Copper nitrate-mediated synthesis of 3-aryl isoxazolines and

isoxazoles from olefinic azlactones

Yifan Lin,^{§,†} Ke Zhang,^{§,†} Mingchun Gao,[†] Zheyi Jiang,[†] Jiajie Liu,[†] Yurui Ma,[†] Haoyu Wang,[†] Qitao Tan,^{*,†} Junjie Xiao,^{*,†} and Bin Xu^{*,†,‡}

†Department of Chemistry, Innovative Drug Research Center, Qianweichang College, School of Life Science, Shanghai University, Shanghai 200444, China
Tel: (+86) 21-66132830; Fax: (+86) 21-66132830; E-mail: xubin@shu.edu.cn
‡State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Supporting Information

CONTENTS:

1. General Information	S2
2. Synthesis and Characterization of Substrates	S 3
3. Synthesis and Characterization of Products	<u>S</u> 8
4. X-Ray Crystallographic Analysis for Compound 3r	S 16
5. Mechanistic Studies	S17
6. References	<u>S</u> 18
7. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for All Compounds	S20

General Information

All reagents were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ¹H, ¹³C and ¹⁹F NMR spectra were recorded with a Bruker AV-500 spectrometer operating at 500 MHz, 125 MHz and 470 MHz, respectively, with chemical shift values being reported in ppm relative to chloroform (δ = 7.26 ppm), dimethyl sulfoxide (δ = 2.50 ppm) or TMS (δ = 0.00 ppm) for ¹H NMR; with chloroform ($\delta = 77.16$ ppm), dimethyl sulfoxide ($\delta = 39.52$ ppm) for ¹³C NMR; with C₆F₆ (δ = -164.9 ppm) for ¹⁹F NMR. Mass spectra (MS) and high resolution mass spectra (HRMS) were recorded with an Agilent 5975C or Thermo Fisher Scientific LTQ FTICR-MS using an Electron impact (EI) or Electrospray ionization (ESI) techniques. The crystal structure was recorded on SMART APEXII X-ray diffraction spectrometer. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh were used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated. N-Alkylmaleimides 2a-2g and 2j-2n are all purchased from commercial sources.

2. Synthesis and Characterization of Substrates

2.1 Synthesis of Olefinic Azlactones

(Z)-4-Benzylidene-2-phenyloxazol-5(4*H*)-one (1a):¹ Hippuric acid (1.80 g, 10 mmol), benzaldehyde (1.27 g, 12.0 mmol), NaOAc (0.25 g, 3.0 mmol) and Ac₂O (4.0 mL, 40.0 mmol) in THF (30 mL) was reflux for 3 h. Upon completion, the reaction mixture was cooled down to room temperature. A saturated aqueous solution of Na₂CO₃ was added. The mixture was extracted with CH₂Cl₂, dried with Na₂SO₄, filtered, and the solvent was removed under vacuum. The given residue was purified by recrystallization from EtOH to give **1a** as a yellow solid (1.30 g, 52%). M.p. 169-171 °C; IR (KBr, cm⁻¹): 3056, 1794, 1652, 1589, 1549, 1325, 1293, 1160, 982, 861, 764, 689; ¹H NMR (CDCl₃, 500 MHz): δ 8.20-8.16 (m, 4H), 7.61 (m, 1H), 7.54-7.43 (m, 5H), 7.23 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.6, 163.5, 133.5, 133.4, 133.3, 132.5, 131.8, 131.2, 129.0, 128.9, 128.4, 125.6.

(Z)-4-Benzylidene-2-methyloxazol-5(4*H*)-one (1b):¹ *N*-Acetylglycine (3.42 g, 29.2 mmol), benzaldehyde (2.4 mL, 24.0 mmol), NaOAc (9.99 g, 122.0 mmol) in Ac₂O (70 mL) was reflux for 7 h. Upon completion, the reaction mixture was cooled down to room temperature. After being maintained 4 °C overnight. The solid was filtered and washed with water and a little EtOH. The desired product **1b** was obtained as a light yellow solid (2.10 g, 47%). M.p. 152-153 °C; IR (KBr, cm⁻¹): 3058, 1774, 1653, 1595, 1261, 1165, 898, 766, 688; ¹H NMR (CDCl₃, 500 MHz): δ 8.08-8.06 (m, 2H), 7.45-7.43 (m, 3H), 7.14 (s, 1H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.8, 166.1, 133.1, 132.6, 132.2, 131.5, 131.1, 128.9, 15.7.

(Z)-4-Benzylidene-2-(4-methoxyphenyl)oxazol-5(4*H*)-one (1c):² Following the general procedure as for 1b, (4-methoxybenzoyl)glycine (836.0 mg, 4.0 mmol), benzaldehyde (808.0 μ L, 8.0 mmol), NaOAc (328 mg, 4 mmol) in Ac₂O (2.5 mL) was

reflux for 1 h. The solid was filtered and washed with water and a little EtOH. The desired product **1c** was obtained as a light yellow solid (248.0 mg, 28%). M.p. 212-214 °C; IR (KBr, cm⁻¹): 3000, 2980, 1777, 1648, 1601, 1550, 1503, 1304, 1260, 1165, 981, 876, 840, 764, 685; ¹H NMR (CDCl₃, 500 MHz): δ 8.19 (d, J = 7.2 Hz, 2H), 8.14 (d, J = 8.9 Hz, 2H), 7.49-7.42 (m, 3H), 7.19 (s, 1H), 7.03 (d, J = 8.9 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.0, 163.9, 163.4, 133.8, 133.6, 132.3, 130.9, 130.5, 130.2, 128.9, 117.9, 114.5, 55.6. EI-MS m/z: 279 [M⁺].

(Z)-4-Benzylidene-2-(4-nitrophenyl)oxazol-5(4*H*)-one (1d):³ Following the general procedure as for 1b, (4-nitrobenzoyl)glycine (336.0 mg, 1.5 mmol), benzaldehyde (303.0 μ L, 3.0 mmol), NaOAc (615.0 mg, 7.5 mmol) in Ac₂O (4 mL) was reflux for 1 h. The solid was filtered to give the desired product 1d as a light yellow solid (441 mg, 49%). M.p. 230-232 °C; IR (KBr, cm⁻¹): 3063, 1788, 1651, 1519, 1344, 1318, 1161, 892, 856, 767, 696; ¹H NMR (CDCl₃, 500 MHz): δ 8.40-8.35 (m, 4H), 8.23-8.21 (m, 2H), 7.52-7.51 (m, 3H), 7.39 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.8, 161.5, 150.4, 134.6, 133.1, 132.9, 132.6, 132.0, 131.2, 129.2, 129.1, 124.2. EI-MS m/z: 294 [M⁺].

