Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Push-Pull Isomers of Indolizino[6,5,4,3-def]phenanthridine Decorated by a Triarylboron Moiety

Lei Dong, Felix Saraci, Kang Yuan, Xiang Wang, Suning Wang*

Supporting Information

Table of contents

- I. Synthetic Procedure
- II. NMR Spectra
- III. Characterization Data
- IV. TD-DFT Computational Calculation Data
- V. X-ray Crystallographic Data

I. Synthetic Procedure

8-iodoquinoline: Quinolin-8-amine (3.34 g, 23 mmol) was added to a mixture of HCl/H₂O (15:15 mL) and was cooled to 5 °C in an ice bath. NaNO₂ (1.74 g, 25 mmol) was then added dropwise, followed by the addition of KI (1.74 g, 25 mmol) in 15 mL of H₂O. After stirring overnight, the mixture was neutralized with NaOH and the solvent was removed in *vacuo* and the product was isolated by column chromatography on silica gel using hexane/ethyl acetate (5:1) as an eluent. 8-iodoquinoline was isolated as a yellow solid (2.90 g, 49% yield).

(2-(quinolin-8-yl)phenyl)methanol: 8-iodoquinoline (1.70 g, 6.6 mmol), (2-(hydroxymethyl)phenyl)boronic acid (1.32 g, 8.7 mmol), Pd(PPh₃)₄ (0.418 g, 0.36 mmol), and K₂CO₃ (13.8 g, 100 mmol) were reacted in a mixture of THF/H₂O (60:20 ml) for 24 hr at 85 °C. After the mixture was cooled to room temperature, the solvent was removed in *vacuo* and the product was isolated by column chromatography on silica gel using hexane/ethyl acetate (2:1 \rightarrow 1:1) as an eluent. (2-(quinolin-8-yl)phenyl)methanol was isolated as a yellow solid (1.181 g, 70% yield).

8*H*-pyrido[3,2,1-*de*]phenanthridin-7-ium bromide: (2-(quinolin-8-yl)phenyl)methanol (943 mg, 4 mmol) and hydrobromic acid (0.544 mL, 4.8 mmol) were reacted for 4 hr at 90 °C. After cooled to room temperature, ether (3 x 30 mL) and dichloromethane (10 ml) were added and the supernatant was removed. The mixture was then air-dried overnight and the remaining solvent was removed in *vacuo* to yield a yellow solid (2.036 g, 84% yield). ¹H NMR (700 MHz, DMSO-*d*₆): δ 9.49 (d, *J* = 7.3 Hz, 1H), 9.28 (d, *J* = 8.2 Hz, 1H), 8.85 (d, *J* = 7.4 Hz, 1H), 8.38 (d, *J* = 8.1 Hz, 1H), 8.31 (d, *J* = 8.3 Hz, 1H), 8.26 (t, *J* = 7.6 Hz, 1H), 8.07 (t, *J* = 7.8 Hz, 1H), 7.60 – 7.51 (m, 3H), 6.31 (s, 2H). ¹³C NMR (176 MHz, DMSO): δ 149.01, 147.14, 135.12, 130.70, 130.60, 130.37, 129.78, 129.62, 128.89, 128.28, 126.89, 126.67, 125.82, 124.14, 123.17, 56.97. HR-ESIMS (*m*/*z*): [M + H]⁺ calcd. for C₁₆H₁₂N: 218.0964; found: 218.0970.

Alkyne 1: (4-ethynylphenyl)dimesitylborane (485 mg, 1.38 mmol), 1,2,3,4,5-pentafluoro-6-iodobenzene (490 mg, 1.67 mmol), Pd(PPh₃)₄ (80 mg, 0.07 mmol), CuI (26 mg, 0.14 mmol) and Et₃N (3 ml) were reacted in THF (25 mL) overnight at 90 °C. After the mixture was cooled to room temperature, the solvent was removed in *vacuo* and the product was isolated by column chromatography on silica gel using hexane/ethyl acetate (50:1) as an eluent. The product **1** was isolated as a white solid (500 mg, 70% yield). ¹H NMR (700 MHz, CD₂Cl₂): δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 6.7 Hz, 2H), 6.88 (s, 4H), 2.34 (s, 6H), 2.03 (s, 12H). ¹³C NMR (176 MHz, CD₂Cl₂): δ 141.34, 140.76, 140.67, 139.14, 136.18, 135.90, 131.89, 131.23, 128.22, 128.08, 127.94, 124.35, 101.53, 74.46, 23.13, 20.92. HR-EIMS (m/z): [M]+ calcd. for C₃₂H₂₆BF₅: 516.2048; found: 516.2039

