Copper nitrate-mediated synthesis of 3-aryl isoxazolines and isoxazoles from olefinic azlactones

Yifan Lin, ${ }^{\S, \dagger}$ Ke Zhang, ${ }^{\S, \dagger}$ Mingchun Gao, ${ }^{\dagger}$ Zheyi Jiang, ${ }^{\dagger}$ Jiajie Liu, ${ }^{\dagger}$ Yurui Ma, ${ }^{\dagger}$ Haoyu Wang, ${ }^{\dagger}$ Qitao Tan, ${ }^{*}{ }^{\dagger}$ Junjie Xiao, ${ }^{*, \dagger}$ and Bin $\mathrm{Xu}^{*}{ }^{*}{ }^{\dagger},{ }^{\dagger,}$
\dagger Department of Chemistry, Innovative Drug Research Center, Qianweichang College, School of Life Science, Shanghai University, Shanghai 200444, China Tel: (+86) 21-66132830; Fax: (+86) 21-66132830; E-mail: xubin@ shu.edu.cn \ddagger State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Supporting Information

CONTENTS:

1. General Information S2
2. Synthesis and Characterization of Substrates S3
3. Synthesis and Characterization of Products S8
4. X-Ray Crystallographic Analysis for Compound 3r S16
5. Mechanistic Studies S17
6. References S18
7. Copies of ${ }^{1} \mathbf{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra for All Compounds S20

General Information

All reagents were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker AV-500 spectrometer operating at $500 \mathrm{MHz}, 125 \mathrm{MHz}$ and 470 MHz , respectively, with chemical shift values being reported in ppm relative to chloroform ($\delta=7.26 \mathrm{ppm}$), dimethyl sulfoxide ($\delta=2.50 \mathrm{ppm}$) or TMS $(\delta=0.00 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR; with chloroform ($\delta=77.16 \mathrm{ppm}$), dimethyl sulfoxide ($\delta=39.52 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR; with $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta=-164.9 \mathrm{ppm})$ for ${ }^{19} \mathrm{~F}$ NMR. Mass spectra (MS) and high resolution mass spectra (HRMS) were recorded with an Agilent 5975C or Thermo Fisher Scientific LTQ FTICR-MS using an Electron impact (EI) or Electrospray ionization (ESI) techniques. The crystal structure was recorded on SMART APEXII X-ray diffraction spectrometer. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh were used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated. N-Alkylmaleimides $\mathbf{2 a}-\mathbf{2 g}$ and $\mathbf{2 j} \mathbf{-} \mathbf{2 n}$ are all purchased from commercial sources.

2. Synthesis and Characterization of Substrates

2.1 Synthesis of Olefinic Azlactones

(Z)-4-Benzylidene-2-phenyloxazol-5(4H)-one (1a): ${ }^{1}$ Hippuric acid (1.80 g, 10 $\mathrm{mmol})$, benzaldehyde ($1.27 \mathrm{~g}, 12.0 \mathrm{mmol}$), $\mathrm{NaOAc}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(4.0$ $\mathrm{mL}, 40.0 \mathrm{mmol}$) in THF (30 mL) was reflux for 3 h . Upon completion, the reaction mixture was cooled down to room temperature. A saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under vacuum. The given residue was purified by recrystallization from EtOH to give 1a as a yellow solid ($1.30 \mathrm{~g}, 52 \%$). M.p. $169-171{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3056, 1794, 1652, 1589, 1549, 1325, 1293, 1160, 982, 861, 764, 689; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.20-8.16$ (m, 4H), $7.61(\mathrm{~m}, 1 \mathrm{H})$, 7.54-7.43 (m, 5H), 7.23 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.6,163.5,133.5$, 133.4, 133.3, 132.5, 131.8, 131.2, 129.0, 128.9, 128.4, 125.6.

(Z)-4-Benzylidene-2-methyloxazol-5(4H)-one (1b): ${ }^{1}$ N-Acetylglycine (3.42 g, 29.2 mmol), benzaldehyde ($2.4 \mathrm{~mL}, 24.0 \mathrm{mmol}$), $\mathrm{NaOAc}\left(9.99 \mathrm{~g}, 122.0 \mathrm{mmol}\right.$) in $\mathrm{Ac}_{2} \mathrm{O}$ (70 mL) was reflux for 7 h . Upon completion, the reaction mixture was cooled down to room temperature. After being maintained $4{ }^{\circ} \mathrm{C}$ overnight. The solid was filtered and washed with water and a little EtOH . The desired product $\mathbf{1 b}$ was obtained as a light yellow solid ($2.10 \mathrm{~g}, 47 \%$). M.p. $152-153{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3058, 1774, 1653, 1595, 1261, 1165, 898, 766, 688; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.08-8.06(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.43 (m, 3H), $7.14(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.8$, 166.1, 133.1, 132.6, 132.2, 131.5, 131.1, 128.9, 15.7.

(Z)-4-Benzylidene-2-(4-methoxyphenyl)oxazol-5(4H)-one (1c): ${ }^{2}$ Following the general procedure as for $\mathbf{1 b}$, (4-methoxybenzoyl)glycine ($836.0 \mathrm{mg}, 4.0 \mathrm{mmol}$), benzaldehyde ($808.0 \mu \mathrm{~L}, 8.0 \mathrm{mmol}$), $\mathrm{NaOAc}(328 \mathrm{mg}, 4 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ was
reflux for 1 h . The solid was filtered and washed with water and a little EtOH. The desired product 1c was obtained as a light yellow solid (248.0 mg , 28\%). M.p. $212-214{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3000, 2980, 1777, 1648, 1601, 1550, 1503, 1304, 1260, $1165,981,876,840,764,685 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.14$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), 3.91 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 168.0,163.9,163.4,133.8,133.6$, 132.3, 130.9, 130.5, 130.2, 128.9, 117.9, 114.5, 55.6. EI-MS m/z: 279 [$\left.{ }^{+}\right]$.

(Z)-4-Benzylidene-2-(4-nitrophenyl)oxazol-5(4H)-one (1d): ${ }^{3}$ Following the general procedure as for 1b, (4-nitrobenzoyl)glycine ($336.0 \mathrm{mg}, 1.5 \mathrm{mmol}$), benzaldehyde $(303.0 \mu \mathrm{~L}, 3.0 \mathrm{mmol}), \mathrm{NaOAc}(615.0 \mathrm{mg}, 7.5 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(4 \mathrm{~mL})$ was reflux for 1 h. The solid was filtered to give the desired product 1d as a light yellow solid (441 mg , 49%). M.p. $230-232{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3063, 1788, 1651, 1519, 1344, 1318, 1161, 892, 856, 767, 696; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.40-8.35(\mathrm{~m}, 4 \mathrm{H}), 8.23-8.21(\mathrm{~m}$, $2 \mathrm{H}), 7.52-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 166.8,161.5$, 150.4, 134.6, 133.1, 132.9, 132.6, 132.0, 131.2, 129.2, 129.1, 124.2. EI-MS m/z: 294 $\left[\mathrm{M}^{+}\right]$.

