Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Supporting Information

BODIPY Analogues: Synthesis and Photophysical studies of difluoro Boron complexes

from 2-Aminotropone Scaffolds through N,O-Chelation

Bibhuti Bhusana Palai,[§] Ramachandra Soren[§] and Nagendra K. Sharma*

School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatani-752050, Odisha, India. & HBNI-Mumbai, Mumbai-India

*Corresponding author. Tel.: 0674-249-4141; fax: +91 (674) 2494004; E-mail: nagendra@niser.ac.in

[§]Authors have contributed equally

Contents

1.	General Information	S3
2.	¹ H, ¹³ C NMR (400MHz, CDCl ₃) and HRMS of Aminotropone (2a)	S5
3.	¹ H, ¹³ C NMR (400MHz, CDCl ₃) and HRMS of Aminotropone (2b)	S7
4.	¹ H, ¹³ C NMR (400MHz, CDCl ₃) and HRMS of Aminotropone (2c)	S9
5.	¹ H, ¹³ C NMR (400MHz, CDCl ₃) of Aminotropone (2d)	S11
6.	¹ H, ¹³ C NMR (400MHz, CDCl ₃) and HRMS of Aminotropone (2e)	S13
7.	NMR (¹ H, ¹³ C) and HRMS of Aminotropone (2f)	S15
9.	NMR (¹ H, ¹³ C) and HRMS of Aminotropone (2g)	S17
10.	NMR (¹ H, ¹³ C) and HRMS of Aminotropone (2h)	S19
10.	NMR (¹ H, ¹³ C) and HRMS of Aminotropone (2i)	S21
11.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-gly</i> (3a)	S23
12.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-ala</i> (3b)	S26
13.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-val</i> (3 c)	S29
14.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-lue</i> (3d)	S32
15.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-phe</i> (3e)	S35
16.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-beta ala</i> (3f)	S38
17.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-dipep</i> (3 g)	S41
18.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of Boron complex <i>tr-picolylamine</i> (3h)	S44
19.	NMR (¹ H, ¹³ C, ¹¹ B, ¹⁹ F) and HRMS of boron complex <i>tr-aminoquinoline</i> (3i)	S47
20.	Crystal structures and data	S50
21.	FT-IR spectra	S62
22.	Photophysical studies	S68
22.	Theoretical data	S78
23.	Comparative N-B bond length studies	S86
24.	Cyclic Voltammetry studies	S87

1. General Information

All required materials and solvents were purchased from commercial suppliers and used without any further purification unless noted. Anhydrous dichloromethane was freshly prepared by distilling over Calcium hydride. Reactions were monitored by thin layer chromatography, visualized by UV and Ninhydrin. Column chromatography was performed in 100-200 mesh silica. FT-IR spectra were recorded on Thermo Scientific Nicolet iS5N FT-NIR spectrometer. Mass spectra were obtained from Bruker micrOTOF-Q II Spectrometer and the samples were prepared in methanol and injected in methanol and water mixture. NMR spectra were recorded on Bruker AV- 400 at room temperature (¹H: 400 MHz, ¹³C: 100.6 MHz, ¹¹B:128 MHz, ¹⁹F:377 MHz). ¹H, ¹³C, ¹¹B and ¹⁹F NMR chemical shifts were recorded in ppm, downfield from tetramethyl silane. Splitting patterns are abbreviated as: s, Singlet; d, doublet; dd, doublet of doublet; app d, apparent doublet; app dd, apparent doublet of doublet; t, triplet; q, quartet; dq, doublet of quartet; m, multiplet. The crystal data of all peptide were collected on a Rigaku Oxford diffractometer at 293 K respectively. Absorption spectra were obtained using Jasco V-730 spectrometer. Fluorescence spectra were obtained from Perkin-Elmer LS-55 using Xenon lamp. All spectroscopic measurements were carried out with spectroscopic grade, nondegassed solvents and at 20°C. Relative fluorescence quantum yields were determined by comparing with quinine sulfate quantum yield in 0.1 M H₂SO₄ (0.54). The obtained values were substituted in the equation given below.

$$\Phi_{x} = \Phi_{r} x \frac{F_{x}}{F_{r}} x \frac{1 - 10^{-A_{r}}}{1 - 10^{A_{x}}} x \frac{\eta_{x}^{2}}{\eta_{x}^{2}}$$

Absolute fluorescence quantum yields of **3a**, **3c**, **3f**, **3h** and **3i** in methanol (excited at 384 nm), of these dyes are measured by Edinburgh instrument FLS 920 using intergrating sphene according to the definition of fluorescence efficiency. The photostabilities of dyes **3a**, **3c** and

3h were studied by continuous irradiation with a UV lamp in 265 nm wavelength under 4W LED in methanol.