Alkyne 2: (2-ethynylphenyl)dimesitylborane (700 mg, 2 mmol), 2-bromo-5-(trifluoromethyl)pyridine (565 mg, 2.5 mmol), Pd(PPh₃)₄ (115 mg, 0.10 mmol), CuI (57 mg, 0.30 mmol) and Et₃N (3 ml) were reacted in THF (25 mL) overnight at 90 °C. After the mixture was cooled to room temperature, the solvent was removed in *vacuo* and the product was isolated by column chromatography on silica gel using hexane/ethyl acetate (30:1) as an eluent. The product **2** was isolated as a yellow solid (900 mg, 91% yield). ¹H NMR (700 MHz, CD₂Cl₂): δ 8.78 (s, 1H), 7.78 (d, *J* = 8.3, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.50 (t, 7.5 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.80 (s, 4H), 2.27 (s, 6H), 2.04 (s, 12H). ¹³C NMR (176 MHz, CD₂Cl₂): δ 150.67, 146.87, 146.38, 140.83, 139.29, 134.61, 133.34, 132.50, 130.48, 129.07, 128.29, 126.74, 125.35, 124.50, 124.31, 122.79, 92.16, 90.43, 22.89, 20.88. HR-EIMS (*m*/*z*): [M]⁺ calcd. for C₃₂H₂₉BNF₃: 495.2345; found: 495.2340.

Alkyne 3: (2-ethynylphenyl)dimesitylborane (350 mg, 1 mmol), 2-bromo-5-methylpyridine (260 mg, 1.5 mmol), Pd(PPh₃)₄ (60 mg, 0.05 mmol), CuI (28 mg, 0.15 mmol) and Et₃N (3 ml) were reacted in THF (25 mL) overnight at 90 °C. After the mixture was cooled to room temperature, the solvent was removed in *vacuo* and the product was isolated by column chromatography on silica gel using hexane/ethyl acetate (30:1) as an eluent. The product **3** was isolated as an orange solid (300 mg, 68% yield). ¹H NMR (700 MHz, CD₂Cl₂): δ 8.35 (d, J = 5.1 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.47 (t, J = 7.6, 1H), 7.37 (t, J = 7.5, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 5.1 Hz, 1H), 6.82 (s, 4H), 6.53 (s, 1H), 2.31 (s, 3H), 2.29 (s, 6H), 2.04 (s, 12H). ¹³C NMR (176 MHz, CD2Cl2): δ 149.30, 146.72, 143.06, 140.82, 139.11, 134.31, 133.11, 131.93, 131.88, 131.82, 130.33, 128.43, 128.28, 128.05, 126.07, 123.41, 104.21, 91.67, 22.88, 20.95, 20.44. HR-ESIMS (m/z): [M+H]⁺ calcd. for C₃₂H₃₃BN: 442.2701; found: 442.2711.

II. NMR Spectra

Figure S1. ¹H NMR spectrum of 8*H*-pyrido[3,2,1-*de*]phenanthridin-7-ium bromide in DMSO-*d*₆

Figure S2. ¹³C NMR spectrum of 8*H*-pyrido[3,2,1-*de*]phenanthridin-7-ium bromide in DMSO- d_6

Figure S3. ¹H NMR spectrum of compound 1a in CD₂Cl₂

Figure S4. ¹³C NMR spectrum of compound **1a** in CD₂Cl₂

Figure S5. ¹H NMR spectrum of compound **1b** in CD₂Cl₂

Figure S6. 13 C NMR spectrum of compound **1b** in CD₂Cl₂

Figure S7. ¹H NMR spectrum of compound **2a** in CD₂Cl₂

Figure S8. ¹³C NMR spectrum of compound **2a** in CD₂Cl₂

Figure S9. ¹H NMR spectrum of compound 2b in CD_2CI_2

Figure S10. 13 C NMR spectrum of compound **2b** in CD₂Cl₂

Figure S11. ¹¹B NMR spectrum of compound 2b in d₈-toluene.