(Z)-4-Benzylidene-2-(tert-butyl)oxazol-5(4H)-one (1e): ${ }^{4}$ Following the general procedure as for $\mathbf{1 b}$, pivaloylglycine ($286.0 \mathrm{mg}, 1.8 \mathrm{mmol}$), benzaldehyde ($152.0 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, $\mathrm{NaOAc}(615.0 \mathrm{mg}, 7.5 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$ was reflux for 1 h . The solid was filtered and washed with water and a little EtOH . The desired product $1 \mathbf{e}$ was obtained as a light yellow solid ($75.4 \mathrm{mg}, 22 \%$). M.p. $88-90{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3055, 2970, 2871, 1796, 1654, 1590, 1294, 1146, 1017, 859, 765, 692; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.12$ (dd, $\left.J=7.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 174.8,168.3,133.3,133.0,132.3,131.5$, 131.0, 128.8, 34.4, 27.0; EI-MS m/z: 229 [M ${ }^{+}$.

(Z)-4-(4-Bromobenzylidene)-2-phenyloxazol-5(4H)-one (1f): ${ }^{1}$ Following the general procedure as for 1a, hippuric acid ($358.5 \mathrm{mg}, 2.0 \mathrm{mmol}$), 4-bromo-
benzaldehyde ($444.0 \mathrm{mg}, 2.4 \mathrm{mmol}$), $\mathrm{NaOAc}(49.2 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.8 \mathrm{~mL}, 8.0$ mmol) in THF (8 mL) was reflux for 3 h . The given residue was purified by recrystallization from ethyl acetate/DCM to give $\mathbf{1 f}$ as a light yellow solid (435.0 mg , 66%). M.p. 207-208 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3054, 1794, 1650, 1554, 1482, 1158, 1067, 983, 893, 824, 694; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.18$ (d, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.07$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.4,164.0,133.8,133.7,133.6,132.4,132.2,130.1,129.0$, 128.5, 125.9, 125.4.

(Z)-4-(4-Nitrobenzylidene)-2-phenyloxazol-5(4H)-one (1g): ${ }^{1}$ Following the general procedure as for $\mathbf{1 a}$, hippuric acid ($358.5 \mathrm{mg}, 2.0 \mathrm{mmol}$), 4-nitrobenzaldehyde (362.6 $\mathrm{mg}, 2.4 \mathrm{mmol}$), NaOAc ($49.2 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{Ac}_{2} \mathrm{O}$ ($0.8 \mathrm{~mL}, 8 \mathrm{mmol}$) in THF (8 mL) was reflux for 3 h . The solid was filtered and washed with water and a little ethyl acetate. The desired produc 1 g was obtained as a light yellow solid ($335.7 \mathrm{mg}, 57 \%$). M.p. $238-240{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3100$, 2900, 1796, 1651, 1552, 1517, 1336, 1295, 1160, 976, 858, 688; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 8.55$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.35 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.19-8.18 (m, 2H), 7.77 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 2H), 7.48 (s, 1H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): $\delta 166.9,165.3,148.3,140.1$, 136.7, 134.8, 133.4, 129.9, 128.9, 127.4, 125.3, 124.4.

(Z)-4-(4-Methylbenzylidene)-2-phenyloxazol-5(4H)-one (1h): ${ }^{1}$ Following the general procedure as for 1a, hippuric acid ($537.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), 4-methylbenzaldehyde ($425.0 \mu \mathrm{~L}, 3.6 \mathrm{mmol}$), $\mathrm{NaOAc}(73.8 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(1.2 \mathrm{~mL}, 12$ mmol) in THF (10 mL) was reflux for 3 h . The given residue was purified by recrystallization from $\mathrm{EtOH} / \mathrm{DCM}$ to give $\mathbf{1 h}$ as a yellow solid ($412 \mathrm{mg}, 52 \%$). M.p. $144-145{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 1795, 1649, 1551, 1324, 1157, 859, 816, 692; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.17$ (d, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.8,163.0,142.1,133.2,132.6,132.4,132.1$, 130.9, 129.7, 128.9, 128.3, 125.7, 21.8.

(Z)-4-(Naphthalen-2-ylmethylene)-2-phenyloxazol-5(4H)-one (1i): ${ }^{5}$ Following the
general procedure as for 1a, hippuric acid ($537.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), 2-naphthaldehyde ($562.2 \mathrm{mg}, 3.2 \mathrm{mmol}$), $\mathrm{NaOAc}(73.8 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(1.2 \mathrm{~mL}, 12.0 \mathrm{mmol})$ in THF (10 mL) was reflux for 3 h . The given residue was purified by recrystallization from EtOH/ethyl acetate to give $\mathbf{1 i}$ as a yellow solid ($408.5 \mathrm{mg}, 45 \%$). M.p. 150-152 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3054,1793,1650,1557,1330,1161,912,879,692 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}$, $4 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.7,163.4,134.5,134.1,133.3$, $133.2,131.9,131.3,129.2,129.0,128.7,128.4,128.1,127.9,127.8,126.7,125.7$.

(Z)-4-(3-Cyanobenzylidene)-2-phenyloxazol-5(4H)-one (1j): ${ }^{6}$ Following the general procedure as for $\mathbf{1 a}$, hippuric acid ($268.5 \mathrm{mg}, 1.5 \mathrm{mmol}$), 3-formylbenzonitrile (236.0 $\mathrm{mg}, 1.8 \mathrm{mmol}), \mathrm{NaOAc}(36.9 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.6 \mathrm{~mL}, 6.0 \mathrm{mmol})$ in THF (8 mL) was reflux for 3 h . The given residue was purified by recrystallization from EtOH to give $\mathbf{1 j}$ as a light yellow solid ($268.1 \mathrm{mg}, 65 \%$). M.p. $209-211{ }^{\circ} \mathrm{C}$; IR (KBr , cm^{-1}): 3080, 2223, 1800, 1653, 1553, 1289, 1166, 989, 922, 879, 688; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.71$ $(\mathrm{dt}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 166.8,165.1,136.1,135.3$ (two overlapped peaks), 134.6, 134.1, 133.6, 129.7, 129.1, 128.8, 127.9, 125.0, 118.4, 113.4; EI-MS m/z: 274 [$\left.\mathrm{M}^{+}\right]$.

