A dimethoxypillar[5]arene/azastilbene host-guest recognition motif and its application in the fabrication of polypseudorotaxane

Liyun Wang ${ }^{\text {ab }}$, Danyu Xia*a, Jianbin Chao ${ }^{\text {a }}$, Junjie Zhang ${ }^{\text {a }}$, Xuehong Wei*ab and Pi Wang*c
${ }^{a}$ Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China; E-mail: danyuxia@sxu.edu.cn
${ }^{b}$ School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
${ }^{c}$ Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P.R. China; E-mail: wangpi@tyut.edu.cn

Supporting Information (14 pages)

1. Materials and Methods S2
2. Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and trans-G1 S3
3. Stoichiometry and association constant determination for the complexation between DMP5 and trans-G1 S3
4. Partial ${ }^{l} H$ NMR spectra of an equimolar solution of DMP5 and G2 S6
5. Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and G2 S7
6. Stoichiometry and association constant determination for the complexation between DMP5 and G2 S7
7. Partial ${ }^{l} H$ NMR spectrum of an equimolar solution of DMP5 and G3 S9
8. Partial ${ }^{1} H$ NMR spectrum of an equimolar solution of DMP5 and G4 S10
9. Partial ${ }^{l} H$ NMR spectrum of an equimolar solution of DMP5 and G5 S10
10. Partial ${ }^{1} H$ NMR spectrum of an equimolar solution of DMP5 and G6 S11
11. 2D DOSY NMR spectra S11
12. FT-IR spectroscopy experiments S11
13. Powder X-ray diffraction (XRD) analysis S12
14. AFM images of the polypseudorotaxane S12
15. ${ }^{l} H$ NMR spectroscopy experiments of photo-responsive property of the polypseudorotaxane Sl3
16. AFM image of the polypseudorotaxane after photo irradiation S13
References S14

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature. DMP5 ${ }^{\text {S1 }}$ was prepared according to published procedures. Compound trans-G1, G2, G3, G4, G5, G6 and $\mathrm{Cu}(\mathrm{OAc})_{2}$ were commercially available. NMR spectra were recorded with a Bruker Avance DMX 600 spectrophotometer. FT-IR spectra were recorded with a Thermo Scientific Nicolet iS50 instrument. XRD were performed with a Bruker D2 PHASER. Scanning electron microscopy investigations were carried out on a TASCAN (LYRA3) instrument. Atomic force microscopy experiments were performed by a Bruker MultiMode 8.0 instrument.

2. Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and trans-

G1

2D NOESY NMR experiment was employed to study the relative positions of the components in complex DMP5 $\boldsymbol{\text { trans}}$-G1. NOE correlation signals were observed between proton H_{a} of trans-G1 and protons H_{3} of DMP5 (A), between proton H_{b} of trans-G1 and protons H_{1} and H_{2} of DMP5 (B and C), between proton H_{c} of transG1 and protons H_{3} of DMP5 (D).

Figure S1 Partial 2D NOESY spectra of an equimolar mixture trans-G1 and DMP5 $(15.0 \mathrm{mM})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, room temperature).
3. Stoichiometry and association constant determination for the complexation between DMP5 and trans-G1

To determine the stoichiometry and association constant between DMP5 and trans-G1, ${ }^{1} \mathrm{H}$ NMR titration was done with solutions which had a constant concentration of trans-G1 $(1.00 \mathrm{mM})$ and different concentrations of DMP5. By a mole ratio plot, a $1: 1$ stoichiometry was obtained for this system. By a non-linear curve-fitting method, the association constant between the DMP5 and trans-G1 was calculated.

The non-linear curve-fitting was based on the equation: ${ }^{\text {S2 }}$
$\Delta \delta=\left(\Delta \delta \infty /[\mathrm{G}]_{0}\right)\left(0.5[\mathrm{H}]_{0}+0.5\left([\mathrm{G}]_{0}+1 / K_{\mathrm{a}}\right)-\left(0.5\left([\mathrm{H}]_{0}^{2}+\left(2[\mathrm{H}]_{0}\left(1 / \mathrm{Ka}_{\mathrm{a}}-[\mathrm{G}]_{0}\right)\right)+\right.\right.\right.$ $\left.\left.\left.\left(1 / K \mathrm{a}+[\mathrm{G}]_{0}\right)^{2}\right)^{0.5}\right)\right)($ Eq. S2)

When $\Delta \delta$ is the chemical shift change of H_{c} on trans-G1 at $[\mathrm{G}]_{0}, \Delta \delta_{\infty}$ is the chemical shift change of H_{c} when the guest is completely complexed, $[G]_{0}$ is the fixed initial concentration of the guest, and $[\mathrm{H}]_{0}$ is the varying concentration of DMP5.