All reagents were purchased from commercial suppliers and used without further purification. The reaction was monitored by analytical TLC plates. The column chromatography was performed with Rankem silica gel (100-200 mesh). HRMS's were analyzed with Agilent Q-TOF 6500. All computational data for compound (**3a, 3a-OH, 3b, 3h, 3i**) has been calculated using Gaussian 09 software and B3LYP/6-31+G* level of theory in vacuum.

Cyclic voltammograms of 1 mM 3a, 3h and 3i were measured in acetonitrile solution, containing 0.1 M TBAPF6 as the supporting electrolyte, glassy carbon electrode as a working electrode, Pt wire as a counter electrode, and silver electrode as reference electrode at 100 mV s⁻¹ of scanning rate at room temperature.

2. ¹H, ¹³C NMR (400MHz, CDCl₃) and HRMS of Aminotropone (2a)

Figure S2. ESI/HRMS spectra of Aminotropone (2a)

3. ¹H, ¹³C NMR (400MHz, CDCl₃) and HRMS of Aminotropone (2b)

Figure S3. ¹H, ¹³C NMR (400MHz, CDCl₃) spectra of Aminotropone (2b) in CDCl₃

Figure 4. ESI/HRMS spectra of Aminotropone (2b)

4. 1 H, 13 C NMR (400MHz, CDCl₃) and HRMS of Aminotropone (**2c**)

Figure S5. ¹H, ¹³C NMR (400MHz, CDCl₃) spectra of Aminotropone (2c) in CDCl₃

Figure S6. ESI/HRMS spectra of Aminotropone (2c).

5. ¹H, ¹³C NMR (400MHz, CDCl₃) of Aminotropone (2d)

Figure S8. ESI/HRMS spectra of Aminotropone (2d)

6. 1 H, 13 C NMR (400MHz, CDCl₃) and HRMS of Aminotropone (2e)

Figure S9. ¹H, ¹³C NMR (400MHz, CDCl₃) spectra of Aminotropone (2e) in CDCl₃

Figure S10. ESI/HRMS spectra of Aminotropone (2e).

Figure S12. ESI/HRMS spectra of Aminotropone (2f)

9. NMR (¹H, ¹³C) and HRMS of Aminotropone (2g)

Figure S14. ESI/HRMS spectra of Aminotropone (2g)

10. NMR (1 H, 13 C) and HRMS of Aminotropone (**2h**) **11.**

- 8.03 7.66 7.23 6.66 6.66 6.51

 $< \frac{8.61}{8.60}$

 $<_{4.67}^{4.68}$

Figure S16. ESI/HRMS spectra of Aminotropone (2h)

10. NMR (¹H, ¹³C) and HRMS of Aminotropone (**2i**)

Figure S18. ESI/HRMS spectra of Aminotropone (2i)

11. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of Boron complex *tr-gly* (**3a**)

 $\underbrace{ \bigwedge_{6.74}^{7.02} }_{6.74}$

Figure S20. ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (3a) in CDCl₃

Figure S21. ESI-MS/HRMS spectra of Boron complex (3a).

12. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of Boron complex *tr-ala* (**3b**)

Figure S23. ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (3b) in CDCl₃

Figure S24. ESI-MS/HRMS spectra of Boron complex (3b)

13. NMR (1 H, 13 C, 11 B, 19 F) and HRMS of Boron complex *tr-val* (**3c**)

Figure S25. ¹H, ¹³C NMR (400MHz, CDCl₃) spectra of Boron complex (3c) in CDCl₃

 $\bigwedge_{5.65}^{5.94}$

Figure S26. ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (3c) in CDCl₃

Figure S27. ESI-MS/HRMS spectra of Boron complex (3c)

14. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of Boron complex *tr-lue* (**3d**)

Figure S29. ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (3d) in CDCl₃

Figure S30. ESI-MS/HRMS spectra of Boron complex (3d)

15. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of Boron complex *tr-phe* (**3e**)

Figure S32. ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (3e) in CDCl₃

Figure S33. ESI-MS/HRMS spectra of Boron complex (3e)

16. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of Boron complex *tr-beta ala* (3f)