(Z)-4-(2-Ethoxybenzylidene)-2-phenyloxazol-5(4H)-one (1k): ${ }^{1}$ Following the general procedure as for 1a, hippuric acid ($537.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), 2-ethoxybenzaldehyde ($424.0 \mu \mathrm{~L}, 3.6 \mathrm{mmol}$), $\mathrm{NaOAc}\left(73.8 \mathrm{mg}, 0.9 \mathrm{mmol}\right.$), $\mathrm{Ac}_{2} \mathrm{O}$ (1.2 mL , $12.0 \mathrm{mmol})$ in THF (10 mL) was reflux for 3 h . The given residue was purified by recrystallization to give $\mathbf{1 k}$ as a light yellow solid ($451.7 \mathrm{mg}, 51 \%$). M.p. $180-182{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3064, 2984, 2884, 1785, 1644, 1586, 1558, 1446, 1246, 1161, 1037, 980, 859, 754, 689; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.88$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.19-8.17 (m, 2H), $7.89(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8,2 \mathrm{H})$, $7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.50(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.9,162.9,158.8$, 133.1, 133.0 (two overlapped peaks), 132.4, 128.9, 128.3, 126.3, 125.8, 122.7, 120.8, 111.7, 64.2, 14.8; EI-MS m/z: 293 [${ }^{+}$].

(Z)-4-(2-Fluorobenzylidene)-2-phenyloxazol-5(4H)-one (11): ${ }^{7}$ Following the general procedure as for 1a, hippuric acid ($537.6 \mathrm{mg}, 3.0 \mathrm{mmol}$), 2-fluorobenzaldehyde ($446.8 \mathrm{mg}, 3.6 \mathrm{mmol}$), $\mathrm{NaOAc}(73.8 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(1.2 \mathrm{~mL}$, $12.0 \mathrm{mmol})$ in THF (10 mL) was reflux for 3 h . The given residue was purified by recrystallization to give $\mathbf{1 1}$ as a yellow solid ($548.8 \mathrm{mg}, 68 \%$). M.p. $172-174{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3061,3001,1796,1651,1601,1558,1444,1327,1292,1203,985,871$, 761,$690 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H})$, $7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta$ -114.0 (m, Ar-F); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 167.1,164.2,162.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ 256.7 Hz), 134.2, 133.6, $132.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.8 \mathrm{~Hz}\right), 132.7,129.0,128.5,125.4,124.6(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 122.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right), 121.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=10.7 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=\right.$ 21.9 Hz); LC-MS (ESI) m/z: $268[\mathrm{M}+\mathrm{H}]^{+}$.

2.2. Synthesis of N-Alkylisothiazol-3(2H)-one 1,1-dioxides

N-Alkylisothiazol-3(2H)-one 1,1-dioxides $\mathbf{2 h} \mathbf{- 2 i}$ are prepared as follows:

2-Octylisothiazol-3(2H)-one 1,1-dioxide (2h): To a solution of 2-octylisothiazol$3(2 \mathrm{H})$-one ($410.0 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$) in $\mathrm{DCM}(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ is added m -CPBA $(85 \%$, $803.0 \mathrm{mg}, 4.6 \mathrm{mmol}$) and the resulting mixture is stirred at room temperature for 15 h . The mixture was filtered through a pad of silica gel and washed with DCM. A saturated aqueous solution of NaHCO_{3} was added, the organics were extracted with DCM, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under vacuum. The given residue was purified by recrystallization from hexane/DCM to give $\mathbf{2 h}(380 \mathrm{mg}$, 78%) as a colorless liquid. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3092, 2927, 2859, 1735, 1320, 1163, 918 , 856, 790, 671; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 159.2,138.4,129.2,39.8,31.7,29.1$, 28.9, 28.1, 26.7, 22.6, 14.1; LC-MS (DART Positive) m/z: $246[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART, Positive) calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$263.1424, found 263.1422.

2-Methylisothiazol-3(2H)-one 1,1-dioxide (2i): To a solution of 2-methyl-isothiazol-3(2 H)-one ($203.3 \mathrm{mg}, 2.0 \mathrm{mmol}$) in DCM $(10 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ is added m-CPBA $(85 \%, 803.0 \mathrm{mg}, 4.6 \mathrm{mmol})$ and the resulting mixture is stirred at room temperature for 15 h . The mixture was filtered through a pad of silica gel and washed with DCM. A saturated aqueous solution of NaHCO_{3} was added, the organics were extracted with DCM, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under vacuum. The given residue was purified by recrystallization from hexane/DCM to give $2 \mathbf{i}(205.2 \mathrm{mg}, 85 \%)$ as a white solid. M.p. $106-108{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3173$, 3094, 1741, 1332, 1300, 1163, 915, 856, 785, 668; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): $\delta 158.8,138.4,129.4,23.5$; LC-MS (DART Positive) m/z: $148\left[\mathrm{M}^{+} \mathrm{H}\right] ;$ HRMS (ESI) m/z: calcd for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$148.0063, found 148.0062.

3. Synthesis and Characterization of Products

General Procedure: To a test tube were added $1(0.3 \mathrm{mmol}), 2(0.45 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{mmol})$, $\mathrm{KI}(0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 4 h under an air atmosphere as monitored by TLC. Upon completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to give product 3.

3,5-Diphenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-dione
Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, 1-phenyl-1 H -pyrrole-2,5-dione $\mathbf{2 a}$ ($78.1 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}$, $0.6 \mathrm{mmol})$, KI ($49.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) in dioxane (1.5 mL). After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{a}(63.6 \mathrm{mg}, 73 \%)$. M.p. $176-177{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3065, 1791, 1719, 1595, 1491, 1448, 1386, 1199; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.03$ (dd, $J=7.6,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 170.8,169.8,152.8,131.3,130.8,129.3$, 129.2, 128.9, 128.1, 126.7, 126.2, 80.4, 54.9; EI-MS m/z: 292 [M ${ }^{+}$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$292.0848, found 292.0844 .

5-(4-Chlorophenyl)-3-phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)dione (3b): Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3$ mmol), 1-(4-chlorophenyl)-1H-pyrrole-2,5-dione $2 \mathbf{b}$ ($93.6 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3b ($65.7 \mathrm{mg}, 67 \%$). M.p. 197-199 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3000, 2900, 1723, 1497, 1391, 1193, 894, 830, 759; ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 7.95-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), 5.74 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}): $\delta 172.3,171.2,153.8,133.8,131.3,131.0,129.6,129.3,129.2,128.4$, 127.6, 81.8, 55.8; EI-MS m/z: 326 [M ${ }^{+}$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{3}$ $\left[\mathrm{M}^{+}\right]$326.0458, found 326.0457.