Figure S12. ¹H NMR spectrum of compound **3a** in CD₂Cl₂

Figure S13. ¹³C NMR spectrum of compound 3a in CD₂Cl₂

Figure S14. ¹H NMR spectrum of compound **3b** in CD₂Cl₂

Figure S15. ¹³C NMR spectrum of compound **3b** in CD₂Cl₂.

III. UV-Vis and fluorescence data

Figure S16. UV-vis spectra of compounds 1a and 1b in CH_2Cl_2 and toluene (c= 2×10^{-5} mol/L)

Figure S17. UV-vis spectra of compounds **2a** and **2b** in CH₂Cl₂ and toluene ($c=2\times10^{-5}$ mol/L)

Figure S18. UV-vis spectra of compounds **3a** and **3b** in CH₂Cl₂ and toluene ($c=2\times10^{-5}$ mol/L)

Figure S19. Fluorescence spectra of compounds **1a** and **1b** in CH_2Cl_2 and toluene (c= 2×10^{-5} mol/L)

Figure S20. Fluorescence spectra of compounds **2a** and **2b** in hexane, toluene, THF, CH₂Cl₂ and acetone (c= 2×10^{-5} mol/L, λ_{ex} = 390 nm was used for the emission spectra of **2a** and **2b** in hexane, THF and acetone)

Figure S21. Fluorescence spectra of compounds **2a** and **2b** in hexane under air and N₂ ($c=2\times10^{-5}$ mol/L, $\lambda_{ex}=390$ nm)

Figure S22. Fluorescence spectra of compounds **2a** and **2b** in THF under air and N₂ (c= 2×10^{-5} mol/L, λ_{ex} = 390 nm)

Figure S23. Fluorescence spectra of compounds **3a** and **3b** in CH_2Cl_2 and toluene (c= 2×10^{-5} mol/L)

Fluorescence Spectra at Different Concentrations in CH₂Cl₂

Figure S24. Fluorescence spectra of compounds 1a and 1b at different concentrations of CH_2Cl_2 solution.

Figure S25. Fluorescence spectra of compounds 2a and 2b at different concentrations of CH_2Cl_2 solution.

Figure S26. Fluorescence spectra of compounds 3a and 3b at different concentrations of CH_2Cl_2 solution

Figure S27. Emission spectra of compounds **1a** and **1b** in toluene ($c=2 \times 10^{-5}$ mol/L) recorded between 263 K and 333 K

Figure S28. Emission spectra of compounds **2b** in hexane and THF ($c=2 \times 10^{-5}$ mol/L, $\lambda_{ex}=390$ nm)

Figure S29. Excitation spectra of compounds **2b** in THF ($c=2\times10^{-5}$ mol/L) at 373 K

Figure S30. Emission spectra of compounds **3a** and **3b** in toluene ($c=2 \times 10^{-5}$ mol/L) recorded between 263 K and 333 K.

Figure S31. Emission spectra of compounds 2a in PMMA films (5 wt%) recorded under air and N₂ between 283 K and 373 K (λ_{ex} = 380 nm).

Figure S32. Emission spectra of compounds **2b** in PMMA films (5 wt%) recorded under air and N₂ between 283 K and 363 K (λ_{ex} = 380 nm).

IV. TD-DFT Computational Calculation Data

Figure S33. HOMO of 8*H*-pyrido[3,2,1-*de*]phenanthridine-7-ium-8-ide (top left) and LUMO of the internal alkynes used for the synthesis of **1a/b** (top right), **2a/b** (bottom left) and **3a/b** (bottom right).