Figure S35. ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (3f) in CDCl₃

Figure S36. ESI-MS/HRMS spectra of Boron complex (3f)

17. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of Boron complex *tr-dipep* (**3g**)

 $\bigwedge_{5.65}^{5.93}$

¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ **Figure S38.** ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (**3g**) in CDCl₃

Figure S39. ESI-MS/HRMS spectra of Boron complex (3g)

Figure S40. ¹H, ¹³C NMR (400MHz, CDCl₃) spectra of Boron complex (**3h**) in CDCl₃

¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ **Figure S41.** ¹¹B and ¹⁹F NMR (400MHz, CDCl₃) spectra of Boron complex (**3h**) in CDCl₃

Figure S42. ESI-MS/HRMS spectra of Boron complex (3h)

19. NMR (¹H, ¹³C, ¹¹B, ¹⁹F) and HRMS of boron complex *tr-aminoquinoline* (**3i**)

RSC-48	8.79 8.79 8.78 8.78	8.23	7 : 91 7 : 50 7 : 50 7 : 52 7 : 45 6 : 63 6 : 63 6 : 63 6 : 63 6 : 63 6 : 63 7 : 52 6 : 63 7 : 52 6 : 63 7 : 52 6 : 63 7 : 52 7 : 55 7 : 55	1.69	0.00
RSC-48	\checkmark	Y.			L

Figure S43. ¹H, ¹³C NMR (400MHz, CDCl₃) spectra of Boron complex (**3i**) in CDCl₃

 $\bigwedge^{6.24}_{5.98}$

Figure S45. ESI-MS/HRMS spectra of Boron complex (3i)

20. Crystal structures and data

Good quality crystals of compounds were obtained in solvent mixture dichloromethane and hexane by slow evaporation method. The crystals data of all boron complexes were collected on a Rigaku Oxford diffractometer at 293 K respectively. Selected data collection parameters and other crystallographic results are summarized below. The program package SHELXTL¹ and Olex2 was used for structure solution and packing diagram carried out by DIAMOND-3.2 software.

CCDC 1888894-1888899 contain the supplementary crystallographic data for **3a,3a-OH,3b,3h** and **3i**. These data can be obtained free of charge via <u>https://www.ccdc.cam.ac.uk/data</u>

Figure S46. ORTEP Diagram of boron complex (3a) [ellipsoid contour probability: 50%].

Figure S47. ORTEP Diagram of boron complex (3b) [ellipsoid contour probability: 50%].

Figure S48. Crystal packing-diagram and intermolecular interactions of compound 3b.

Figure S49. ORTEP Diagram of boron complex (3c) [ellipsoid contour probability: 50%].

Figure S50. Crystal packing-diagram and intermolecular interactions of compound 3c.

Figure S51. ORTEP Diagram of boron complex (3h) [ellipsoid contour probability: 50%].

Figure 52. Crystal packing-diagram and intermolecular interactions of compound 3h.

•

Figure S53. ORTEP Diagram of boron complex (3i) [ellipsoid contour probability: 50%].

Figure 54. Crystal packing-diagram and intermolecular interactions of compound 3h.

Figure S55. ORTEP Diagram of boron complex (3a-OH) [ellipsoid contour probability:50%].

Figure 56. Crystal packing-diagram and intermolecular interactions of compound 3h.