3-Phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-dione (3c): ${ }^{9}$ Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, $1 H$-pyrrole-2,5-dione 2c ($43.7 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$, $\mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 2 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/DCM/ethyl acetate $=5 / 25 / 3$) afforded 3c ($43.7 \mathrm{mg}, 67 \%$). M.p. $220-221{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3198, 3094, 1793, 1729, 1563, 1336, 1180, 771; ${ }^{1} \mathrm{H}$ NMR ($\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 11.89(\mathrm{~s}, 1 \mathrm{H})$, $7.90-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}): δ 174.8, 173.7, 154.0, 131.2, 129.2, 128.3, 127.6, 82.8, 56.6; EI-MS m/z: $216\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$ 216.0535, found 216.0541.

5-Butyl-3-phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-dione (3d): Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.8 \mathrm{mg}, 0.3 \mathrm{mmol})$, 1-butyl-1H-pyrrole-2,5-dione 2d ($69.2 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}$, $0.6 \mathrm{mmol})$, KI ($49.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) in dioxane (1.5 mL). After 4.5 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{d}(66.7 \mathrm{mg}, 82 \%)$. M.p. $82-84^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3064, 2952, 1783, 1709, 1444, 1402, 1333; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.97-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}$, $3 \mathrm{H}), 5.49(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47$
(m, 2H), 1.28-1.20 (m, 2H), $0.86(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 172.0, 170.9, 152.8, 131.1, 128.8, 128.0, 126.8, 80.4, 54.9, 39.5, 29.4, 19.9, 13.5; EI-MS m/z: $272\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$272.1161, found 272.1159.

5-Benzyl-3-phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-dione (3e): Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.8 \mathrm{mg}, 0.3 \mathrm{mmol})$, 1-benzyl-1H-pyrrole-2,5-dione $2 \mathrm{e}(84.3 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}$, $0.6 \mathrm{mmol})$, KI ($49.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) in dioxane (1.5 mL). After 4.5 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{e}(65.1 \mathrm{mg}, 71 \%)$ as a white solid. M.p. $82-84{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3064$, 2952, 1783, 1709, 1444, 1402, 1333; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.98$ (dd, $J=7.7$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.48(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 171.5,170.6,152.7,134.6,131.2,128.9,128.8,128.4,128.0,126.8$, 80.5, 54.9, 43.3; EI-MS m/z: $306\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$ 306.1004, found 306.1006.

3-Phenyl-5-(prop-2-yn-1-yl)-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-di one (3f): Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3$ mmol), 1-(prop-2-yn-1-yl)-1H-pyrrole-2,5-dione 2 f ($61.0 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 2.5 h at $60^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $\mathbf{3 f}(31.8 \mathrm{mg}, 42 \%)$ as a colorless liquid. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3285, 3063, 2974, 1795, 1725, 1425, 1389, 1338, 1180, 1043, 903, 759, 689, 628; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.98(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 5.56(\mathrm{~d}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.3,169.4,152.4,131.3,128.9,128.0,126.6,80.4$, 75.4, 72.5, 55.0, 28.7; LC-MS (DART Positive) m/z: $255[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 255.0764$, found 255.0761.

3-(4-Bromophenyl)-5-phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)dione (3 g): Following the general procedure, the reaction mixture of $\mathbf{1 f}(98.5 \mathrm{mg}, 0.3$
mmol), 1-phenyl-1 H -pyrrole-2,5-dione 2a ($77.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3 g ($89.6 \mathrm{mg}, 80 \%$). M.p. 204-206 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2923, 1722, 1496, 1496, 1389, 1194, 893, 832, 691, 619; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.91$ (d, J $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.68(\mathrm{~d}$, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.6$, 169.7, 152.1, 132.2, 130.7, 129.5, 129.3 (two overlapped peaks), 126.1, 125.9, 125.7, 80.6, 54.7; EI-MS m/z: 370 [$\left.\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)\right], 372$ [$\left.\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] 369.9953$, found 369.9955 .

3-(4-Nitrophenyl)-5-phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-di one (3h): ${ }^{10}$ Following the general procedure, the reaction mixture of $\mathbf{1 g}(88.5 \mathrm{mg}, 0.3$ mmol), 2a ($77.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, KI (49.8 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane (1.5 mL). After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $\mathbf{3 h}(69.4 \mathrm{mg}$, $69 \%)$. M.p. $251-252{ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3068,2956,1791,1723,1518,1386,1345$, $1205,910,856,744,688,624 ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right): \delta 8.36$ (d, $J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.49(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right): \delta 172.2$, 171.3, 153.1, 149.0, 133.8, 132.1, 129.7, 129.5, 129.4, 127.5, 124.4, 82.7, 55.4; EI-MS m/z: $337\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]$337.0699, found 337.0695 .

5-Phenyl-3-(p-tolyl)-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-dione
(3i): ${ }^{10}$ Following the general procedure, the reaction mixture of $\mathbf{1 h}(79.1 \mathrm{mg}, 0.3$ mmol), 2a ($78.0 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($145.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), KI (49.8 $\mathrm{mg}, 0.3 \mathrm{mmol}$) in dioxane (1.5 mL). After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{i}$ (62.2 mg , 68%). M.p. $179-180^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3054, 2963, 1724, 1499, 1385, 1193, 892, 854, 695; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.93$ (d, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.65(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 171.1,170.0,152.8,141.8,130.9,129.6,129.3$, 129.2, 128.0, 126.2, 123.9, 80.3, 55.0, 21.6; EI-MS m/z: 306 [M ${ }^{+}$; HRMS (EI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] 306.1004$, found 306.1010.

3-(Naphthalen-2-yl)-5-phenyl-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)dione (3j): Following the general procedure, the reaction mixture of $\mathbf{1 i}(89.9 \mathrm{mg}, 0.3$ mmol), 2a ($77.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, KI (49.8 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane (1.5 mL). After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{j}$ (73.7 mg , 72%). M.p. 203-204 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3059, 1794, 1723, 1594, 1495, 1379, 1193, 899, 745; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.71(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 170.8, 170.0, 152.9, 134.4, 132.8, 130.8, 129.6, 129.3, 129.2, 129.0, 128.8, 127.9, 127.8, 126.9, 126.2, 124.2, 123.8, 80.6, 55.0; EI-MS m/z: 342 [M ${ }^{+}$]; HRMS (EI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] 342.1004$, found 342.1001.

3-Phenylnaphtho[2,3-d]isoxazole-4,9-dione (3k): ${ }^{11}$ Following the general procedure, Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, naphthalene-1,4-dione 2 g ($71.1 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol})$, $\mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 2 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $\mathbf{3 k}$ ($55.9 \mathrm{mg}, 68 \%$). M.p. $137-138{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3072, 1685, 1584, 1433, 1340, 1261, 1204, 1167, 919, 716; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 8.30-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.16$ (dd, $J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}): \delta 178.7,173.4,166.3,161.0,135.3,134.3,133.8,131.8,131.3,129.4$, 128.7, 127.8, 127.3, 126.2, 119.6; EI-MS m/z: $275\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{NO}_{3}\left[\mathrm{M}^{+}\right]$275.0582, found 275.0587.