Figure S2 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature) of trans-G1 at a concentration of 1.00 mM with different concentrations of DMP5: (a) 0.00 mM ; (b) 0.0990 mM ; (c) 0.196 mM ; (d) 0.385 mM ; (e) 0.566 mM ; (f) 0.826 mM ; (g) 1.07 mM;(h) 1.38 mM ; (i) 1.67 mM ; (j) 2.31 mM ; (k) 4.12 mM ; (l) 5.24 mM ; (m) 5.23 mM ; (n) 6.30 mM .

Figure S3 Mole ratio plot for the complexation between DMP5 and trans-G1, indicating a $1: 1$ stoichiometry.

Figure S4 The chemical shift changes of H_{c} on trans-G1 upon addition of DMP5. The red solid line was obtained from the non-linear curve-fitting using Eq. S1

4. Partial ${ }^{l} H$ NMR spectra of an equimolar solution of DMP5 and G2

Figure S5 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature): (a) DMP5 (5.00 mM); (b) G2 (5.00 mM) and DMP5 (5.00 mM); (c) G2 (5.00 mM).
5. Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and G2

2D NOESY NMR experiment was employed to study the relative positions of the components in complex DMP5_G2. NOE correlation signals were observed between proton $\mathrm{H}_{\mathrm{a}^{\prime}}$ of $\mathbf{G 2}$ and protons $\mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} of DMP5 (A, B and C).

Figure S6 Partial 2D NOESY spectra of an equimolar mixture G2 and DMP5 (15.0 $\mathrm{mM})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, room temperature).
6. Stoichiometry and association constant determination for the complexation between DMP5 and G2

To determine the stoichiometry and association constant between DMP5 and G2, ${ }^{1} \mathrm{H}$ NMR titration was done with solutions which had a constant concentration of G2 (1.00 mM) and different concentrations of DMP5. By a mole ratio plot, a $1: 1$ stoichiometry was obtained for this system. By a non-linear curve-fitting method, the association constant between the DMP5 and G2 was calculated.

The non-linear curve-fitting was based on the equation: ${ }^{\text {S2 }}$
$\Delta \delta=\left(\Delta \delta \infty 0 /[\mathrm{G}]_{0}\right)\left(0.5[\mathrm{H}]_{0}+0.5\left([\mathrm{G}]_{0}+1 / K \mathrm{a}\right)-\left(0.5\left([\mathrm{H}]_{0}{ }^{2}+\left(2[\mathrm{H}]_{0}\left(1 / K \mathrm{a}-[\mathrm{G}]_{0}\right)\right)+\right.\right.\right.$ $\left.\left.\left.\left(1 / K a+[G]_{0}\right)^{2}\right)^{0.5}\right)\right)($ Eq. S2)

When $\Delta \delta$ is the chemical shift change of $\mathrm{H}_{\mathbf{c}^{\prime}}$ on $\mathbf{G} \mathbf{2}$ at $[\mathrm{G}]_{0}, \Delta \delta_{\infty}$ is the chemical shift change of $\mathrm{H}_{\mathrm{c}^{\prime}}$ when the guest is completely complexed, $[\mathrm{G}]_{0}$ is the fixed initial concentration of the guest, and $[\mathrm{H}]_{0}$ is the varying concentration of DMP5.

Figure $\boldsymbol{S} 7$ Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature) of $\mathbf{G 2}$ at a concentration of 1.00 mM with different concentrations of DMP5: (a) 0.00 mM ; (b) 0.0990 mM ; (c) 0.196 mM ; (d) 0.385 mM ; (e) 0.566 mM ; (f) 0.826 mM ; (g) 1.07 mM ;(h) 1.38 mM ; (i) 1.67 mM ; (j) 2.31 mM ; (k) 4.12 mM .