(Z)-4-Benzylidene-2-(*tert*-butyl)oxazol-5(4*H*)-one (1e):⁴ Following the general procedure as for 1b, pivaloylglycine (286.0 mg, 1.8 mmol), benzaldehyde (152.0 µL, 1.5 mmol), NaOAc (615.0 mg, 7.5 mmol) in Ac₂O (3 mL) was reflux for 1 h. The solid was filtered and washed with water and a little EtOH. The desired product 1e was obtained as a light yellow solid (75.4 mg, 22%). M.p. 88-90 °C; IR (KBr, cm⁻¹): 3055, 2970, 2871, 1796, 1654, 1590, 1294, 1146, 1017, 859, 765, 692; ¹H NMR (CDCl₃, 500 MHz): δ 8.12 (dd, *J* = 7.8, 2.5 Hz, 2H), 7.47-7.41 (m, 3H), 7.15 (s, 1H), 1.39 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 174.8, 168.3, 133.3, 133.0, 132.3, 131.5, 131.0, 128.8, 34.4, 27.0; EI-MS m/z: 229 [M⁺].

(Z)-4-(4-Bromobenzylidene)-2-phenyloxazol-5(4H)-one (1f):¹ Following the general procedure as for 1a, hippuric acid (358.5 mg, 2.0 mmol), 4-bromo-

benzaldehyde (444.0 mg, 2.4 mmol), NaOAc (49.2 mg, 0.6 mmol), Ac₂O (0.8 mL, 8.0 mmol) in THF (8 mL) was reflux for 3 h. The given residue was purified by recrystallization from ethyl acetate/DCM to give **1f** as a light yellow solid (435.0 mg, 66%). M.p. 207-208 °C; IR (KBr, cm⁻¹): 3054, 1794, 1650, 1554, 1482, 1158, 1067, 983, 893, 824, 694; ¹H NMR (CDCl₃, 500 MHz): δ 8.18 (d, *J* = 7.4 Hz, 2H), 8.07 (d, *J* = 8.5 Hz, 2H), 7.65-7.60 (m, 3H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.16 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.4, 164.0, 133.8, 133.7, 133.6, 132.4, 132.2, 130.1, 129.0, 128.5, 125.9, 125.4.

(*Z*)-4-(4-Nitrobenzylidene)-2-phenyloxazol-5(4*H*)-one (1g):¹ Following the general procedure as for 1a, hippuric acid (358.5 mg, 2.0 mmol), 4-nitrobenzaldehyde (362.6 mg, 2.4 mmol), NaOAc (49.2mg, 0.6 mmol), Ac₂O (0.8 mL, 8 mmol) in THF (8 mL) was reflux for 3 h. The solid was filtered and washed with water and a little ethyl acetate. The desired produc 1g was obtained as a light yellow solid (335.7 mg, 57%). M.p. 238-240 °C; IR (KBr, cm⁻¹): 3100, 2900, 1796, 1651, 1552, 1517, 1336, 1295, 1160, 976, 858, 688; ¹H NMR (DMSO-*d*₆, 500 MHz): δ 8.55 (d, *J* = 8.8 Hz, 2H), 8.35 (d, *J* = 8.9 Hz, 2H), 8.19-8.18 (m, 2H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.67 (t, *J* = 8.0 Hz, 2H), 7.48 (s, 1H); ¹³C NMR (DMSO-*d*₆, 125 MHz): δ 166.9, 165.3, 148.3, 140.1, 136.7, 134.8, 133.4, 129.9, 128.9, 127.4, 125.3, 124.4.

(Z)-4-(4-Methylbenzylidene)-2-phenyloxazol-5(4*H*)-one (1h):¹ Following the general procedure as for 1a, hippuric acid (537.6 mg, 3.0 mmol), 4-methylbenzaldehyde (425.0 µL, 3.6 mmol), NaOAc (73.8 mg, 0.9 mmol), Ac₂O (1.2 mL, 12 mmol) in THF (10 mL) was reflux for 3 h. The given residue was purified by recrystallization from EtOH/DCM to give 1h as a yellow solid (412 mg, 52%). M.p. 144-145 °C; IR (KBr, cm⁻¹): 1795, 1649, 1551, 1324, 1157, 859, 816, 692; ¹H NMR (CDCl₃, 500 MHz): δ 8.17 (d, *J* = 7.4 Hz, 2H), 8.10 (d, *J* = 8.1 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.23 (s, 1H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.8, 163.0, 142.1, 133.2, 132.6, 132.4, 132.1, 130.9, 129.7, 128.9, 128.3, 125.7, 21.8.

(Z)-4-(Naphthalen-2-ylmethylene)-2-phenyloxazol-5(4H)-one (1i):⁵ Following the

general procedure as for **1a**, hippuric acid (537.6 mg, 3.0 mmol), 2-naphthaldehyde (562.2 mg, 3.2 mmol), NaOAc (73.8 mg, 0.9 mmol), Ac₂O (1.2 mL, 12.0 mmol) in THF (10 mL) was reflux for 3 h. The given residue was purified by recrystallization from EtOH/ethyl acetate to give **1i** as a yellow solid (408.5 mg, 45%). M.p. 150-152 ^oC; IR (KBr, cm⁻¹): 3054, 1793, 1650, 1557, 1330, 1161, 912, 879, 692; ¹H NMR (CDCl₃, 500 MHz): δ 8.52 (d, *J* = 8.5 Hz, 1H), 8.46 (s, 1H), 8.21 (d, *J* = 7.3 Hz, 2H), 7.94-7.90 (m, 2H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.58-7.52 (m, 4H), 7.39 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.7, 163.4, 134.5, 134.1, 133.3, 133.2, 131.9, 131.3, 129.2, 129.0, 128.7, 128.4, 128.1, 127.9, 127.8, 126.7, 125.7.

(Z)-4-(3-Cyanobenzylidene)-2-phenyloxazol-5(4*H*)-one (1j):⁶ Following the general procedure as for 1a, hippuric acid (268.5 mg, 1.5 mmol), 3-formylbenzonitrile (236.0 mg, 1.8 mmol), NaOAc (36.9 mg, 0.45 mmol), Ac₂O (0.6 mL, 6.0 mmol) in THF (8 mL) was reflux for 3 h. The given residue was purified by recrystallization from EtOH to give 1j as a light yellow solid (268.1 mg, 65%). M.p. 209-211 °C; IR (KBr, cm⁻¹): 3080, 2223, 1800, 1653, 1553, 1289, 1166, 989, 922, 879, 688; ¹H NMR (CDCl₃, 500 MHz): δ 8.67 (s, 1H), 8.27 (d, *J* = 7.9 Hz, 1H), 8.21-8.20 (m, 2H), 7.71 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.68-7.65 (m, 1H), 7.61-7.56 (m, 3H), 7.17 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 166.8, 165.1, 136.1, 135.3 (two overlapped peaks), 134.6, 134.1, 133.6, 129.7, 129.1, 128.8, 127.9, 125.0, 118.4, 113.4; EI-MS m/z: 274 [M⁺].