3-(4,9-Dioxo-4,9-dihydronaphtho[2,3-d]isoxazol-3-yl)benzonitrile (31): Following the general procedure, the reaction mixture of $\mathbf{1 j}(82.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, naphthalene-1,4-dione 2 g ($71.1 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6$ $\mathrm{mmol}), \mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 31 ($68.9 \mathrm{mg}, 76 \%$). M.p. $203-205^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3080, 2231, 1688, 1581, 1461, 1427, 1336, 1204, 929, 804, 721; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 178.6,173.0,166.6,159.3,135.6,134.7$, 134.6, 133.5, 133.4, 133.0, 131.8, 129.7, 127.9, 127.7, 127.5, 119.4, 118.0, 113.3; LC-MS (DART Positive) m/z: $301[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 301.0608$, found 301.0605.

3-(2-Ethoxyphenyl)naphtho[2,3-d]isoxazole-4,9-dione (3m): Following the general procedure, the reaction mixture of $\mathbf{1 k}(88.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, naphthalene-1,4-dione $2 \mathrm{~g}(71.1 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.8 \mathrm{mg}, 0.3$ mmol) in dioxane (1.5 mL). After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3 m (63.6 mg , 66%). M.p. $193-195^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3071, 2981, 2939, 2891, 1687, 1594, 1453, 1336, 1255, 1199, 1037, 918, 762, 721; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.30-8.28(\mathrm{~m}$, $1 \mathrm{H}), 8.21-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H})$, $4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 178.1, 173.6, 165.0, 158.7, 157.5, 135.1, 134.0, 133.8, 132.4, 132.1, 130.6, 127.4, 127.2, 121.5, 120.4, 115.5, 111.9, 63.9, 14.6; LC-MS (DART Positive) m/z: 320 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 320.0917$, found 320.0914.

3-(2-Fluorophenyl)naphtho[2,3-d]isoxazole-4,9-dione (3n): Following the general procedure, the reaction mixture of $\mathbf{1 l}(80.3 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{2 g}(71.1 \mathrm{mg}, 0.45 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 n(58.6 \mathrm{mg}, 67 \%)$. M.p. $192-194{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3077, 1686, 1584, 1514, 1465, 1336, 1197, 918, 758, 716; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}): \delta 8.31-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.23-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{td}, J=7.4$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta$ -111.2 (m, Ar-F); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 178.1,173.2,165.5,160.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ $=252.8 \mathrm{~Hz}), 156.4,135.3,134.4,133.6,133.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 132.0,131.2(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=1.2 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}\right), 124.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 120.6,116.2(\mathrm{~d}$,
${ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.0 \mathrm{~Hz}$), $114.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=14.4 \mathrm{~Hz}\right.$); EI-MS m/z: $293\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{FNO}_{3}\left[\mathrm{M}^{+}\right]$293.0488, found 293.0497.

3-(4-Bromophenyl)naphtho[2,3-d]isoxazole-4,9-dione (30): Following the general procedure, the reaction mixture of $\mathbf{1 f}(98.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{2 g}(71.1 \mathrm{mg}, 0.45 \mathrm{mmol})$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{KI}(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 30 ($64.9 \mathrm{mg}, 61 \%$). M.p. $178-180{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3082, 2924, 1686, 1588, 1443, 1335, 1261, 1195, 1001, 911, 821, 721; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 500 \mathrm{MHz}$): $\delta 8.19-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98-7.94(\mathrm{~m}$, $2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 179.1,173.6,167.1$, 159.9, 135.8, 135.0, 134.0, 132.3, 131.5, 127.5, 127.1, 125.8, 125.5, 119.4; EI-MS $\mathrm{m} / \mathrm{z}: 352\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)\right], 353\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{BrNO}_{3}\left[\mathrm{M}^{+}\right]$ 352.9688, found 352.9685 .

5-Octyl-3-phenyl-3a,6a-dihydroisothiazolo[5,4-d]isoxazol-6(5H)-one 4,4-dioxide (3p): Following the general procedure, the reaction mixture of $\mathbf{1 a}$ ($74.8 \mathrm{mg}, 0.3$ $\mathrm{mmol})$, 2h ($110.4 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, KI (49.8 $\mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane (1.5 mL). After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3p $(55.2 \mathrm{mg}$, 50%). M.p. $81-83^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2924,2856,1738,1458,1348,1156,1077,917$, $772,689,554 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H})$, $5.72(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.71(\mathrm{~m}$, $2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 160.1, 151.1, 131.7, 129.3, 127.3, 126.5, 82.7, 69.6, 41.2, 31.7, 29.0, 28.9, 28.0, 26.6, 22.6, 14.1; EI-MS m/z: 364 [M $\left.{ }^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+}\right]$ 364.1457, found 364.1458.

5-Methyl-3-(naphthalen-2-yl)-5,6a-dihydroisothiazolo[5,4-d]isoxazol-6(3aH)-one 4,4-dioxide (3q): Following the general procedure, the reaction mixture of $\mathbf{1 i}$ (89.8 $\mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathbf{2}(66.4 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, KI $(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $\mathbf{3 q}(46.3 \mathrm{mg}$, $49 \%)$. M.p. $198-200{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2952, 2923, 1734, 1462, 1340, 1218, 1149 , 917, 804, 745, 612; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.07(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.86$ $(\mathrm{m}, 4 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 159.9,151.2,134.6,132.8,129.4,128.9$, 128.2 (two overlapped peaks), 128.0, 127.3, 124.0, 123.2, 83.1, 69.6, 25.0; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right]$ 317.0596, found 317.0582.

5-Methyl-3-(4-nitrophenyl)-5,6a-dihydroisothiazolo[5,4-d]isoxazol-6(3aH)-one 4,4-dioxide (3r): Following the general procedure, the reaction mixture of $\mathbf{1 g}$ (88.5 $\mathrm{mg}, 0.3 \mathrm{mmol}), 2 \mathbf{i}(66.3 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, KI $(49.8 \mathrm{mg}, 0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{r}$ (19.7 mg , $21 \%)$. M.p. $260-261^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3086, 2963, 1720, 1520, 1419, 1346, 1263, 1153, 1099, 1025, 925, 803, 740, 690; ${ }^{1}$ H NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$): $\delta 8.40$ (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.04$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 125 \mathrm{MHz}$): δ 161.1, 151.6, 149.3, 133.3, 128.9, 124.9, 85.2, 69.3, 24.8; EI-MS m/z: $312[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (EI) m/z: calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 312.0285$, found 312.0283.