Table S1. TD-DFT calculated electronic transition configurations for **1a** along with their corresponding excitation energies and oscillator strengths

Spin State	Transition Configuration	Excitation Energy	Oscillator Strength
S ₁	$HOMO \rightarrow LUMO (98\%)$	419 nm (2.96 eV)	0.3002
S ₂	HOMO \rightarrow LUMO+1 (71%)	377 nm (3.29 eV)	0.0816
	HOMO \rightarrow LUMO+2 (21%)		
S_3	HOMO \rightarrow LUMO+1 (22%)	366 n (3.39 eV)	0.0367
	HOMO \rightarrow LUMO+2 (63%)		
S_4	HOMO-2 \rightarrow LUMO (87%)	351 nm (3.54 eV)	0.0749
Se	HOMO-3 \rightarrow LUMO (35%)	340 nm (3 64 eV)	0 1465
55	HOMO-1 \rightarrow LUMO (48%)	510 mm (5.01 0 1)	0.1105
	$HOMO-3 \rightarrow LUMO (18\%)$		
S_6	HOMO \rightarrow LUMO+3 (53%)	336 nm (3.69 eV)	0.0153
	HOMO \rightarrow LUMO+4 (10%)		

Table S2. Primary orbitals which contribute to the calculated transitions of 1a (iso = 0.03)

Table S3. TD-DFT calculated electronic transition configurations for **1b** along with their corresponding excitation energies and oscillator strengths

Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
\mathbf{S}_1	$HOMO \rightarrow LUMO (98\%)$	423 nm (2.93 eV)	0.0935
S ₂	HOMO \rightarrow LUMO+1 (89%)	382 nm (3.25 eV)	0.1827
S ₃	HOMO \rightarrow LUMO+2 (82%)	366 nm (3.39 eV)	0.0342
\mathbf{S}_4	HOMO-2 \rightarrow LUMO (94%)	356 nm (3.49 eV)	0.0798
S ₅	HOMO-3 \rightarrow LUMO (42%) HOMO-1 \rightarrow LUMO (50%)	343 nm (3.62 eV)	0.2322
S ₆	HOMO-4 \rightarrow LUMO (37%) HOMO-3 \rightarrow LUMO (34%) HOMO-1 \rightarrow LUMO (12%)	335 nm (3.70 eV)	0.0438

Table S4. Primary orbitals which contribute to the calculated transitions of 1b (iso = 0.03)

Table S5. TD-DFT calculated electronic transition configurations for **2a** along with their corresponding excitation energies and oscillator strengths

Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
S ₁	$HOMO \rightarrow LUMO (98\%)$	454 nm (2.73 eV)	0.0050
S ₂	HOMO \rightarrow LUMO+1 (95%)	421 nm (2.95 eV)	0.0985
S ₃	HOMO → LUMO+2 (40%) HOMO → LUMO+4 (10%)	380 nm (3.27 eV)	0.0763
S4	HOMO \rightarrow LUMO+3 (10%) HOMO \rightarrow LUMO+4 (73%)	368 nm (3.37 eV)	0.0346
S ₅	HOMO-1 \rightarrow LUMO (83%)	366 nm (3.39 eV)	0.0175
S ₆	HOMO \rightarrow LUMO+3 (85%) HOMO \rightarrow LUMO+4 (11%)	359 nm (3.45 eV)	0.0049

Table S6. Primary orbitals which contribute to the calculated transitions of 2a (iso = 0.03)

Table S7. TD-DFT calculated electronic transition configurations for 2b along with their correspondingexcitation energies and oscillator strengths

Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
S ₁	HOMO \rightarrow LUMO (43%) HOMO \rightarrow LUMO+1 (55%)	438 nm (2.83 eV)	0.0079
S ₂	HOMO \rightarrow LUMO (53%) HOMO \rightarrow LUMO+1 (42%)	410 nm (3.03 eV)	0.2106
S ₃	HOMO \rightarrow LUMO+2 (50%) HOMO \rightarrow LUMO+3 (37%)	375 nm (3.31 eV)	0.0243
S_4	HOMO-1 \rightarrow LUMO (37%) HOMO-1 \rightarrow LUMO+1 (54%)	368 nm (3.38 eV)	0.0309
S ₅	HOMO \rightarrow LUMO+2 (40%) HOMO \rightarrow LUMO+3 (50%)	355 nm (3.49 eV)	0.0151
S ₆	HOMO-1 \rightarrow LUMO (45%) HOMO-1 \rightarrow LUMO+1 (28%)	351 nm (3.54 eV)	0.1166

Table S8. Primary orbitals which contribute to the calculated transitions of 2b (iso = 0.03)

Table S9. TD-DFT calculated electronic transition configurations for **3a** along with their corresponding excitation energies and oscillator strengths

Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
S ₁	$HOMO \rightarrow LUMO (98\%)$	465 nm (2.67 eV)	0.0070
S_2	HOMO \rightarrow LUMO+1 (82%)	385 nm (3.22 eV)	0.1676
S ₃	HOMO \rightarrow LUMO+2 (85%)	379 nm (3.27 eV)	0.0422
S_4	HOMO \rightarrow LUMO+3 (79%)	370 nm (3.35 eV)	0.0150
S_5	HOMO-1 \rightarrow LUMO (84%)	369 nm (3.36 eV)	0.0142
S_6	HOMO-3 \rightarrow LUMO (27%)	344 nm (3.60 eV)	0.0032
	HOMO-2 \rightarrow LUMO (71%)		

Table S10. Primary orbitals which contribute to the calculated transitions of 3a (iso = 0.03)

Table S11. TD-DFT calculated electronic transition configurations for **3b** along with their corresponding excitation energies and oscillator strengths

Spin State	Transition Configuration	Excitation Energy (nm, eV)	Oscillator Strength
S ₁	HOMO \rightarrow LUMO (98%)	452 nm (2.74 eV)	0.0056
S ₂	HOMO \rightarrow LUMO+1 (93%)	401 nm (3.09 eV)	0.1877
S ₃	HOMO \rightarrow LUMO+2 (84%)	378 nm (3.28 eV)	0.0248
\mathbf{S}_4	HOMO-1 \rightarrow LUMO (92%)	375 nm (3.31 eV)	0.0223
	HOMO-1 \rightarrow LUMO+1 (47%)		
S_5	HOMO \rightarrow LUMO+3 (18%)	349 nm (3.55 eV)	0.0154
	HOMO \rightarrow LUMO+4 (18%)		
	HOMO-4 \rightarrow LUMO (24%)		
S ₆	HOMO-3 \rightarrow LUMO (13%)	347 nm (3.57 eV)	0.0320
	HOMO-2 \rightarrow LUMO (46%)		

Table S12. TD-DFT calculated electronic transition configurations for **3b** along with their corresponding excitation energies and oscillator strengths

V. X-ray Crystallographic Data

Table S13. Crystal data and structure refinement for 1b. Identification code 1bC49 H36 B Cl3 F5 N Empirical formula Formula weight 850.95 Temperature 180(2) K 0.71073 Å Wavelength Crystal system Monoclinic Space group $P2_1/c$ Unit cell dimensions a = 8.2594(11) Å $= 90^{\circ}.$ b = 24.311(2) Å $\Box = 97.933(5)^{\circ}$. c = 20.696(2) Å $\Box = 90^{\circ}.$ 4115.9(8) Å³ Volume Z 4 1.373 Mg/m³ Density (calculated) 0.282 mm⁻¹ Absorption coefficient F(000) 1752 0.240 x 0.060 x 0.060 mm³ Crystal size 2.490 to 27.139°. Theta range for data collection Index ranges -10<=h<=10, -31<=k<=31, -26<=l<=26 Reflections collected 64838 Independent reflections 9101 [R(int) = 0.1110] Completeness to theta = 25.242° 99.9 % Absorption correction Semi-empirical from equivalents 0.985 and 0.935 Max. and min. transmission Full-matrix least-squares on F² Refinement method Data / restraints / parameters 9101 / 0 / 539 Goodness-of-fit on F^2 1.023 Final R indices [I>2sigma(I)] R1 = 0.0675, wR2 = 0.1587R1 = 0.1391, wR2 = 0.2030R indices (all data) 0.0023(5)Extinction coefficient 0.681 and -0.692 e.Å⁻³ Largest diff. peak and hole

