A dimethoxypillar[5]arene/azastilbene host-guest recognition motif and its application in the fabrication of polypseudorotaxane

Liyun Wang^{ab}, Danyu Xia^{*a}, Jianbin Chao^a, Junjie Zhang^a, Xuehong Wei^{*ab} and Pi Wang^{*c}

^aScientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China; E-mail: danyuxia@sxu.edu.cn

^bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China

^cMinistry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, P.R. China; E-mail: wangpi@tyut.edu.cn

Supporting Information (14 pages)

1.	Materials and Methods	<i>S2</i>
2.	Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and trans-G1	<i>S3</i>
3.	Stoichiometry and association constant determination for the complexation between DMP5 and trans-G1	<i>S3</i>
4.	Partial ¹ H NMR spectra of an equimolar solution of DMP5 and G2	<i>S6</i>
5.	Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and G2	<i>S</i> 7
6.	Stoichiometry and association constant determination for the complexation between <i>DMP5</i> and <i>G2</i>	<i>S</i> 7
7.	Partial ¹ H NMR spectrum of an equimolar solution of DMP5 and G3	<i>S9</i>
8.	Partial ¹ H NMR spectrum of an equimolar solution of DMP5 and G4	<i>S10</i>
9.	Partial ¹ H NMR spectrum of an equimolar solution of DMP5 and G5	<i>S10</i>
10.	Partial ¹ H NMR spectrum of an equimolar solution of DMP5 and G6	<i>S11</i>
11.	2D DOSY NMR spectra	<i>S11</i>
12.	FT-IR spectroscopy experiments	<i>S11</i>
13.	Powder X-ray diffraction (XRD) analysis	<i>S12</i>
14.	AFM images of the polypseudorotaxane	<i>S12</i>
15.	¹ H NMR spectroscopy experiments of photo-responsive property of the polypseudorotaxane	S13
16.	AFM image of the polypseudorotaxane after photo irradiation	S13
	References	<i>S14</i>

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Solvents were either employed as purchased or dried according to procedures described in the literature. **DMP5**^{S1} was prepared according to published procedures. Compound *trans*-G1, G2, G3, G4, G5, G6 and Cu(OAc)₂ were commercially available. NMR spectra were recorded with a Bruker Avance DMX 600 spectrophotometer. FT-IR spectra were recorded with a Thermo Scientific Nicolet iS50 instrument. XRD were performed with a Bruker D2 PHASER. Scanning electron microscopy investigations were carried out on a TASCAN (LYRA3) instrument. Atomic force microscopy experiments were performed by a Bruker Multi-Mode 8.0 instrument.

2. Partial 2 D NOESY NMR spectrum of an equimolar solution of **DMP5** and **trans-***G1*

2D NOESY NMR experiment was employed to study the relative positions of the components in complex **DMP5** $_$ *trans*-G1. NOE correlation signals were observed between proton H_a of *trans*-G1 and protons H₃ of **DMP5** (A), between proton H_b of *trans*-G1 and protons H₁ and H₂ of **DMP5** (B and C), between proton H_c of *trans*-G1 and protons H₃ of **DMP5** (D).

Figure S1 Partial 2D NOESY spectra of an equimolar mixture *trans*-G1 and DMP5 (15.0 mM) (600 MHz, CDCl₃, room temperature).

3. Stoichiometry and association constant determination for the complexation between DMP5 and trans-G1

To determine the stoichiometry and association constant between **DMP5** and *trans*-G1, ¹H NMR titration was done with solutions which had a constant concentration of *trans*-G1 (1.00 mM) and different concentrations of **DMP5**. By a mole ratio plot, a 1:1 stoichiometry was obtained for this system. By a non-linear curve-fitting method, the association constant between the **DMP5** and *trans*-G1 was calculated.

The non-linear curve-fitting was based on the equation: S2

$$\Delta \delta = (\Delta \delta \infty / [G]_0) (0.5[H]_0 + 0.5([G]_0 + 1/K_a) - (0.5([H]_0^2 + (2[H]_0(1/K_a - [G]_0)) + (1/K_a + [G]_0)^2)^{0.5})) (Eq. S2)$$

When $\Delta\delta$ is the chemical shift change of H_c on *trans*-G1 at [G]₀, $\Delta\delta_{\infty}$ is the chemical shift change of H_c when the guest is completely complexed, [G]₀ is the fixed initial concentration of the guest, and [H]₀ is the varying concentration of **DMP5**.

Figure S2 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature) of *trans*-G1 at a concentration of 1.00 mM with different concentrations of DMP5: (a) 0.00 mM; (b) 0.0990 mM; (c) 0.196 mM; (d) 0.385 mM; (e) 0.566 mM; (f) 0.826 mM; (g) 1.07 mM; (h) 1.38 mM; (i) 1.67 mM; (j) 2.31 mM; (k) 4.12 mM; (l) 5.24 mM; (m) 5.23 mM; (n) 6.30 mM.

Figure S3 Mole ratio plot for the complexation between DMP5 and *trans-G1*, indicating a 1:1 stoichiometry.

Figure S4 The chemical shift changes of H_c on *trans*-G1 upon addition of DMP5. The red solid line was obtained from the non-linear curve-fitting using Eq. S1

4. Partial ¹H NMR spectra of an equimolar solution of **DMP5** and **G2**

Figure S5 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature): (a) **DMP5** (5.00 mM); (b) **G2** (5.00 mM) and **DMP5** (5.00 mM); (c) **G2** (5.00 mM).

5. Partial 2 D NOESY NMR spectrum of an equimolar solution of DMP5 and G2

2D NOESY NMR experiment was employed to study the relative positions of the components in complex **DMP5** $_$ **G2**. NOE correlation signals were observed between proton H_{a'} of **G2** and protons H₁, H₂ and H₃ of **DMP5** (A, B and C).