(*Z*)-4-(2-Ethoxybenzylidene)-2-phenyloxazol-5(4*H*)-one (1k):¹ Following the general procedure as for 1a, hippuric acid (537.6 mg, 3.0 mmol), 2-ethoxybenzaldehyde (424.0 µL, 3.6 mmol), NaOAc (73.8 mg, 0.9 mmol), Ac₂O (1.2 mL, 12.0 mmol) in THF (10 mL) was reflux for 3 h. The given residue was purified by recrystallization to give 1k as a light yellow solid (451.7 mg, 51%). M.p. 180-182 °C; IR (KBr, cm⁻¹): 3064, 2984, 2884, 1785, 1644, 1586, 1558, 1446, 1246, 1161, 1037, 980, 859, 754, 689; ¹H NMR (CDCl₃, 500 MHz): δ 8.88 (dd, *J* = 7.9, 1.7 Hz, 1H), 8.19-8.17 (m, 2H), 7.89 (s, 1H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.54 (t, *J* = 7.8, 2H), 7.42-7.39 (m, 1H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.3 Hz, 1H), 4.13 (q, *J* = 7.0 Hz, 2H), 1.50 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 167.9, 162.9, 158.8, 133.1, 133.0 (two overlapped peaks), 132.4, 128.9, 128.3, 126.3, 125.8, 122.7, 120.8, 111.7, 64.2, 14.8; EI-MS m/z: 293 [M⁺].

(Z)-4-(2-Fluorobenzylidene)-2-phenyloxazol-5(4*H*)-one (11):⁷ Following the general procedure as for 1a, hippuric acid (537.6 mg, 3.0 mmol), 2-fluorobenzaldehyde (446.8 mg, 3.6 mmol), NaOAc (73.8 mg, 0.9 mmol), Ac₂O (1.2 mL, 12.0 mmol) in THF (10 mL) was reflux for 3 h. The given residue was purified by recrystallization to give 1l as a yellow solid (548.8 mg, 68%). M.p. 172-174 °C; IR (KBr, cm⁻¹): 3061, 3001, 1796, 1651, 1601, 1558, 1444, 1327, 1292, 1203, 985, 871, 761, 690; ¹H NMR (CDCl₃, 500 MHz): δ 8.89 (t, J = 7.4 Hz, 1H), 8.19 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.58 (s, 1H), 7.54 (t, J = 7.8 Hz, 2H), 7.46-7.42 (m, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 9.5 Hz, 1H); ¹⁹F NMR (CDCl₃, 470 MHz): δ -114.0 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 167.1, 164.2, 162.0 (d, ¹ $_{JC-F}$ = 256.7 Hz), 134.2, 133.6, 132.9 (d, ³ $_{JC-F}$ = 8.8 Hz), 132.7, 129.0, 128.5, 125.4, 124.6 (d, ³ $_{JC-F}$ = 3.6 Hz), 122.3 (d, ³ $_{JC-F}$ = 7.5 Hz), 121.8 (d, ² $_{JC-F}$ = 10.7 Hz), 115.6 (d, ² $_{JC-F}$ = 21.9 Hz); LC-MS (ESI) m/z: 268 [M+H]⁺.

2.2. Synthesis of N-Alkylisothiazol-3(2H)-one 1,1-dioxides

N-Alkylisothiazol-3(2*H*)-one 1,1-dioxides 2h–2i are prepared as follows:

2-Octylisothiazol-3(*2H*)-**one 1,1-dioxide (2h):** To a solution of 2-octylisothiazol-3(2*H*)-one (410.0 µL, 2.0 mmol) in DCM (10 mL) at 25 °C is added *m*-CPBA (85%, 803.0 mg, 4.6 mmol) and the resulting mixture is stirred at room temperature for 15 h. The mixture was filtered through a pad of silica gel and washed with DCM. A saturated aqueous solution of NaHCO₃ was added, the organics were extracted with DCM, dried with Na₂SO₄, filtered and the solvent was removed under vacuum. The given residue was purified by recrystallization from hexane/DCM to give **2h** (380 mg, 78%) as a colorless liquid. IR (KBr, cm⁻¹): 3092, 2927, 2859, 1735, 1320, 1163, 918, 856, 790, 671; ¹H NMR (CDCl₃, 500 MHz): δ 7.37 (d, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 7.2 Hz, 1H), 3.64 (t, *J* = 7.5 Hz, 2H), 1.80-1.73 (m, 2H), 1.36-1.20 (m, 10H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.2, 138.4, 129.2, 39.8, 31.7, 29.1, 28.9, 28.1, 26.7, 22.6, 14.1; LC-MS (DART Positive) m/z: 246 [M+H]⁺; HRMS (DART, Positive) calcd for C₁₁H₂₃O₃N₂S [M+NH₄]⁺ 263.1424, found 263.1422.

2-Methylisothiazol-3(*2H*)-one 1,1-dioxide (2i): To a solution of 2-methylisothiazol-3(2*H*)-one (203.3 mg, 2.0 mmol) in DCM (10 mL) at 25 °C is added *m*-CPBA (85%, 803.0 mg, 4.6 mmol) and the resulting mixture is stirred at room temperature for 15 h. The mixture was filtered through a pad of silica gel and washed with DCM. A saturated aqueous solution of NaHCO₃ was added, the organics were extracted with DCM, dried with Na₂SO₄, filtered and the solvent was removed under vacuum. The given residue was purified by recrystallization from hexane/DCM to give **2i** (205.2 mg, 85%) as a white solid. M.p. 106-108 °C; IR (KBr, cm⁻¹): 3173, 3094, 1741, 1332, 1300, 1163, 915, 856, 785, 668; ¹H NMR (CDCl₃, 500 MHz): δ 7.42 (d, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 7.4 Hz, 1H), 3.15 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.8, 138.4, 129.4, 23.5; LC-MS (DART Positive) m/z: 148 [M⁺H]; HRMS (ESI) m/z: calcd for C₄H₆NO₃S [M+H]⁺ 148.0063, found 148.0062.

3. Synthesis and Characterization of Products

General Procedure: To a test tube were added 1 (0.3 mmol), 2 (0.45 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (0.6 mmol), KI (0.3 mmol) in dioxane (1.5 mL). The mixture was stirred at 80 °C for 4 h under an air atmosphere as monitored by TLC. Upon completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel to give product **3**.

3,5-Diphenyl-3a,6a-dihydro-4*H***-pyrrolo**[**3,4-***d*]**isoxazole-4,6**(**5***H*)**-dione** (**3a**):⁸ Following the general procedure, the reaction mixture of **1a** (74.7 mg, 0.3 mmol), 1-phenyl-1*H*-pyrrole-2,5-dione **2a** (78.1 mg, 0.45 mmol), Cu(NO₃)₂•**3**H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3a** (63.6 mg, 73%). M.p. 176-177 °C; IR (KBr, cm⁻¹): 3065, 1791, 1719, 1595, 1491, 1448, 1386, 1199; ¹H NMR (CDCl₃, 500 MHz): δ 8.03 (dd, *J* = 7.6, 1.5 Hz, 2H), 7.49-7.39 (m, 6H), 7.28-7.26 (m, 2H), 5.66 (d, *J* = 9.7 Hz, 1H), 4.97 (d, *J* = 9.7 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.8, 169.8, 152.8, 131.3, 130.8, 129.3, 129.2, 128.9, 128.1, 126.7, 126.2, 80.4, 54.9; EI-MS m/z: 292 [M⁺]; HRMS (EI) m/z: calcd for C₁₇H₁₂N₂O₃ [M⁺] 292.0848, found 292.0844.