3-Phenyl-4,5-dihydroisoxazole-5-carbonitrile (3s): ${ }^{12}$ Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, acrylonitrile ($60.0 \mu \mathrm{~L}, 0.9$ $\mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(290.0 \mathrm{mg}, 1.2 \mathrm{mmol})$, $\mathrm{KI}(99.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(1.5 \mathrm{~mL})$. After 4.5 h at $50^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathrm{~s}(29.1 \mathrm{mg}, 56 \%)$. M.p. $63-66^{\circ} \mathrm{C}$; IR (KBr , $\left.\mathrm{cm}^{-1}\right): 2990,2429,1564,1444,1352,925,870,759,685 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{dd}, J=10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81-3.71 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 156.3,131.3,129.1,127.4,127.1$, 117.1, 66.6, 41.2; HRMS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}$173.0715, found 173.0721 .

Butyl 3-phenyl-4,5-dihydroisoxazole-5-carboxylate (3t): Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, n-butyl acrylate ($66.0 \mu \mathrm{~L}$, $0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.7 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathrm{t}(42.9 \mathrm{mg}, 58 \%)$ as a yellow liquid; IR (KBr, cm^{-1}): 3061, 2961, 2873, 1742, 1454, 1352, 1205, 892, 760; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 5.16(\mathrm{dd}, J=10.5,7.8$, $\mathrm{Hz} 1 \mathrm{H}), 4.20(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}$, $2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.3,156.0,130.6$, 128.8, 128.6, 126.9, 78.1, 65.9, 38.9, 30.5, 19.0, 13.7; EI-MS m/z: 247 [${ }^{+}$]; HRMS (EI) m/z: calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}\left[\mathrm{M}^{+}\right]$247.1208, found 247.1215.

Benzyl 3-phenyl-4,5-dihydroisoxazole-5-carboxylate (3u): ${ }^{13}$ Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, benzyl acrylate ($68 \mu \mathrm{~L}$, $0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.7 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$. After 4.5 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{u}(50.7 \mathrm{mg}, 60 \%)$. M.p. $53-55^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$): 3063, 2928, 1749, 1450, 1347, 1197, 1018, 886, 758, 696; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.67(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 8 \mathrm{H}), 5.27-5.19(\mathrm{~m}$, 3H), 3.69-3.59 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 170.0,156.0,135.1,130.6$, 128.8, 128.7, 128.6, 128.5, 128.4, 127.0, 78.1, 67.6, 38.9; EI-MS m/z: $281\left[\mathrm{M}^{+}\right] ;$ HRMS (EI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{3}\left[\mathrm{M}^{+}\right]$281.1052, found 281.1053.

Dimethyl 3-phenylisoxazole-4,5-dicarboxylate (3v): ${ }^{14}$ Following the general procedure, the reaction mixture of $\mathbf{1 a}(74.7 \mathrm{mg}, \quad 0.3 \mathrm{mmol})$, dimethyl acetylenedicarboxylate ($54.0 \mu \mathrm{~L}, 0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.7 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$. After 4 h at $80^{\circ} \mathrm{C}$, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded $3 \mathbf{v}$ ($43.4 \mathrm{mg}, 55 \%$). M.p. $62-64^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3457, 2955, 2923, 1716, 1429, 1222, 1066, 918, 794, 686; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 500 MHz): $\delta 7.70-7.68$ (m, 2H), 7.53-7.46 (m, $3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.8,161.3,159.4$, 156.5, 130.7, 128.9, 128.2, 126.9, 116.1, 100.0, 53.4, 53.2; EI-MS m/z: $261\left[\mathrm{M}^{+}\right]$; HRMS (EI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{5}\left[\mathrm{M}^{+}\right]$261.0637, found 261.0633.

4. X-Ray Crystallographic Analysis for Compound 3r

Crystallographic data for $3 \mathbf{r}$: $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}, \mathrm{M}=311.27$, orthorhombic, Pbca (No. 61), $\mathrm{a}=6.495$ (3) $\AA, \mathrm{b}=17.713$ (8) $\AA, \mathrm{c}=21.586$ (10) $\AA, \mathrm{V}=2483(2) \AA^{3}, \mathrm{Z}=8$, Crystal size: $0.25 \times 0.20 \times 0.15 \mathrm{~mm}, \mathrm{~T}=293 \mathrm{~K}, \rho_{\text {calcd }}=1.665 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, \mathrm{R}_{1}=0.0374(\mathrm{I}>4 \sigma(\mathrm{I})$), $\mathrm{wR}_{2}=0.111$ (all data), $\mathrm{GOF}=1.031$, reflections collected/unique: $14604 / 2926$ (Rint $=0.0289$), Data: 2306, restraints: 0, parameters: 198. CCDC 1884631 (3r) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

5. Mechanistic Studies

To a test tube were added 1a ($74.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a ($77.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, $\mathrm{KI}(49.8,0.3 \mathrm{mmol})$ and 1,4-dinitrobenzene $(101.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dioxane (1.5 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h under an air atmosphere. Upon completion of the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3a ($65 \mathrm{mg}, 74 \%$).

To a test tube were added 1c ($83.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a ($77.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{KI}(49.8,0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h under an air atmosphere. Upon completion of the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3a (56.3 mg , 64%) and 4-methoxybenzoic acid ($26.0 \mathrm{mg}, 57 \%$) as a white solid. No observable 4-methoxylbenzamide was isolated.
Characterization of 4-methoxybenzoic acid: ${ }^{15}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.09$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

To a test tube were added 1d ($88.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a ($77.9 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{KI}(49.8,0.3 \mathrm{mmol})$ in dioxane $(1.5 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h under an air atmosphere. Upon completion of
the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3a (55.0 mg , 63%), 4-nitrobenzamide ($20.0 \mathrm{mg}, 40 \%$) and 4-nitrobenzoic acid ($5.6 \mathrm{mg}, 11 \%$).
Characterization of 4-nitrobenzamide: ${ }^{16}{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$): δ 8.30-8.28 (m, 3H), 8.09 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 ($\mathrm{s}, 1 \mathrm{H}$).

Characterization of 4-nitrobenzoic acid: ${ }^{17}{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 500 \mathrm{MHz}\right): \delta 13.65$ (s, $1 \mathrm{H}), 8.32$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$.

To a test tube were added (nitromethyl)benzene ${ }^{18}(41 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{2 a}(77.9 \mathrm{mg}$, $0.45 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(145.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ and $\mathrm{KI}(49.8,0.3 \mathrm{mmol})$ in dioxane (1.5 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h under an air atmosphere. Upon completion of the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3a ($<5 \%$) and (nitromethyl)benzene (with 95% recovery).