compounds	(3a)	(3b)	(3c)	(3h)	(3i)	(3a-OH)
Identification code	CCDC 1888899	CCDC	CCDC 1888897	CCDC	CCDC	CCDC1888894
Empirical formula	C H PENO	1000090	C H PENO	1888895	1000090	C H PE NO.
	C ₁₁ H ₁₂ BF ₂ NO ₃	$C_{12}H_{14}BF_{2}INO_{3}$	$C_{26}H_{32}B_2F_4N_2O_6$	$C_{13}H_{11}BF_{2}N_{2}O$	$C_{16}H_{11}BF_{2}N_{2}O$	C ₉ H ₈ BF ₂ NO ₃
Formula weight	255.04	269.07	566.20	260.07	296.10	226.97
Temperature/k	298.0	296(2)	293(2)	296.0	298	293(2)
Crystal system	monoclinic	Orthorhombic	triclinic	triclinic	monoclinic	monoclinic
Space group	P2 ₁ /c	Pbca	P1	P-1	P21/c	P2 ₁ /n
A/å	13.1705(7)	13.5273(5)	8.1582(2)	8.8495(2)	7.0792(4)	7.0433(4)
B/å	12.9185(4)	7.7581(4)	9.4094(2)	9.1023(2)	7.4313(4)	11.5620(8)
C/å	7.3648(2)	24.7812(15)	9.4305(2)	9.2653(2)	26.3653(14)	11.6118(8)
α/°	90	90	98.033(1)	62.940(2)	90	90
β/°	97.809(3)	90	94.918(2)	89.372(2)	96.772(5)	90.857(5)
γ/°	90	90	94.971(1)	69.175(2)	90	90
Volume/å ³	1241.45(8)	2600.7(2)	710.60(3)	610.93(3)	1377.34(13)	945.50(11)
Z	4	8	1	2	4	4
ρ _{calc} g/cm ³	1.3644	1.3742	1.3229	1.4136	1.4277	1.594
M/mm ⁻¹	1.005	0.987	0.929	0.937	0.108	1.242
F(000)	530.2	1124.5	297.2	269.0	608.4	464.0
Crystal size/mm ³	0.001 × 0.0001 ×	0.001 × 0.0001	$0.21 \times 0.21 \times 0.2$	0.001 × 0.0001	0.001 ×	$0.01 \times 0.01 \times$
	0.0001	× 0.0001		× 0.0001	0.0002 ×	0.01
					0.0001	
Radiation	Cu Kα (λ = 1.54184)	Cu Kα (λ =	Cu Kα (λ =	Cu Kα (λ =	Μο Κα (λ =	CuKα (λ =
		1.54184)	1.54184)	1.54184)	0.71073)	1.54184)
2θ range for data	6.78 to 148.96	7.14 to 148.92	9.52 to 148.94	10.88 to 150.68	6.9 to 52.74	10.798 to
collection/°						148.932
Index ranges	$\text{-}15 \leq h \leq 16, \text{-}16 \leq k \leq$	$-17 \le h \le 16, -5$	$-8 \le h \le 10, -11 \le$	$-8 \le h \le 11, -10$	$-9 \le h \le 9, -9$	$-8 \le h \le 8, -11 \le$
	$16, -9 \le l \le 6$	\leq k \leq 9, -30 \leq 1	$k \leq 11, -12 \leq l \leq$	$\leq k \leq 11, -11 \leq 1$	\leq k \leq 9, -34 \leq	$k \le 14, -14 \le 1 \le$
		≤ 29	12	≤11	1≤33	14
Reflections collected	8441	10196	23106	9421	13111	6207
Independent reflections	2449 [$R_{int} = 0.0828$,	2546 [R _{int} =	5386 [R _{int} =	2469 [R _{int} =	2802 [R _{int} =	1880 [R _{int} =
	$R_{\text{sigma}} = 0.0590]$	$0.0731, R_{sigma} =$	0.0504, R _{sigma} =	0.0382, R _{sigma} =	0.0177, R _{sigma}	0.0962, R _{sigma} =
		0.0497]	0.0278]	0.0262]	= 0.0158]	0.0460]
Data/restraints/parameter	2449/0/164	2546/0/174	5386/3/367	2469/0/179	2802/0/199	1880/0/149
s						
Goodness-of-fit on f ²	1.211	1.126	1.062	1.143	0.842	1.567
Final r indexes [i>=2o	$R_1 = 0.0974, wR_2 =$	$R_1 = 0.0922,$	$R_1 = 0.0594,$	$R_1 = 0.0390,$	$R_1 = 0.0391,$	$R_1 = 0.1201,$
(i)]	0.2898	$wR_2 = 0.2806$	$wR_2 = 0.1735$	$wR_2 = 0.1006$	$wR_2 = 0.1750$	$wR_2 = 0.3423$
Final r indexes [all data]	$R_1 = 0.1180, wR_2 =$	$R_1 = 0.1296,$	$R_1 = 0.0609,$	$R_1 = 0.0423,$	$R_1 = 0.0443,$	$R_1 = 0.1295,$
	0.3107	$wR_2 = 0.3336$	$wR_2 = 0.1767$	$wR_2 = 0.1034$	$wR_2 = 0.1867$	$wR_2 = 0.3485$
Largest diff. Peak/hole / e	0.41/-0.36	0.29/-0.43	0.44/-0.25	0.12/-0.22	0.20/-0.22	0.64/-0.46
å-3						