5-(4-Chlorophenyl)-3-phenyl-3a,6a-dihydro-4*H***-pyrrolo[3,4-***d***]isoxazole-4,6(5***H***)dione (3b): Following the general procedure, the reaction mixture of 1a** (74.7 mg, 0.3 mmol), 1-(4-chlorophenyl)-1*H*-pyrrole-2,5-dione **2b** (93.6 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3b** (65.7 mg, 67%). M.p. 197-199 °C; IR (KBr, cm⁻¹): 3000, 2900, 1723, 1497, 1391, 1193, 894, 830, 759; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.95-7.93(m, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.51-7.50 (m, 3H), 7.33 (d, *J* = 8.7 Hz, 2H), 5.74 (d, *J* = 9.7 Hz, 1H), 5.41 (d, *J* = 9.7 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 172.3, 171.2, 153.8, 133.8, 131.3, 131.0, 129.6, 129.3, 129.2, 128.4, 127.6, 81.8, 55.8; EI-MS m/z: 326 [M⁺]; HRMS (EI) m/z: calcd for C₁₇H₁₁ClN₂O₃ [M⁺] 326.0458, found 326.0457.

3-Phenyl-3a,6a-dihydro-4*H***-pyrrolo[3,4-***d***]isoxazole-4,6(5***H***)-dione (3c):⁹ Following the general procedure, the reaction mixture of 1a** (74.7 mg, 0.3 mmol), 1*H*-pyrrole-2,5-dione **2c** (43.7 mg, 0.45 mmol), Cu(NO₃)₂•3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 2 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/DCM/ethyl acetate = 5/25/3) afforded **3c** (43.7 mg, 67%). M.p. 220-221 °C; IR (KBr, cm⁻¹): 3198, 3094, 1793, 1729, 1563, 1336, 1180, 771; ¹H NMR ((500 MHz, DMSO-*d*₆): δ 11.89 (s, 1H), 7.90-7.88 (m, 2H), 7.51-7.48 (m, 3H), 5.52 (d, *J* = 9.4 Hz, 1H), 5.15 (d, *J* = 9.4 Hz, 1H); ¹³C NMR ((125 MHz, DMSO-*d*₆): δ 174.8, 173.7, 154.0, 131.2, 129.2, 128.3, 127.6, 82.8, 56.6; EI-MS m/z: 216 [M⁺]; HRMS (EI) m/z: calcd for C₁₁H₈N₂O₃ [M⁺] 216.0535, found 216.0541.

5-Butyl-3-phenyl-3a,6a-dihydro-4*H***-pyrrolo**[**3,4-***d*]**isoxazole-4,6**(**5***H*)**-dione** (**3d**)**:** Following the general procedure, the reaction mixture of **1a** (74.8 mg, 0.3 mmol), 1-butyl-1*H*-pyrrole-2,5-dione **2d** (69.2 mg, 0.45 mmol), Cu(NO₃)₂•3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4.5 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3d** (66.7 mg, 82%). M.p. 82-84 °C; IR (KBr, cm⁻¹): 3064, 2952, 1783, 1709, 1444, 1402, 1333; ¹H NMR (CDCl₃, 500 MHz): δ 7.97-7.95 (m, 2H), 7.47-7.41 (m, 3H), 5.49 (d, *J* = 9.6 Hz, 1H), 4.81 (d, *J* = 9.6 Hz, 1H), 3.54-3.45 (m, 2H), 1.54-1.47

(m, 2H), 1.28-1.20 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 172.0, 170.9, 152.8, 131.1, 128.8, 128.0, 126.8, 80.4, 54.9, 39.5, 29.4, 19.9, 13.5; EI-MS m/z: 272 [M⁺]; HRMS (EI) m/z: calcd for C₁₅H₁₆N₂O₃ [M⁺] 272.1161, found 272.1159.

5-Benzyl-3-phenyl-3a,6a-dihydro-4*H***-pyrrolo[3,4-***d***]isoxazole-4,6(5***H***)-dione (3e): Following the general procedure, the reaction mixture of 1a** (74.8 mg, 0.3 mmol), 1-benzyl-1*H*-pyrrole-2,5-dione **2e** (84.3 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4.5 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3e** (65.1 mg, 71%) as a white solid. M.p. 82-84 °C; IR (KBr, cm⁻¹): 3064, 2952, 1783, 1709, 1444, 1402, 1333; ¹H NMR (CDCl₃, 500 MHz): δ 7.98 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.48-7.43 (m, 3H), 7.36-7.27 (m, 5H), 5.48 (d, *J* = 9.6 Hz, 1H), 4.79 (d, *J* = 9.6 Hz, 1H), 4.70 (d, *J* = 14.1 Hz, 1H), 4.62 (d, *J* = 14.1 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 171.5, 170.6, 152.7, 134.6, 131.2, 128.9, 128.8, 128.4, 128.0, 126.8, 80.5, 54.9, 43.3; EI-MS m/z: 306 [M⁺]; HRMS (EI) m/z: calcd for C₁₈H₁₄N₂O₃ [M⁺] 306.1004, found 306.1006.

3-Phenyl-5-(prop-2-yn-1-yl)-3a,6a-dihydro-4*H***-pyrrolo[3,4-***d***]isoxazole-4,6(5***H***)-di one (3f**): Following the general procedure, the reaction mixture of **1a** (74.7 mg, 0.3 mmol), 1-(prop-2-yn-1-yl)-1*H*-pyrrole-2,5-dione **2f** (61.0 mg, 0.45 mmol), Cu(NO₃)₂·**3**H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 2.5 h at 60 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3f** (31.8 mg, 42%) as a colorless liquid. IR (KBr, cm⁻¹): 3285, 3063, 2974, 1795, 1725, 1425, 1389, 1338, 1180, 1043, 903, 759, 689, 628; ¹H NMR (CDCl₃, 500 MHz): δ 7.98 (dd, *J* = 7.8, 1.4 Hz, 2H), 7.50-7.44 (m, 3H), 5.56 (d, *J* = 9.7 Hz, 1H), 4.88 (d, *J* = 9.7 Hz, 1H), 4.33-4.23 (m, 2H), 2.22 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.3, 169.4, 152.4, 131.3, 128.9, 128.0, 126.6, 80.4, 75.4, 72.5, 55.0, 28.7; LC-MS (DART Positive) m/z: 255 [M+H]⁺; HRMS (DART Positive) m/z: calcd for C₁₄H₁₁N₃O₂ [M+H]⁺ 255.0764, found 255.0761.

3-(4-Bromophenyl)-5-phenyl-3a,6a-dihydro-4*H***-pyrrolo**[**3,4-***d*]**isoxazole-4,6**(**5***H*)-**dione (3g):** Following the general procedure, the reaction mixture of **1f** (98.5 mg, 0.3

mmol), 1-phenyl-1*H*-pyrrole-2,5-dione **2a** (77.9 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3g** (89.6 mg, 80%). M.p. 204-206 °C; IR (KBr, cm⁻¹): 2923, 1722, 1496, 1496, 1389, 1194, 893, 832, 691, 619; ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, *J* = 6.2 Hz, 2H), 7.59 (d, *J* = 6.9 Hz, 2H), 7.47-7.42 (m, 3H), 7.27-7.26 (m, 2H), 5.68 (d, *J* = 9.4 Hz, 1H), 4.93 (d, *J* = 9.4 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.6, 169.7, 152.1, 132.2, 130.7, 129.5, 129.3 (two overlapped peaks), 126.1, 125.9, 125.7, 80.6, 54.7; EI-MS m/z: 370 [M⁺ (⁷⁹Br)], 372 [M⁺ (⁸¹Br)]; HRMS (EI) m/z: calcd for C₁₇H₁₁BrN₂O₃ [M⁺] 369.9953, found 369.9955.