	х	У	Z	U(eq)	
B(1)	2249(5)	2795(2)	2322(2)	39(1)	
N(1)	7863(3)	4401(1)	5186(1)	31(1)	
C(1)	7506(4)	3504(1)	5029(1)	36(1)	
C(2)	6558(4)	3785(1)	4507(1)	33(1)	
C(3)	6769(4)	4346(1)	4617(1)	31(1)	
C(4)	8319(4)	3889(1)	5449(1)	34(1)	
C(5)	6089(4)	4848(1)	4316(1)	31(1)	
C(6)	4822(4)	4839(1)	3788(2)	36(1)	
C(7)	4188(4)	5318(1)	3504(2)	42(1)	
C(8)	4785(4)	5821(1)	3740(2)	44(1)	
C(9)	6002(4)	5843(1)	4266(2)	42(1)	
C(10)	6671(4)	5362(1)	4568(1)	33(1)	
C(11)	7913(4)	5386(1)	5147(2)	34(1)	
C(12)	8565(4)	5873(1)	5437(2)	44(1)	
C(13)	9675(5)	5864(2)	6002(2)	50(1)	
C(14)	10180(4)	5376(2)	6296(2)	45(1)	
C(15)	9596(4)	4873(1)	6028(2)	37(1)	
C(16)	10066(4)	4347(2)	6308(2)	44(1)	
C(17)	9450(4)	3875(1)	6034(2)	40(1)	
C(18)	8458(4)	4894(1)	5454(1)	32(1)	
C(19)	5531(4)	3512(1)	3953(1)	33(1)	
C(20)	5780(4)	3614(1)	3310(2)	37(1)	
C(21)	4766(4)	3380(1)	2797(2)	37(1)	
C(22)	3494(4)	3027(1)	2900(2)	35(1)	
C(23)	3319(4)	2907(1)	3546(2)	39(1)	
C(24)	4313(4)	3149(1)	4065(2)	38(1)	
C(25)	1929(4)	3138(1)	1673(2)	42(1)	
C(26)	1560(5)	3706(2)	1684(2)	48(1)	
C(27)	1417(5)	4016(2)	1110(2)	59(1)	

Table S13a. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for 1b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(28)	1641(6)	3785(2)	518(2)	68(1)	
C(29)	1965(5)	3230(2)	505(2)	63(1)	
C(30)	2099(4)	2902(2)	1059(2)	48(1)	
C(31)	2463(5)	2299(2)	989(2)	60(1)	
C(32)	1206(6)	3999(2)	2294(2)	60(1)	
C(33)	1508(8)	4133(2)	-97(2)	107(2)	
C(34)	1380(4)	2240(1)	2466(2)	38(1)	
C(35)	-324(4)	2222(1)	2472(2)	42(1)	
C(36)	-1055(4)	1741(2)	2652(2)	46(1)	
C(37)	-172(5)	1274(2)	2838(2)	46(1)	
C(38)	1497(5)	1291(1)	2834(2)	47(1)	
C(39)	2282(4)	1758(1)	2654(2)	42(1)	
C(40)	4112(5)	1736(2)	2664(2)	54(1)	
C(41)	-986(5)	757(2)	3039(2)	63(1)	
C(42)	-1351(5)	2731(2)	2333(2)	58(1)	
C(43)	7604(4)	2898(1)	5088(2)	41(1)	
C(44)	8130(6)	2577(2)	4609(2)	65(1)	
C(45)	8013(8)	2012(2)	4607(2)	86(2)	
C(46)	7392(7)	1749(2)	5097(2)	73(1)	
C(47)	6886(5)	2045(1)	5591(2)	52(1)	
C(48)	7014(4)	2613(1)	5581(2)	41(1)	
C(49)	5444(6)	272(2)	6339(2)	67(1)	
Cl(1)	5324(2)	154(1)	7160(1)	94(1)	
Cl(2)	4463(2)	-265(1)	5872(1)	106(1)	
Cl(3)	7468(2)	318(1)	6204(1)	110(1)	
F(1)	6488(3)	2894(1)	6072(1)	57(1)	
F(2)	6251(3)	1789(1)	6074(1)	73(1)	
F(3)	7252(5)	1199(1)	5091(1)	113(1)	
F(4)	8533(7)	1720(1)	4129(1)	157(2)	
F(5)	8762(4)	2817(1)	4116(1)	102(1)	