Table S1: Crystallographic table

compounds		3a	3b	3c	3h	3i	За-ОН
Selecte	C1C7	1.4503 Å	1.4425 Å	1.4532 Å	1.4440 Å	1.4578 Å	1.4359 Å
lengths	C7—N1	1.3252 Å	1.3394 Å	1.3317 Å	1.3250 Å	1.3273 Å	1.3257 Å
	C1-01	1.3116 Å	1.3201 Å	1.3191 Å	1.3224 Å	1.3162 Å	1.3237 Å
	N1-B1	1.5331 Å	1.5587 Å	1.5438 Å	1.5453 Å	1.5546 Å	1.5400 Å
	O ₁ —B ₁	1.4754 Å	1.4691 Å	1.4769 Å	1.4799 Å	1.4877 Å	1.4908 Å
	B_1 — F_1	1.3800Å	1.3730 Å	1.3678 Å	1.3752 Å	1.3642 Å	1.3794 Å
	B ₁ —F ₂	1.3790 Å	1.3783 Å	1.3700 Å	1.3821 Å	1.3754 Å	1.3878 Å
Selecte	$N_1 - B_1 - O_1$	99.887°	100.182°	100.092°	99.688°	99.018°	99.836°
angles	$O_1 - B_1 - F_1$	111.216°	111.952°	110.796°	111.746°	111.616°	112.599°
	$O_1 - B_1 - F_2$	111.112°	110.886°	111.453°	111.092°	110.190°	112.566°
	N_1 — B_1 — F_1	111.417°	112.846°	113.098°	112.124°	112.744°	110.284°
	$N_1 - B_1 - F_2$	112.601°	111.091°	112.638°	112.609°	112.539°	112.401°
	$F_1 \longrightarrow B_1 \longrightarrow F_2$	109.349°	109.623°	108.610°	109.342°	110.291°	108.960°
	$B_1 - N_1 - C_7$	110.825°	109.191°	110.680°	110.607°	111.312°	110.641°
	$B_1 - O_1 - C_1$	111.621°	111.926°	111.200°	111.322°	111.839°	110.412°
	$O_1 - C_1 - C_7$	110.080°	110.144°	110.738°	110.323°	110.605°	108.537°
	N ₁	107.553°	107.537°	107.242°	107.976°	107.209°	110.144°

Table S2: Selected bond lengths and bond angles of boroncomplexes in solid state

21. FT-IR spectra

.FT-IRspectra were recorded by dissolving respective compounds in degassed CH₂Cl₂, drop casted on KBr plate and dried thoroughly. The samples were scanned from 500-4000 ($\tilde{\nu}$,cm⁻¹), the spectra are obtained from average of 64 scans

Figure S58. FT-IR Spectra of (3b)

Figure S59. FT-IR Spectra of (3c)

Figure S61. FT-IR Spectra of (3e)

Figure S62. FT-IR Spectra of (3f)

Figure S64. FT-IR Spectra of (3h)

Figure S65. FT-IR Spectra of (3i)

Figure S66: Absorption spectra of boron-aminotropone complexes (**3a-i**) in methanol at 50×10^{-5} M concentration.

Entry	$\lambda_{abs}{}^{a}$	Abs ^a	$\lambda_{em}^{a,c}$	Σmax ^a	Stoke's	OD/Abs	
	(nm)		(nm)	(M ⁻¹ cm ⁻¹)	Shift (nm)	(nm)	$\Phi_{\rm f}{}^{\rm b}$
3a	333, 381	0.3383	417,438	6766	105	338	0.15
3b	336,382	0.2421	414,445	4842	109	339	0.13
3c	339,384	0.28905	418,446	5781	107	347	0.14
3d	339,384	0.3148	419,445	6296	106	343	0.12
3e	333,383	0.10306	418,446	2061	109	332	0.06
3f	339,384	0.4114	423,448	8228	109	341	0.09
3g	339,384	0.3144	424,448	6288	109	339	0.09
3h	337,384	0.5501	420,445	11002	108	357	0.14
3i	316,382	0.8510		17020		351	0.0

Table-S3: Photophysical parameters of Boron-aminotropone complexes.

a. All measurements were carried out in methanol, b. Quantum yields were determined by considering quinine sulfate in 0.1 M H_2SO_4 as standard reference, c. $\lambda_{ex} = 380$ nm, d. boron complex **3i** has shown negligible fluorescence in methanol.

Figure S67: A) Normalized absorption B) Emission C) Normalized emission spectra of boronaminotropone complexes (**3a-i**) in methanol at 50×10^{-5} M concentration.