3-(4-Nitrophenyl)-5-phenyl-3a,6a-dihydro-4*H***-pyrrolo[3,4-***d***]isoxazole-4,6(5***H***)-di one (3h):¹⁰ Following the general procedure, the reaction mixture of 1g (88.5 mg, 0.3 mmol), 2a (77.9 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded 3h (69.4 mg, 69%). M.p. 251-252 °C; IR (KBr, cm⁻¹): 3068, 2956, 1791, 1723, 1518, 1386, 1345, 1205, 910, 856, 744, 688, 624; ¹H NMR (DMSO-***d***₆, 500 MHz): \delta 8.36 (d,** *J* **= 8.8 Hz, 2H), 8.20 (d,** *J* **= 8.8 Hz, 2H), 7.50-7.42 (m, 3H), 7.29 (d,** *J* **= 7.4 Hz, 2H), 5.84 (d,** *J* **= 9.8 Hz, 1H), 5.49 (d,** *J* **= 9.8 Hz, 1H); ¹³C NMR (DMSO-***d***₆, 125 MHz): \delta 172.2, 171.3, 153.1, 149.0, 133.8, 132.1, 129.7, 129.5, 129.4, 127.5, 124.4, 82.7, 55.4; EI-MS m/z: 337 [M⁺]; HRMS (EI) m/z: calcd for C₁₇H₁₁N₃O₅ [M⁺] 337.0699, found 337.0695.**

5-Phenyl-3-(p-tolyl)-3a,6a-dihydro-4H-pyrrolo[3,4-d]isoxazole-4,6(5H)-dione

(3i):¹⁰ Following the general procedure, the reaction mixture of **1h** (79.1 mg, 0.3 mmol), **2a** (78.0 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3i** (62.2 mg, 68%). M.p. 179-180 °C; IR (KBr, cm⁻¹): 3054, 2963, 1724, 1499, 1385, 1193, 892, 854, 695; ¹H NMR (CDCl₃, 500 MHz): δ 7.93 (d, *J* = 8.2 Hz, 2H), 7.48-7.40 (m, 3H), 7.28 (d, *J* = 7.3 Hz, 4H), 5.65 (d, *J* = 9.7 Hz, 1H), 4.96 (d, *J* = 9.7 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 171.1, 170.0, 152.8, 141.8, 130.9, 129.6, 129.3, 129.2, 128.0, 126.2, 123.9, 80.3, 55.0, 21.6; EI-MS m/z: 306 [M⁺]; HRMS (EI) m/z: calcd for C₁₈H₁₄N₂O₃ [M⁺] 306.1004, found 306.1010.

3-(Naphthalen-2-yl)-5-phenyl-3a,6a-dihydro-4*H***-pyrrolo[3,4-***d***]isoxazole-4,6(5***H***)dione (3j): Following the general procedure, the reaction mixture of 1i** (89.9 mg, 0.3 mmol), **2a** (77.9 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3j** (73.7 mg, 72%). M.p. 203-204 °C; IR (KBr, cm⁻¹): 3059, 1794, 1723, 1594, 1495, 1379, 1193, 899, 745; ¹H NMR (CDCl₃, 500 MHz): δ 8.53 (s, 1H), 8.08 (d, *J* = 8.7 Hz, 1H), 7.94 (d, *J* = 8.7 Hz, 1H), 7.86 (t, *J* = 9 Hz, 2H), 7.58-7.38 (m, 5H), 7.28 (d, *J* = 7.6 Hz, 2H), 5.71 (d, *J* = 9.7 Hz, 1H), 5.07 (d, *J* = 9.7 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.8, 170.0, 152.9, 134.4, 132.8, 130.8, 129.6, 129.3, 129.2, 129.0, 128.8, 127.9, 127.8, 126.9, 126.2, 124.2, 123.8, 80.6, 55.0; EI-MS m/z: 342 [M⁺]; HRMS (EI) m/z: calcd for C₂₁H₁₄N₂O₃ [M⁺] 342.1004, found 342.1001.

3-PhenyInaphtho[**2**,**3**-*d*]**isoxazole-4**,**9**-**dione** (**3k**):¹¹ Following the general procedure, Following the general procedure, the reaction mixture of **1a** (74.9 mg, 0.3 mmol), naphthalene-1,4-dione **2g** (71.1 mg, 0.45 mmol), Cu(NO₃)₂·**3**H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 2 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3k** (55.9 mg, 68%). M.p. 137-138 °C; IR (KBr, cm⁻¹): 3072, 1685, 1584, 1433, 1340, 1261, 1204, 1167, 919, 716; ¹H NMR (CDCl₃, 500 MHz): *δ* 8.30-8.26 (m, 2H), 8.16 (dd, *J* = 7.6, 1.4 Hz, 2H), 7.89-7.82 (m, 2H), 7.59-7.53 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz): *δ* 178.7, 173.4, 166.3, 161.0, 135.3, 134.3, 133.8, 131.8, 131.3, 129.4, 128.7, 127.8, 127.3, 126.2, 119.6; EI-MS m/z: 275 [M⁺]; HRMS (EI) m/z: calcd for C₁₇H₉NO₃ [M⁺] 275.0582, found 275.0587.

3-(4,9-Dioxo-4,9-dihydronaphtho[**2,3-***d*]**isoxazol-3-yl**)**benzonitrile** (**3l**)**:** Following the general procedure, the reaction mixture of **1j** (82.3 mg, 0.3 mmol), naphthalene-1,4-dione **2g** (71.1 mg, 0.45 mmol), Cu(NO₃)₂•3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3l** (68.9 mg, 76%). M.p. 203-205 °C; IR (KBr, cm⁻¹): 3080, 2231, 1688, 1581, 1461, 1427, 1336, 1204, 929, 804, 721; ¹H NMR (CDCl₃, 500 MHz): δ 8.58 (s, 1H), 8.47 (d, J = 8.0 Hz, 1H), 8.31-8.28 (m, 2H), 7.95-7.82 (m, 3H), 7.69 (t, J = 7.8 Hz, 1H); ¹³C

NMR (CDCl₃, 125 MHz): δ 178.6, 173.0, 166.6, 159.3, 135.6, 134.7, 134.6, 133.5, 133.4, 133.0, 131.8, 129.7, 127.9, 127.7, 127.5, 119.4, 118.0, 113.3; LC-MS (DART Positive) m/z: 301 [M+H]⁺; HRMS (DART Positive) m/z: calcd for C₁₈H₉N₂O₃ [M+H]⁺ 301.0608, found 301.0605.