Figure S6 Partial 2D NOESY spectra of an equimolar mixture **G2** and **DMP5** (15.0 mM) (600 MHz, CDCl₃, room temperature).

6. Stoichiometry and association constant determination for the complexation between **DMP5** and **G2**

To determine the stoichiometry and association constant between **DMP5** and **G2**, ¹H NMR titration was done with solutions which had a constant concentration of **G2** (1.00 mM) and different concentrations of **DMP5**. By a mole ratio plot, a 1:1 stoichiometry was obtained for this system. By a non-linear curve-fitting method, the association constant between the **DMP5** and **G2** was calculated.

The non-linear curve-fitting was based on the equation: S2

 $\Delta \delta = (\Delta \delta_{\infty} / [G]_0) (0.5[H]_0 + 0.5([G]_0 + 1/K_a) - (0.5([H]_0^2 + (2[H]_0(1/K_a - [G]_0)) + (1/K_a + [G]_0)^2)^{0.5})) (Eq. S2)$

When $\Delta\delta$ is the chemical shift change of $H_{c'}$ on **G2** at $[G]_0$, $\Delta\delta_\infty$ is the chemical shift change of $H_{c'}$ when the guest is completely complexed, $[G]_0$ is the fixed initial concentration of the guest, and $[H]_0$ is the varying concentration of **DMP5**.

Figure S7 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature) of **G2** at a concentration of 1.00 mM with different concentrations of **DMP5**: (a) 0.00 mM; (b) 0.0990 mM; (c) 0.196 mM; (d) 0.385 mM; (e) 0.566 mM; (f) 0.826 mM; (g) 1.07 mM;(h) 1.38 mM; (i) 1.67 mM; (j) 2.31 mM; (k) 4.12 mM.

Figure S8 Mole ratio plot for the complexation between **DMP5** and **G2**, indicating a 1:1 stoichiometry.

Figure S9 The chemical shift changes of $H_{c'}$ on G2 upon addition of DMP5. The red solid line was obtained from the non-linear curve-fitting using Eq. S1

7. Partial ¹H NMR spectra of an equimolar solution of **DMP5** and **G3**

Figure S10 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature): (a) **DMP5** (5.00 mM); (b) **G3** (5.00 mM) and **DMP5** (5.00 mM); (c) **G3** (5.00 mM).

8. Partial ¹H NMR spectra of an equimolar solution of **DMP5** and **G4**

Figure S11 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature): (a) **DMP5** (5.00 mM); (b) **G4** (5.00 mM) and **DMP5** (5.00 mM); (c) **G4** (5.00 mM).

9. Partial ¹H NMR spectra of an equimolar solution of **DMP5** and **G5**

Figure S12 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature): (a) **DMP5** (5.00 mM); (b) **G5** (5.00 mM) and **DMP5** (5.00 mM); (c) **G5** (5.00 mM).

10. Partial ¹H NMR spectra of an equimolar solution of **DMP5** and **G6**

Figure S13 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature): (a) **DMP5** (5.00 mM); (b) **G6** (5.00 mM) and **DMP5** (5.00 mM); (c) **G6** (5.00 mM).

11. 2D DOSY NMR spectra of **DMP5** + trans-G1 and **DMP5** + trans-G1 + Cu(II)

Figure S14 Partial DOSY NMR spectra (600MHz, CDCl₃, room temperature) : (a) a mixture of **DMP5** + *trans*-G1 at 5.00 mM; (b) a mixture of **DMP5** + *trans*-G1 + Cu(II) at 5.00 mM.

According to the literature,^{S3} we used the Stokes-Einstein relation to estimate the average degree of polymerization (DP):

 $DP(DOSY) \approx (D(polymer) / D(monomer))^3 = 11.4$

12. FT-IR spectroscopy experiments

Figure S15 FT-IR spectra of **DMP5** + *trans*-G1, the polypseudorotaxane and Cu(OAc)₂ The stretching vibration and bending vibration were noted as v and δ , respectively.

13. Powder X-ray diffraction (XRD) analysis

Figure S16 X-ray powder diffraction patterns: (a) **DMP5** + *trans*-G1; (b) the polypseudorotaxanes; (c) $Cu(OAc)_2$.

14. AFM images of the polypseudorotaxane

Figure S17 AFM images: (*a*) *fibers drawn from a high concentration solution of mixtures of* **DMP5_trans-G1** *and Cu(II) in the molar ratio of 1:1 in chloroform; (b) the powder obtained by drying of the polypseudorotaxane solution.*

15. ¹H NMR spectroscopy experiments of photo-responsive property of the polypseudorotaxane

Figure S18 Partial ¹H NMR spectra (600 MHz, CDCl₃, room temperature): (a) *trans*-G1-based coordination polymer; (b) after irradiation with UV light at 365 nm of a; (c) *trans*-G1 (5.00 mM) after irradiation with UV light at 365 nm; (d) DMP5⊃*trans*-G1-based polypseudorotaxane; (e) after irradiation with UV light at 365 nm of d; (f) DMP5⊃*trans*-G1 (5.00 mM) after irradiation with UV light at 365 nm.

16. AFM image of the polypseudorotaxane after photo irradiation

Figure S19 AFM image of the polypseudorotaxane after irradiation with UV light at 365 nm.

References:

- S1. T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022–5023.
- S2. K. A. Connors, *Binding Constants*; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931–4951.
- S3. H. Xing, H. Wang, X. Yan and X. Ji, Dalton Trans., 2015, 44, 11264–11268