Figure S68: Normalized absorption-emission spectra of boron-aminotropone complexes (3a-i) in methanol at 50×10^{-5} M concentration.

Figure S69: A) Normalized absorption B) Emission C) Normalized emission spectra of boronaminotropone complexes (**3a-i**) in acetonitrile at 50x10⁻⁵M concentration.

Figure S70: Normalized absorption-emission spectra of boron-aminotropone complexes (3a-i) in acetonitrile at 50×10^{-5} M concentration.

Figure S71: Normalized absorption-emission spectra of boron-aminotropone complexes (3a) in different solvent.

Tab	le S4.	Quantum	yields	of b	oron-aminotropone	(3 a).
-----	--------	---------	--------	------	-------------------	--------------	----

solvents	λabs	Abs	λem	Stoke's	OD/Abs	
	(nm)		(nm)	Shift (nm)	(nm)	Φ_{f}
Methanol	334, 380	0.06085	417,438	104	334	0.15
Acetonitrile	335,380	0.07202	415,441	106	340	0.14
Ethanol	335,382	0.08749	416,443	108	346	0.13
THF	337,385	0.08650	418,442	105	345	0.15
All measurements and quantum yields were determined for boron-complex (4a) by considering quinine						

sulfate in 0.1 M H₂SO₄ as standard reference.

Figure S72: Comparision of Solid and Solution emission spectra of boron-aminotropone complexes (3a, 3c, 3f, 3h, 3i) in MeOH.

	МеОН			Solid	
Entry	$\lambda_{abs}(nm)$	$\lambda_{em} (nm)$	Φ_{f} (%)	λ_{em} (nm)	$\Phi_{\mathrm{f}}(\%)$
1 a	333, 381	417,438	15	447, 470, 492	4.94
1c	339,384	418,446	14	440, , 493	4.1
1f	339,384	423,448	9	447, 507,	0.73
1h	337,384	420,445	14	440, 465, 506	6.59
1i	381				0

 Table S5. Comparison of solid and solution fluorescence.

Photostability of Boron complex 3a:

Figure S73: Photostability for boron-aminotropone complexes (**3a**) in MeOH A) Absorption spectra and B) Amount of decomposition with irradiation of UV ray at 265 nm.

Photostability of Boron complex 3c:

Figure S74: Photostability for boron-aminotropone complexes (**3c**) in MeOH A) Absorption spectra and B) Amount of decomposition with irradiation of UV ray at 265 nm.

Photostability of Boron complex **3h**:

Figure S75: Photostability for boron-aminotropone complexes (**3c**) in MeOH A) Absorption spectra and B) Amount of decomposition with irradiation of UV ray at 265 nm.

Cartesian coordinates of most stable structure for compound (**3a**, **3a-OH**, **3b**, **3h**, **3i**) has been calculated using **Gaussian 09 software** and B3LYP/6-31+G* level of theory in vacuum. Since all molecules are in their minimum energy level, no imaginary frequency was observed.

Coordinates and absolute energies of (3a,3a-OH,3b,3h,3i)

	X	Y	Z
С	-4.87177	-1.72318	-0.05083
С	-4.45226	-0.34044	-0.52486
0	-3.39031	0.20463	0.30857
С	-2.12257	-0.08436	-0.03367
0	-1.79169	-0.76565	-0.97946
С	-1.15622	0.53911	0.97800
Ν	0.17843	0.71859	0.46142
С	1.09042	-0.23869	0.30263
С	2.29809	0.39601	-0.23629
0	2.11755	1.68200	-0.41155
В	0.73424	2.11651	0.01380
F	0.79448	2.99838	1.08099
F	0.01895	2.64008	-1.04665
С	0.92744	-1.60888	0.60774
С	1.84943	-2.63724	0.49291
С	3.17975	-2.62199	0.03569
С	3.90513	-1.53119	-0.42609
С	3.51907	-0.18854	-0.55045
Н	-0.05701	-1.89681	0.96227
Н	4.25651	0.50897	-0.93890
Н	1.47785	-3.61376	0.79824
Н	4.92594	-1.74146	-0.73942
Н	-1.15752	-0.09577	1.87617
Н	-1.53902	1.51561	1.28370
Н	3.69516	-3.57907	0.03980
Н	-5.18149	-1.70013	0.99976
Н	-5.72114	-2.07268	-0.65025
Н	-4.05602	-2.44381	-0.16661
Н	-5.26309	0.38398	-0.42150
Н	-4.10475	-0.35540	-1.56042