3-(2-Ethoxyphenyl)naphtho[2,3-*d*]isoxazole-4,9-dione (3m): Following the general procedure, the reaction mixture of 1k (88.1 mg, 0.3 mmol), naphthalene-1,4-dione **2g** (71.1 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3m** (63.6 mg, 66%). M.p. 193-195 °C; IR (KBr, cm⁻¹): 3071, 2981, 2939, 2891, 1687, 1594, 1453, 1336, 1255, 1199, 1037, 918, 762, 721; ¹H NMR (CDCl₃, 500 MHz): δ 8.30-8.28 (m, 1H), 8.21-8.17 (m, 1H), 7.85-7.80 (m, 2H), 7.54-7.50 (m, 2H), 7.09-7.04 (m, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.18 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 178.1, 173.6, 165.0, 158.7, 157.5, 135.1, 134.0, 133.8, 132.4, 132.1, 130.6, 127.4, 127.2, 121.5, 120.4, 115.5, 111.9, 63.9, 14.6; LC-MS (DART Positive) m/z: 320 [M+H]⁺; HRMS (DART Positive) m/z: calcd for C₁₉H₁₄NO₄ [M+H]⁺ 320.0917, found 320.0914.

3-(2-Fluorophenyl)naphtho[2,3-*d*]isoxazole-4,9-dione (3n): Following the general procedure, the reaction mixture of **11** (80.3 mg, 0.3 mmol), **2g** (71.1 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3n** (58.6 mg, 67%). M.p. 192-194 °C; IR (KBr, cm⁻¹): 3077, 1686, 1584, 1514, 1465, 1336, 1197, 918, 758, 716; ¹H NMR (CDCl₃, 500 MHz): δ 8.31-8.29 (m, 1H), 8.23-8.21 (m, 1H), 7.87-7.82 (m, 2H), 7.70 (td, *J* = 7.4, 1.8 Hz, 1H), 7.62-7.57 (m, 1H), 7.35-7.27 (m, 2H); ¹⁹F NMR (CDCl₃, 470 MHz): δ -111.2 (m, Ar-F); ¹³C NMR (CDCl₃, 125 MHz): δ 178.1, 173.2, 165.5, 160.6 (d, ¹*J*_{C-F} = 252.8 Hz), 156.4, 135.3, 134.4, 133.6, 133.1 (d, ³*J*_{C-F} = 8.4 Hz), 132.0, 131.2 (d, ⁴*J*_{C-F} = 1.2 Hz), 127.5 (d, ³*J*_{C-F} = 9.1 Hz), 124.4 (d, ⁴*J*_{C-F} = 3.6 Hz), 120.6, 116.2 (d, ²*J*_{C-F} = 21.0 Hz), 114.7 (d, ²*J*_{C-F} = 14.4 Hz); EI-MS m/z: 293 [M⁺]; HRMS (EI) m/z: calcd for C₁₇H₈FNO₃ [M⁺] 293.0488, found 293.0497.

3-(4-Bromophenyl)naphtho[2,3-*d*]isoxazole-4,9-dione (3o): Following the general procedure, the reaction mixture of **1f** (98.6 mg, 0.3 mmol), **2g** (71.1 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3o** (64.9 mg, 61%). M.p. 178-180 °C; IR (KBr, cm⁻¹): 3082, 2924, 1686, 1588, 1443, 1335, 1261, 1195, 1001, 911, 821, 721; ¹H NMR (DMSO-*d*₆, 500 MHz): δ 8.19-8.15 (m, 2H), 8.04 (d, *J* = 8.5 Hz, 2H), 7.98-7.94 (m, 2H), 7.83 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (DMSO-*d*₆, 500 MHz): δ 179.1, 173.6, 167.1, 159.9, 135.8, 135.0, 134.0, 132.3, 131.5, 127.5, 127.1, 125.8, 125.5, 119.4; EI-MS m/z: 352 [M⁺(⁷⁹Br)], 353 [M⁺(⁸¹Br)]; HRMS (EI) m/z: calcd for C₁₇H₈BrNO₃ [M⁺] 352.9688, found 352.9685.

5-Octyl-3-phenyl-3a,6a-dihydroisothiazolo[**5,4-***d***]isoxazol-6(5***H***)-one 4,4-dioxide** (**3p**): Following the general procedure, the reaction mixture of **1a** (74.8 mg, 0.3 mmol), **2h** (110.4 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3p** (55.2 mg, 50%). M.p. 81-83 °C; IR (KBr, cm⁻¹): 2924, 2856, 1738, 1458, 1348, 1156, 1077, 917, 772, 689, 554; ¹H NMR (CDCl₃, 500 MHz): δ 7.78-7.76 (m, 2H), 7.54-7.46 (m, 3H), 5.72 (d, *J* = 10.4 Hz, 1H), 5.52 (d, *J* = 10.4 Hz, 1H), 3.68-3.58 (m, 2H), 1.77-1.71 (m, 2H), 1.31-1.25 (m, 10H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 160.1, 151.1, 131.7, 129.3, 127.3, 126.5, 82.7, 69.6, 41.2, 31.7, 29.0, 28.9, 28.0, 26.6, 22.6, 14.1; EI-MS m/z: 364 [M⁺]; HRMS (EI) m/z: calcd for C₁₈H₂₄N₂O₄S [M⁺] 364.1457, found 364.1458.

5-Methyl-3-(naphthalen-2-yl)-5,6a-dihydroisothiazolo[**5,4-***d***]isoxazol-6(3***aH*)**-one 4,4-dioxide (3q):** Following the general procedure, the reaction mixture of **1i** (89.8 mg, 0.3 mmol), **2i** (66.4 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3q** (46.3 mg, 49%). M.p. 198-200 °C; IR (KBr, cm⁻¹): 2952, 2923, 1734, 1462, 1340, 1218, 1149, 917, 804, 745, 612; ¹H NMR (CDCl₃, 500 MHz): δ 8.07 (d, *J* = 1.0 Hz, 1H), 7.98-7.86 (m, 4H), 7.62-7.56 (m, 2H), 5.80 (d, *J* = 10.4 Hz, 1H), 5.68 (d, *J* = 10.4 Hz, 1H), 3.18 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 159.9, 151.2, 134.6, 132.8, 129.4, 128.9, 128.2 (two overlapped peaks), 128.0, 127.3, 124.0, 123.2, 83.1, 69.6, 25.0; HRMS (ESI) m/z calcd for C₁₅H₁₃N₂O₄S [M⁺H] 317.0596, found 317.0582.

5-Methyl-3-(4-nitrophenyl)-5,6a-dihydroisothiazolo[**5,4-***d*]**isoxazol-6(3***aH*)**-one 4,4-dioxide (3r):** Following the general procedure, the reaction mixture of **1g** (88.5 mg, 0.3 mmol), **2i** (66.3 mg, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.8 mg, 0.3 mmol) in dioxane (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3r** (19.7 mg, 21%). M.p. 260-261 °C; IR (KBr, cm⁻¹): 3086, 2963, 1720, 1520, 1419, 1346, 1263, 1153, 1099, 1025, 925, 803, 740, 690; ¹H NMR (DMSO-*d*₆, 500 MHz): δ 8.40 (d, *J* = 8.9 Hz, 2H), 8.04 (d, *J* = 8.9 Hz, 2H), 6.60 (d, *J* = 10.3 Hz, 1H), 6.12 (d, *J* = 10.3 Hz, 1H), 3.04 (s, 3H); ¹³C NMR (DMSO-*d*₆, 125 MHz): δ 161.1, 151.6, 149.3, 133.3, 128.9, 124.9, 85.2, 69.3, 24.8; EI-MS m/z: 312 [M+H]⁺; HRMS (EI) m/z: calcd for C₁₁H₁₀N₃O₆S [M+H]⁺ 312.0285, found 312.0283.