6. Reference

[1] M. Blanco-Lomas, P. J. Campos and D. Sampedro, Org. Lett., 2012, 14, 4334.
[2] M. A. Almaraz-Girón and A. Vázquez, Tetrahedron Lett., 2017, 58, 785.
[3] C. A. B. Rodrigues, I. F. A. Mariz, M. S. E. Maçôas, C. A. M. Afonso and J. M. G. Martinho, Dyes Pigments, 2013, 99, 642.
[4] R. Glaser and S. Geresh, Tetrahedron, 1979, 35, 2381.
[5] B. M. Trost, P. J. Morris and S. J. Sprague, J. Am. Chem. Soc., 2012, 134, 17823.
[6] P. Richter, H. G. Kazmirowski, G. Wagner and C. Garbe, Pharmazie, 1973, 28, 585.
[7] E. L. Bennett and C. Nieman, J. Am. Chem. Soc., 1950, 72, 1806.
[8] T. Shimizu, Y. Hayashi and K. Teramura, Bull. Chem. Soc. Jpn., 1984, 57, 2531.
[9] A. Yoshimura, K. C. Nguyen, G. T. Rohde, A. Saito, M. S. Yusubov and V. V. Zhdankin, Adv. Synth. Catal., 2016, 358, 2340.
[10] V. Kumar and M. P. Kaushik, Tetrahedron Lett., 2006, 47, 1457.
[11] A. Bargiotti, L. Musso, S. Dallavalle, L. Merlini, G. Gallo, A. Ciacci, G. Giannini, W. Cabri, S. Penco, L. Vesci, M. Castorina, F. M. Milazzo, M. L. Cervoni, M. Barbarino, C. Pisano, C. Giommarelli, V. Zuco, M. De Cesare and F. Zunino, Eur. J. Med. Chem., 2012, 53, 64.
[12] T. D. Svejstrup, W. Zawodny, J. J. Douglas, D. Bidgeli, N. S. Sheikh and D. Leonori, Chem. Commun., 2016, 52, 12302.
[13] C. Matt, A. Gissot, A. Wagner and C. Mioskowski, Tetrahedron Lett., 2000, 41, 1191.
[14] A. Singhal, S. K. R. Parumala, A. Sharma and R. K. Peddinti, Tetrahedron Lett., 2016, 57, 719.
[15] X. Wang, C. Wang, Y. Liu and J. Xiao, Green Chem., 2016, 18, 4605.
[16] D. D. S. Sharley and J. M. J. Williams, Tetrahedron Lett., 2017, 58, 4090.
[17] S. Wu, H. Ma and Z. Lei, Tetrahedron, 2010, 66, 8641.
[18] D. S. Bose and G. Vanajatha, Synth. Commun., 1998, 28, 4531.
9\＆とでし～ Z09でく
8ヵをがく
L8がぐく
Z6St••
$998 t^{\circ} \angle 2$
$8 L 6 t^{\circ}<2$

$\mathrm{SOCSO}^{\circ} \angle \bar{\angle}$ $\angle 969^{\circ} L^{-}$
$1+09{ }^{\circ}$
$0809^{\circ} L^{\prime}$ 1219：－ ZOZ9＇ 2
$82799^{\circ} \mathrm{C}-1$
\＆gz9 ${ }^{\circ}$
じの918
02918
HLL•8
ع8LL•
て181．8］
LE81．8
168． 8
ع $61 \cdot 8$
9G61．8
$\angle ヤ 0 て ゙ 8 」$

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

ャ६Oャ＇て—
カてカレ・くー
t09でく

カてカレ゙く～
ャ09でく－
$8 \varepsilon 90^{\circ} 8$
$8 \angle 90^{\circ} 8$
てしEtく しS\＆t••－ カーカガレ 8 890．8 8L90 ${ }^{\circ}-$ 1LLO＇8－乙 880 ．${ }^{\circ}$

				－1	$\begin{aligned} & \text { 'r } \\ & \text { © } \\ & \text { c. } \end{aligned}$	$\begin{aligned} & \text { T'T } \\ & \hline \text { O} \\ & \hline \end{aligned}$									$\stackrel{\text { T }}{\substack{\text { ¢ }}}$					
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	10	0.5	0.0

```
    69`9-
```


	-0
	- 0
	-0
	\bigcirc
	$\underline{\sim}$
	\bigcirc
	\cdots
	10
	-
	\bigcirc
	م,
	-
	\bigcirc
	\checkmark
	0
	ナ
	$0 \stackrel{\Xi}{\circ}$
	10
	10
	\bigcirc
	\odot
	0
	0°
	\bigcirc
	N
- LOE	\bigcirc
	N
	- 0
$\begin{aligned} & \text { F } Z 0^{\circ} \mathrm{Z} \\ & \mathrm{~F} 00^{\circ} \mathrm{t} \end{aligned}$	
	10
	$-\infty$
	\bigcirc
	- ${ }^{\circ}$
	10
	0
	\bigcirc
	-

IZSI・く
ع09でく
とてレー゙く
8SEがく
L6St．
GLOL＇8
てLI－8
$81218-8-$
89218

(
$\varepsilon \angle Z G^{\circ} \angle$
$\nabla Z \hbar G^{\circ} \angle 乙$
$6 \angle G G^{\circ} \angle-$
1009'L—
LLI9
$\left.\begin{array}{l}6 เ E 9^{\circ} \angle-5 \\ 2979^{\circ}\end{array}\right]$

			$\begin{aligned} & \text { TH } \\ & \text { OH } \\ & \text { N } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { red } \\ & \text { No } \\ & \text { mion } \end{aligned}$	$\frac{T}{\sigma}$														
1	1	1	1		-	1	1	1			1	1	1	1	1	1	1	1	1	1
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

L8Zで L ع09でL عLLZ＇L とと6でく

$6 \varepsilon t 9^{\circ} \cdot$
$8+09^{\circ} L$
2ヶ09．8
عOL1－8－
$\varepsilon \angle 91 \cdot 8-\top$
$0281 \cdot 8$

															$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$					
10	9	＋	1	1	15				5			1		．	1	1	1.	1.	， 5	
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

(

レでゅ9一
$8 \angle \cdot 9 L$
$\varepsilon 0 \angle L$
$8 Z \angle L$

$$
\begin{array}{ll}
& -1 \\
\hline
\end{array}
$$

てで6てレー

6と・8عレー

91•6Sレ－

$8 L^{\circ} 9 L$
$\varepsilon 0^{\circ} \angle L$
$6 Z^{\circ} \angle L$
して
\&S96
$\angle\left\llcorner 86^{\circ} \downarrow=\right.$

L8S9ㅇㄱ 1829 9^{-}

9 9ZO 8 $9920{ }^{-8}$ $8880.8-$ L1+0.8

				$\begin{aligned} & \text { T } \\ & \hline \text { ì } \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \\ & \hline \end{aligned}$				$\underset{N}{1}$	$$										
		,	,	${ }^{1}$	1.	7	6.	1		1	1.	,	1	1.		1				
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0 (ppm)	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

$$
\begin{aligned}
& Z 6^{\circ}+G- \\
& \\
& 8 L^{\circ} \cdot 9 \angle \\
& 70^{\circ} \angle L \\
& 6 Z^{\circ} \angle L-
\end{aligned}
$$