Table S6. Cartesian coordinates (Å) of Analogue 3a optimized at the B3LYP/6-31+G* level

Energy (a.u): -584574.8958440 hartree

Table S7. Cartesian coordinates (Å) of Analogue **3a-OH** optimized at the B3LYP/6-31+G* level

X	Y	Ζ

С	-0.92316	-1.52578	-0.52396
С	-0.53643	-0.19147	-0.26949
Ν	0.69160	0.31129	-0.39321
С	1.86116	-0.41714	-0.81297
С	2.41764	-1.35208	0.25891
0	1.83426	-1.72879	1.24817
С	-2.18528	-2.09347	-0.43733
С	-3.41624	-1.52391	-0.06717
С	-3.66349	-0.20994	0.31161
С	-2.77791	0.87180	0.41750
С	-1.41087	0.90201	0.16648
0	-0.73782	2.01628	0.31203
В	0.72240	1.83996	-0.03539
F	1.06916	2.60465	-1.13737
F	1.53738	2.09927	1.04916
0	3.66864	-1.75032	-0.07141
Н	-0.12347	-2.20124	-0.81139
Н	-3.19073	1.82611	0.73380
Н	2.63598	0.30435	-1.08615
Н	1.66595	-1.01949	-1.71253
Н	-4.69636	0.02182	0.56429
Н	-2.22347	-3.15160	-0.68967
Н	-4.27194	-2.19420	-0.07443
Н	3.97890	-2.35738	0.62741

Energy (a.u): -535236.4094543 hartree

	X	Y	Z
С	1.77605	1.88664	-1.11423
С	1.09289	0.54381	-0.79937
Ν	-0.28418	0.71992	-0.36013
С	-1.16857	-0.27693	-0.29621
С	-0.95247	-1.61489	-0.70078
С	-1.83389	-2.68520	-0.67824
С	-3.16860	-2.76067	-0.24364
С	-3.94389	-1.73695	0.28642
С	-3.61281	-0.39426	0.51377
С	-2.41222	0.26122	0.26273
0	-2.29066	1.53378	0.53954
В	-0.92920	2.06594	0.15884
F	-1.05777	3.00176	-0.85703
С	1.89547	-0.25990	0.24510
0	3.15044	-0.47801	-0.19623
С	4.03124	-1.21582	0.69397
С	5.38523	-1.31834	0.01823
0	1.46670	-0.66564	1.30224
F	-0.26923	2.58031	1.25699
Н	0.03975	-1.84188	-1.07697
Н	1.10181	-0.05410	-1.72244
Н	4.08327	-0.68007	1.64659
Н	3.58712	-2.19845	0.88257
Н	-1.41862	-3.61871	-1.05409
Н	-4.38031	0.24298	0.94517
Н	1.19936	2.43038	-1.86573
Н	1.84899	2.51194	-0.22043
Н	2.78032	1.69694	-1.49934
Н	6.07587	-1.87216	0.66473
Н	5.31111	-1.84753	-0.93800
Н	5.80960	-0.32581	-0.16650
Н	-3.64334	-3.73491	-0.32795
Н	-4.95906	-2.00978	0.56844

Table S8. Cartesian coordinates (Å) of Analogue 3b optimized at the B3LYP/6-31+G* level

Energy (a.u): -609244.5388150 hartree

	X	Y	Z
N	-2.65021	-1.12194	0.95526
С	-2.14854	0.03490	0.49533
С	-2.61818	0.65522	-0.67109
С	-3.65670	0.05034	-1.37642
С	-4.19170	-1.14821	-0.89724
С	-3.65233	-1.69148	0.26872
С	-1.03355	0.65929	1.32526
Ν	0.23354	0.78942	0.61184
В	0.81259	2.14554	0.08731
F	0.00706	2.70352	-0.89903
С	1.06033	-0.22012	0.34803
С	2.22772	0.33631	-0.34317
0	2.10673	1.63287	-0.50061
С	0.84183	-1.57802	0.68302
С	1.67147	-2.66403	0.45179
С	2.93130	-2.73422	-0.17246
С	3.66476	-1.69231	-0.72491
С	3.35859	-0.32495	-0.80501
F	1.04564	3.03871	1.11769
Н	-0.90273	0.05803	2.23136
Н	-1.31679	1.66973	1.63581
Н	-2.16670	1.58270	-1.01070
Н	4.08777	0.32292	-1.28445
Н	1.27977	-3.61512	0.80829
Н	4.62205	-1.96949	-1.16235
Н	-4.04432	0.50837	-2.28279
Н	-5.00395	-1.65221	-1.41326
Н	3.37885	-3.72328	-0.22998
Н	-0.10336	-1.79497	1.17269
Н	-4.03492	-2.62603	0.67501