3-Phenyl-4,5-dihydroisoxazole-5-carbonitrile (**3s**):¹² Following the general procedure, the reaction mixture of **1a** (74.7 mg, 0.3 mmol), acrylonitrile (60.0 μ L, 0.9 mmol), Cu(NO₃)₂·3H₂O (290.0 mg, 1.2 mmol), KI (99.6 mg, 0.6 mmol) in CH₃CN (1.5 mL). After 4.5 h at 50 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3s** (29.1 mg, 56%). M.p. 63-66 °C; IR (KBr, cm⁻¹): 2990, 2429, 1564, 1444, 1352, 925, 870, 759, 685; ¹H NMR (CDCl₃, 500 MHz): δ 7.68-7.66 (m, 2H), 7.51-7.43 (m, 3H), 5.38 (dd, *J* = 10.5, 6.3 Hz, 1H), 3.81-3.71 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 156.3, 131.3, 129.1, 127.4, 127.1, 117.1, 66.6, 41.2; HRMS (ESI) m/z calcd for C₁₀H₉N₂O [M⁺H]⁺ 173.0715, found 173.0721.

Butyl 3-phenyl-4,5-dihydroisoxazole-5-carboxylate (**3t**): Following the general procedure, the reaction mixture of **1a** (74.7 mg, 0.3 mmol), *n*-butyl acrylate (66.0 μL, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.7 mg, 0.3 mmol) in CH₃CN (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3t** (42.9 mg, 58%) as a yellow liquid; IR (KBr, cm⁻¹): 3061, 2961, 2873, 1742, 1454, 1352, 1205, 892, 760; ¹H NMR (CDCl₃, 500 MHz): δ 7.68-7.66 (m, 2H), 7.43-7.39 (m, 3H), 5.16 (dd, J = 10.5, 7.8, Hz 1H), 4.20 (t, J = 6.8 Hz, 1H), 3.64-3.62 (m, 2H), 1.70-1.63 (m, 2H), 1.43-1.35 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.3, 156.0, 130.6, 128.8, 128.6, 126.9, 78.1, 65.9, 38.9, 30.5, 19.0, 13.7; EI-MS m/z: 247 [M⁺]; HRMS (EI) m/z: calcd for C₁₄H₁₇NO₃ [M⁺] 247.1208, found 247.1215.

Benzyl 3-phenyl-4,5-dihydroisoxazole-5-carboxylate (**3u**):¹³ Following the general procedure, the reaction mixture of **1a** (74.7 mg, 0.3 mmol), benzyl acrylate (68 μL, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.7 mg, 0.3 mmol) in CH₃CN (1.5 mL). After 4.5 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3u** (50.7 mg, 60%). M.p. 53-55 °C; IR (KBr, cm⁻¹): 3063, 2928, 1749, 1450, 1347, 1197, 1018, 886, 758, 696; ¹H NMR (CDCl₃, 500 MHz): δ 7.67 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.45-7.33 (m, 8H), 5.27-5.19 (m, 3H), 3.69-3.59 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.0, 156.0, 135.1, 130.6, 128.8, 128.7, 128.6, 128.5, 128.4, 127.0, 78.1, 67.6, 38.9; EI-MS m/z: 281 [M⁺]; HRMS (EI) m/z: calcd for C₁₇H₁₅NO₃ [M⁺] 281.1052, found 281.1053.

Dimethyl 3-phenylisoxazole-4,5-dicarboxylate (**3v**):¹⁴ Following the general procedure, the reaction mixture of **1a** (74.7 mg, 0.3 mmol), dimethyl acetylenedicarboxylate (54.0 μ L, 0.45 mmol), Cu(NO₃)₂·3H₂O (145.0 mg, 0.6 mmol), KI (49.7 mg, 0.3 mmol) in CH₃CN (1.5 mL). After 4 h at 80 °C, purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3v** (43.4 mg, 55%). M.p. 62-64 °C; IR (KBr, cm⁻¹): 3457, 2955, 2923, 1716, 1429, 1222, 1066, 918, 794, 686; ¹H NMR (CDCl₃, 500 MHz): δ 7.70-7.68 (m, 2H), 7.53-7.46 (m, 3H), 4.02 (s, 3H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 161.8, 161.3, 159.4, 156.5, 130.7, 128.9, 128.2, 126.9, 116.1, 100.0, 53.4, 53.2; EI-MS m/z: 261 [M⁺]; HRMS (EI) m/z: calcd for C₁₃H₁₁NO₅ [M⁺] 261.0637, found 261.0633.

4. X-Ray Crystallographic Analysis for Compound 3r

Crystallographic data for 3r: C₁₁H₉N₃O₆S, M = 311.27, orthorhombic, Pbca (No. 61), a = 6.495 (3) Å, b = 17.713 (8) Å, c = 21.586 (10) Å, V = 2483 (2) Å³, Z = 8, Crystal size: $0.25 \times 0.20 \times 0.15$ mm, T = 293 K, $\rho_{calcd} = 1.665$ g·cm⁻³, R₁ = 0.0374 (I>4 σ (I)), $wR_2 = 0.111$ (all data), GOF = 1.031, reflections collected/unique: 14604 / 2926 (Rint = 0.0289), Data: 2306, restraints: 0, parameters: 198. CCDC 1884631 (3r) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

5. Mechanistic Studies

To a test tube were added **1a** (74.7 mg, 0.3 mmol), **2a** (77.9 mg, 0.45 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (145.0 mg, 0.6 mmol), KI (49.8, 0.3 mmol) and 1,4-dinitrobenzene (101.0 mg, 0.6 mmol) in dioxane (1.5 mL). The mixture was stirred at 80 °C for 4 h under an air atmosphere. Upon completion of the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3a** (65 mg, 74%).

To a test tube were added **1c** (83.7 mg, 0.3 mmol), **2a** (77.9 mg, 0.45 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (145.0 mg, 0.6 mmol) and KI (49.8, 0.3 mmol) in dioxane (1.5 mL). The mixture was stirred at 80 °C for 4 h under an air atmosphere. Upon completion of the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3a** (56.3 mg, 64%) and 4-methoxybenzoic acid (26.0 mg, 57%) as a white solid. No observable 4-methoxylbenzamide was isolated.

Characterization of 4-methoxybenzoic acid:^{15 1}H NMR (CDCl₃, 500 MHz): δ 8.09 (d, J = 8.9 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 3.91 (s, 3H).

