-3-carbaldehyde (41)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl)pyridine (6a)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl)-5-phenylnicotinonitrile (6b)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl)quinoxaline (6c)
+ESI Scan (24.1 sec) Frag=135.0V

HRMS spectrum of 2-(2-chloro-2-phenylvinyl)pyrimidine (6d)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl)-1-methyl-1H-benzo[d]imidazole (6e)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl)benzo[d]thiazole (6f)


HRMS spectrum of 2-(2-Chloro-2-phenylvinyl)-quinoline-3-carboxylic acid methyl ester (8)


HRMS spectrum of 2-(4-cyclohexyl-2-phenyl-but-1-en-3-ynyl)-quinoline-3-carbonitrile (9)


HRMS spectrum of 2-(4-cyano-2-phenyl-buta-1,3-dienyl)-quinoline-3-carbonitrile (10)


HRMS spectrum of 3-phenylbenzo[b][1,6]naphthyridine (11)


HRMS spectrum of 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (12)


HRMS spectrum of N-methyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13a)


HRMS spectrum of N-Ethyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13b)


HRMS spectrum of N-Butyl-3-phenylbenzo[b][1,6]naphthyridin-1(2H)-one (13c)


HRMS spectrum of N-Benzyl-3-phenyl-2H-benzo[b][1,6]naphthyridin-1-one (13d)


HRMS spectrum of 2-(2-chloro-2-phenylvinyl)quinoline (17)