Table S9. Cartesian coordinates (Å) of Analogue **3h** optimized at the B3LYP/6-31+G* level

Energy (a.u): -571963.4580220 hartree

	X	Y	Z
F	-0.38384	2.36314	1.83873
0	-2.43208	1.58517	0.80808
F	-0.98285	3.20530	-0.24963
Ν	-0.41194	0.80442	-0.08576
Ν	1.19821	-1.33216	0.86758
С	0.96911	0.70660	-0.41554
С	1.77930	-0.35683	0.09349
С	-1.35999	-0.13331	-0.28180
С	3.18134	-0.36372	-0.20111
С	-1.19116	-1.34618	-0.98123
Н	-0.20129	-1.51485	-1.37758
С	-2.60623	0.36255	0.28986
С	1.55177	1.71684	-1.16111
Н	0.93279	2.53110	-1.50555
С	3.73828	0.67924	-0.98735
Н	4.79869	0.66681	-1.20458
С	-3.84664	-0.24723	0.35554
Н	-4.59971	0.34213	0.86146
С	3.95707	-1.42570	0.33805
Н	5.01961	-1.45802	0.13329
С	-2.12399	-2.34019	-1.22216
Н	-1.74988	-3.18323	-1.79183
С	2.93532	1.69734	-1.45143
Н	3.35765	2.49993	-2.03988
С	1.96403	-2.30113	1.35822
Н	1.46392	-3.04204	1.96804
С	3.35691	-2.38845	1.11730
Н	3.92679	-3.20113	1.54459
С	-4.22931	-1.50143	-0.14148
Н	-5.26303	-1.76965	0.04224
С	-3.47634	-2.43239	-0.84246
Н	-3.98947	-3.33723	-1.14286
В	-1.00797	2.08140	0.61456

Table S10. Cartesian coordinates (Å) of Analogue 3i optimized at the B3LYP/6-31+G* level

Energy (a.u): -643674.6435811 hartree

HOMO and LUMO orbitals calculation

DFT-B3LYP-6 Calculations of Boron-aminotropones:

Figure S76: Optimized structure and HOMO- LUMO energy (atomic unit in hartree) of boron aminotropone (3a)

Figure S77: Optimized structure and HOMO- LUMO energy (atomic unit in hartree) of boron aminotropone (**3a-OH**)

Figure S78: Optimized structure and HOMO- LUMO energy (atomic unit in hartree) of boron aminotropone (3b)

Figure S79: Optimized structure and HOMO- LUMO energy (atomic unit in hartree) of boron aminotropone (**3h**)

Figure S80: Optimized structure and HOMO- LUMO energy (atomic unit in hartree) of boron aminotropone (3i)

HOMO and LUMO orbitals DFT calculations

Figure S81: Optimized structure and HOMO- LUMO energy gap (atomic unit in eV) of boron aminotropone (**3a, 3a-OH, 3b, 3h, 3i**) at B3LYP/6-31+G* level of theory in vacuum.

Analogue	Substituent	HOMO (eV)	LUMO (eV)	$\Delta (eV)$	$\phi_{\rm f}$
3a	Gly	-6.5057	-2.5872	3.91844	0.15
3b	Ala	-6.4703	-2.5518	3.9184	0.13
3h	Picolylamine	-6.4831	-2.5837	3.8993	0.14
3i	AQ	-6.3048	-2.5061	3.7987	0
3ј	Gly-OH	-6.6237	-2.6895	3.9342	0.02

Table-S11: Calculated HOMO and LUMO gap at B3LYP/6-31+G* level of theory in vacuum.

23. Comparative N-B bond length studies

24. Cyclic Voltammetry studies

Figure S82. Cyclic voltammograms of 1mM (3a, 3h, 3i) measured in acetonitrile solution containing TBPF₆ as the supporting electrolyte and ferrocene as standard at room temperature. Glassy carbon electrode as a working electrode and scan rate 100mV.

Figure S83. Cyclic voltammograms of 1mM (3a, 3h & 3i) measured in acetonitrile solution containing TBPF₆ as the supporting electrolyte at room temperature. Glassy carbon electrode as a working electrode and scan rate 100 mV/s.