Figure S8 Mole ratio plot for the complexation between DMP5 and G2, indicating a 1:1 stoichiometry.

Figure S9 The chemical shift changes of $\mathrm{H}_{\mathrm{c}^{\prime}}$ on $\mathbf{G} 2$ upon addition of DMP5. The red solid line was obtained from the non-linear curve-fitting using Eq. S1

7. Partial ${ }^{l} H$ NMR spectra of an equimolar solution of DMP5 and G3

Figure S10 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature): (a) DMP5 (5.00 mM); (b) G3 (5.00 mM) and DMP5 (5.00 mM); (c) G3 (5.00 mM).
8. Partial ${ }^{1} H$ NMR spectra of an equimolar solution of DMP5 and G4
(a)

(c)

Figure S11 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature): (a) DMP5 (5.00 mM); (b) G4 (5.00 mM) and DMP5 (5.00 mM); (c) G4 (5.00 mM).
9. Partial ${ }^{1} H$ NMR spectra of an equimolar solution of DMP5 and G5

Figure S12 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature): (a) DMP5 (5.00 mM); (b) G5 (5.00 mM) and DMP5 (5.00 mM); (c) G5 (5.00 mM).
10. Partial ${ }^{l} H$ NMR spectra of an equimolar solution of DMP5 and G6

Figure S13 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature): (a) DMP5 (5.00 mM); (b) G6 (5.00 mM) and DMP5 (5.00 mM); (c) G6 (5.00 mM).
11. 2D DOSY NMR spectra of DMP5 + trans-G1 and DMP5 + trans-G1 + Cu(II)

Figure S14 Partial DOSY NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature) : (a) a mixture of DMP5 + trans-G1 at 5.00 mM ; (b) a mixture of DMP5 + trans-G1 + $\mathrm{Cu}(\mathrm{II})$ at 5.00 mM .

According to the literature, ${ }^{\mathrm{S} 3}$ we used the Stokes-Einstein relation to estimate the average degree of polymerization (DP):
$\mathrm{DP}(\mathrm{DOSY}) \approx(\mathrm{D}(\text { polymer }) / \mathrm{D}(\text { monomer }))^{3}=11.4$
12. FT-IR spectroscopy experiments

Figure S15 FT-IR spectra of DMP5 + trans-G1, the polypseudorotaxane and $\mathrm{Cu}(\mathrm{OAc})_{2}$ The stretching vibration and bending vibration were noted as v and δ, respectively.

13. Powder X-ray diffraction (XRD) analysis

Figure S16 X-ray powder diffraction patterns: (a) DMP5 + trans-G1; (b) the polypseudorotaxanes; (c) $\mathrm{Cu}(\mathrm{OAc})_{2}$.
14. AFM images of the polypseudorotaxane

Figure S17 AFM images: (a) fibers drawn from a high concentration solution of mixtures of DMP5دtrans-G1 and Cu(II) in the molar ratio of 1:1 in chloroform; (b) the powder obtained by drying of the polypseudorotaxane solution.
15. ${ }^{1} H$ NMR spectroscopy experiments of photo-responsive property of the polypseudorotaxane

Figure S18 Partial ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, room temperature): (a) trans-G1-based coordination polymer; (b) after irradiation with UV light at 365 nm of a; (c) trans-G1 (5.00 mM) after irradiation with UV light at 365 nm ; (d) DMP5 $\boldsymbol{\text { trans }}$-G1based polypseudorotaxane; (e) after irradiation with UV light at 365 nm of d; (f) DMP5 \supset trans-G1 $(5.00 \mathrm{mM})$ after irradiation with UV light at 365 nm .
16. AFM image of the polypseudorotaxane after photo irradiation

Figure S19 AFM image of the polypseudorotaxane after irradiation with UV light at 365 nm .

References:

S1. T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022-5023.

S2. K. A. Connors, Binding Constants; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, J. Am. Chem. Soc., 1996, 118, 4931-4951.

S3. H. Xing, H. Wang, X. Yan and X. Ji, Dalton Trans., 2015, 44, 11264-11268