돔

$$
0
$$

$$
\mathfrak{H} 08-
$$

				T 	No 'i															
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & (\mathrm{ppm}) \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

GL＇GS－

t009＇乙－
$\downarrow \angle \varepsilon \vdash^{\circ} G$
Z9G1．9－

8tLG＇G

9 297° L
GGLナ＊
七G8t＇L
てZ6ぢく
七く67 L
$9909^{\circ}<$
†G98
9028 ${ }^{\circ}$
$6788^{\circ} L^{-1}$
0888° L
0Z68 ${ }^{\circ}$
$6768{ }^{\circ} \mathrm{L}$
0G68 ${ }^{\circ}$
$\angle 868^{\circ} \mathrm{L}$
عZ06 ${ }^{\circ}$
ع806 ${ }^{\circ}$－
9GL6：

$16788^{\circ} 0$
$6898 \cdot 0$
98 280°
0とદでレー

106 ${ }^{\circ} \downarrow$
2608＇カ
$\stackrel{\text { LLL }}{\text { E }}$
ع09でく

2tcter
$0696{ }^{\circ}$
2026 $2-$
LEL6．${ }^{\circ}$

$8 G Z 6^{\circ} \hbar$
$97 t 6^{\circ} t^{\prime}$
6LL9＇9
8069 9°
ع09て＇～
8レてでく
S6レビL
E8Sガム
9989＇L
2006．

(

-o

て68でし
SZ8EL－
silt： HSt L^{-}

00ZS＇L
£と\＆S＇L
เ6tc＇$\llcorner\cdot$
เع9s．L^{\prime}
ع9LS＇L

0レセ8：
$\angle 898^{\circ} \mathrm{L}$
8928．
$七 \angle E 6^{\circ} \mathrm{L}$ — 6ZS6 ${ }^{\circ}$
$\begin{array}{ll}\angle S 90^{\circ} \mathrm{G} \\ 0 \mathrm{~S} 80^{\circ} \mathrm{G}^{\circ} & \begin{array}{l}+8 \angle 0^{\circ} 8^{\sim} \\ 9 \mathrm{~S}\end{array} \\ & \end{array}$

9GOL＇
$6 \succcurlyeq Z L^{\circ}{ }^{-}$

			$\stackrel{1}{8}$	888 -0	
10.0	9.5	9.0	8.5	8.0	7.5

S6'tG-

F 20 © ε
$\stackrel{\sim}{\sim}$
F 80 Z
F-00'z
下00'Z

					$\begin{aligned} & \text { T } \\ & \text { O} \\ & \text { N } \end{aligned}$															
											4.5							1.0	0.5	0.0
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

$8 \angle .9 \angle$
$\varepsilon 0 . \angle L$
8% BZ＇LL

ャ0． $191-$
0ε＂99レー
Lع＇$\varepsilon \angle 1-$
898ㄴー

$90+0 \cdot \angle$
EtSO ${ }^{\circ}$
t9SO 2
$9890^{\circ} \angle$
S690 2
Sl20＇\angle
カャ80 \angle
$\varepsilon 980 \cdot<$
ع09Z＇L－
zeos ${ }^{\circ}$
† L6L゙く

เ8 21.8
Sl81．8
9781.8

LL61．8」
t961－8－
Z90Z 8
8しくで8－
818で8－
G98て＇8－
S\＆6Z＇8
996て＇8
L66て＇8

เ808． 8

					$\begin{aligned} & \text { T } \\ & \text { O} \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \stackrel{\uparrow}{8} \\ & \stackrel{8}{+} \end{aligned}$	$\begin{aligned} & \stackrel{T}{\mathrm{~T}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$						$\begin{aligned} & \text { T } \\ & \hline \\ & \text { in } \end{aligned}$				$\begin{aligned} & \text { H} \\ & \stackrel{\rightharpoonup}{\mathrm{m}} \end{aligned}$			
100	95	90	8.5	8		75	70	6.5	6.0			45	40	35	3.0	25	20	15	1.0	0.5
10.0	9.5	9.0	8.5	8.0		7.5	7.0	6.5	6.0		pm）	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5

98．9SL－	
\＆s＇6Sレ－	
Zs＇s9l－	
	$\begin{aligned} & \text { Sl.LEL } \\ & 9 \cdot \cdot L \varepsilon L \end{aligned}$
OZ＇とくレー	
20＇8L1－	
	$\begin{aligned} & \varepsilon 0 \cdot \varepsilon \varepsilon\llcorner- \\ & 01 \cdot \varepsilon \varepsilon \downarrow \end{aligned}$
	9 9＇ャ \downarrow－
	0ε ¢ $¢ 1-$

SOOS'Z-
Z9\&\& $\varepsilon-$

80 カレー
00・てZ—09てZ—

09＇Zて－
09＇92－
$96.1 \chi^{-5}$
$\left.\begin{array}{c} 68 \cdot 8 \complement^{\prime} \\ 0 L \cdot L \varepsilon \end{array}\right]$
Oでレカー

$68.82 \overline{ }$ Z06․

ャ9＊69－
$6 \angle 9$
$90.2 L$
$0 L^{\circ} L \varepsilon-$

عL＇Z8－

| 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

†986．-
S96t＇Z
$666 t \cdot z-$
$+\varepsilon 09 \cdot z$
เEOS＇Z
$9 \angle 80^{\circ} \varepsilon-$
89Zع•غ－

SHL＇9
เマとし＇9
†Z6S＇9
62199－

DMSO－d $d_{6}, 500 \mathrm{MHz}$


```
OZ1600
91+6.0
L08&'L
0GE9`
6St9'L
78t9.-
90S9.L
0&G9'L
L6S9'-
8L99'L
9829.\
00z9'&
9829`\varepsilon
|⿰㇒⿻二丨冂大
&\vdasht9`\varepsilon
8881'ちᄀ
&ZOZ゙巾
&Zャレ``
08GL``
\downarrow&9L`-
68L!G
t09Z'L
L88&'L
GZ6&'L
G668'L
8ZOt'く
ち80ぢく
ャOードく
レャレ゙く\
GZ99＇L
ع999＇L
6 \(299^{\circ} \mathrm{L}\)
OGL9＇L
ع8 \(29^{\circ} \mathrm{L}\)
L189 2
```


t09Z＇L
$\downarrow \angle \varepsilon \varepsilon^{\circ} \angle$
LZSE L
LL9どく
16Lどく
\＆G68＇L
0カレ゙くて
† $199^{\circ} \mathrm{L}$
9599＇L－
GLL9＇L
L089．L

(