To a test tube were added **1d** (88.3 mg, 0.3 mmol), **2a** (77.9 mg, 0.45 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (145.0 mg, 0.6 mmol) and KI (49.8, 0.3 mmol) in dioxane (1.5 mL). The mixture was stirred at 80 °C for 4 h under an air atmosphere. Upon completion of

the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3a** (55.0 mg, 63%), 4-nitrobenzamide (20.0 mg, 40%) and 4-nitrobenzoic acid (5.6 mg, 11%).

Characterization of 4-nitrobenzamide:¹⁶ ¹H NMR (DMSO- d_6 , 500 MHz): δ 8.30-8.28 (m, 3H), 8.09 (d, J = 8.7 Hz, 2H), 7.73 (s, 1H).

Characterization of 4-nitrobenzoic acid:¹⁷ ¹H NMR (DMSO- d_6 , 500 MHz): δ 13.65 (s, 1H), 8.32 (d, J = 8.7 Hz, 2H), 8.17 (d, J = 8.7 Hz, 2H).

To a test tube were added (nitromethyl)benzene¹⁸ (41 mg, 0.3 mmol), **2a** (77.9 mg, 0.45 mmol), $Cu(NO_3)_2 \cdot 3H_2O$ (145.0 mg, 0.6 mmol) and KI (49.8, 0.3 mmol) in dioxane (1.5 mL). The mixture was stirred at 80 °C for 4 h under an air atmosphere. Upon completion of the reaction, the solution was cooled down to room temperature and the solvent was removed under reduced pressure. The residue was purification by column chromatography on silica gel (petroleum ether/ethyl acetate) afforded **3a** (<5%) and (nitromethyl)benzene (with 95% recovery).

6. Reference

- [1] M. Blanco-Lomas, P. J. Campos and D. Sampedro, Org. Lett., 2012, 14, 4334.
- [2] M. A. Almaraz-Girón and A. Vázquez, Tetrahedron Lett., 2017, 58, 785.
- [3] C. A. B. Rodrigues, I. F. A. Mariz, M. S. E. Maçôas, C. A. M. Afonso and J. M. G. Martinho, *Dyes Pigments*, 2013, 99, 642.
- [4] R. Glaser and S. Geresh, *Tetrahedron*, 1979, 35, 2381.
- [5] B. M. Trost, P. J. Morris and S. J. Sprague, J. Am. Chem. Soc., 2012, 134, 17823.
- [6] P. Richter, H. G. Kazmirowski, G. Wagner and C. Garbe, *Pharmazie*, 1973, 28, 585.
- [7] E. L. Bennett and C. Nieman, J. Am. Chem. Soc., 1950, 72, 1806.
- [8] T. Shimizu, Y. Hayashi and K. Teramura, Bull. Chem. Soc. Jpn., 1984, 57, 2531.
- [9] A. Yoshimura, K. C. Nguyen, G. T. Rohde, A. Saito, M. S. Yusubov and V. V. Zhdankin, Adv. Synth. Catal., 2016, 358, 2340.
- [10] V. Kumar and M. P. Kaushik, Tetrahedron Lett., 2006, 47, 1457.
- [11] A. Bargiotti, L. Musso, S. Dallavalle, L. Merlini, G. Gallo, A. Ciacci, G. Giannini, W. Cabri, S. Penco, L. Vesci, M. Castorina, F. M. Milazzo, M. L. Cervoni, M. Barbarino, C. Pisano, C. Giommarelli, V. Zuco, M. De Cesare and F. Zunino, *Eur. J. Med. Chem.*, 2012, 53, 64.
- [12] T. D. Svejstrup, W. Zawodny, J. J. Douglas, D. Bidgeli, N. S. Sheikh and D. Leonori, *Chem. Commun.*, 2016, **52**, 12302.

- [13] C. Matt, A. Gissot, A. Wagner and C. Mioskowski, Tetrahedron Lett., 2000, 41, 1191.
- [14] A. Singhal, S. K. R. Parumala, A. Sharma and R. K. Peddinti, *Tetrahedron Lett.*, 2016, 57, 719.
- [15] X. Wang, C. Wang, Y. Liu and J. Xiao, Green Chem., 2016, 18, 4605.
- [16] D. D. S. Sharley and J. M. J. Williams, *Tetrahedron Lett.*, 2017, 58, 4090.
- [17] S. Wu, H. Ma and Z. Lei, *Tetrahedron*, 2010, 66, 8641.
- [18] D. S. Bose and G. Vanajatha, Synth. Commun., 1998, 28, 4531.

7.2602 4094.7-9294.7. 8012.7 1665 8 0701.8-1171.8-£871.8-2181.8-7681.8-1681.8-8.1923 9961.8-8002.8-7402.8-7802.8-

6723.7~ 5223.7~ 6131.7~ 6131.7~

1281.8 1719.8 2870.8 1719.8 1719.7

S32

	10
	50
	30
	40
	20
	- 09
	- 80
	- 06
	100 100
	110 f1 (i
	120
	130
	140
	150
	160
	170
	180
DM: DM: O) - 061
	00
S33	

~165.32 ~166.90

-148.28

-133[.]38 √134.76 -140.08

129.90 128.821 12.721

۲J24.38 125.29

ך36[:]ל6 ך36:99 28.95-00'00 91.047 40.49

S34

8649.7~

8127.7₇

-200 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (ppm) 06--80 -70 -90 -50 -40 -30 -20 -10 0

20.411-113.99 20.411-70.411-20.411-

		Ŧ	
			- 10
-23.49			50
			30 -
			40
			20
			- 09
87.012			- 20
62.77 <u></u>			80
			- 06
			100 (ppm)
			110 f1
			120
129.42			130
85.851—			140
			150
18.87—			160
	Ν		170
			180
			190
	S48		200
			•

10.0

f1 (ppm)

сi

		- 0
		10
2 ۶ .667		20
ר36 ^י 95 ר36י80 ר36י88 ר36י65		30
-40.06 -40.14 -40.23		40
15.047 74.047		 20
69 [.] 99—		60
		20
77.28—		 80
		- 06
		100 (ppm)
		110 f1
		120
12.181 72.821 72.821 72.821		130
		140
60. 4 61 —		 150
10,100	±, o ¥	160
02.671~		 170
28.471~	HE WO	180
		190
	S54	200

0.0

		- 0
		- 6
		50
		30
		40
c0.cc—		20
EE 03		- 09
22,49 75,49 76,72,49 70,77		20
65.08— 92.57		80
		- 06
		1 (ppm)
		110
∠¢26.62		120
72.131.27 21.28.01 71.28.01		130
		140
-125.44	<u> </u>	150
		160
170.30 ∠170.30		170
		180
		190
	S60	200

₹ 4[.]65288

6129[.]9 8069[.]9

7.9126 7.25186 7.25185 7.25185 7.25185 7.25185 7.2503 7.25

CDCI₃, 125 MHz ЗK

- 0

f1 (ppm)

10.5

0.0

-	-200	
-	-190	
-	-180	
-	-170	
-	-160	
-	150 -	
-	40 .	
-	30 -1	
-	0.	
_	-12	
-	-11(pm)
_	-100	f1 (p
_	06-	
	-80	
	-70	
_	-60	
_	-50	
-	-40	
_	-30	
_	-20	
_	-10	
-	0	

8