B(1)-C(22)	1.570(5)	C(22)-C(23)	1.396(4)
B(1)-C(25)	1.570(5)	C(23)-C(24)	1.390(4)
B(1)-C(34)	1.577(5)	C(25)-C(26)	1.415(5)
N(1)-C(18)	1.382(4)	C(25)-C(30)	1.419(5)
N(1)-C(3)	1.388(4)	C(26)-C(27)	1.398(5)
N(1)-C(4)	1.389(4)	C(26)-C(32)	1.512(5)
C(1)-C(4)	1.385(4)	C(27)-C(28)	1.385(6)
C(1)-C(2)	1.418(4)	C(28)-C(29)	1.376(6)
C(1)-C(43)	1.481(4)	C(28)-C(33)	1.520(6)
C(2)-C(3)	1.390(4)	C(29)-C(30)	1.389(5)
C(2)-C(19)	1.485(4)	C(30)-C(31)	1.509(5)
C(3)-C(5)	1.446(4)	C(34)-C(35)	1.409(5)
C(4)-C(17)	1.424(4)	C(34)-C(39)	1.415(5)
C(5)-C(6)	1.405(4)	C(35)-C(36)	1.391(5)
C(5)-C(10)	1.413(4)	C(35)-C(42)	1.505(5)
C(6)-C(7)	1.374(4)	C(36)-C(37)	1.375(5)
C(7)-C(8)	1.381(5)	C(37)-C(38)	1.380(5)
C(8)-C(9)	1.377(5)	C(37)-C(41)	1.511(5)
C(9)-C(10)	1.404(4)	C(38)-C(39)	1.384(5)
C(10)-C(11)	1.466(4)	C(39)-C(40)	1.510(5)
C(11)-C(18)	1.399(4)	C(43)-C(48)	1.376(5)
C(11)-C(12)	1.402(4)	C(43)-C(44)	1.377(5)
C(12)-C(13)	1.383(5)	C(44)-F(5)	1.342(5)
C(13)-C(14)	1.370(5)	C(44)-C(45)	1.377(6)
C(14)-C(15)	1.401(5)	C(45)-F(4)	1.336(5)
C(15)-C(18)	1.411(4)	C(45)-C(46)	1.357(7)
C(15)-C(16)	1.436(5)	C(46)-F(3)	1.342(4)
C(16)-C(17)	1.348(5)	C(46)-C(47)	1.364(6)
C(19)-C(24)	1.382(4)	C(47)-F(2)	1.344(4)
C(19)-C(20)	1.397(4)	C(47)-C(48)	1.384(5)
C(20)-C(21)	1.379(4)	C(48)-F(1)	1.346(4)
C(21)-C(22)	1.396(5)	C(49)-Cl(3)	1.736(5)

Table S13b. Bond lengths [Å] and angles [°] for 1b.

C(49)-Cl(1)	1.740(4)	C(13)-C(12)-C(11)	121.3(3)
C(49)-Cl(2)	1.754(5)	C(14)-C(13)-C(12)	121.0(3)
		C(13)-C(14)-C(15)	120.8(3)
C(22)-B(1)-C(25)	118.4(3)	C(14)-C(15)-C(18)	117.1(3)
C(22)-B(1)-C(34)	115.5(3)	C(14)-C(15)-C(16)	124.0(3)
C(25)-B(1)-C(34)	126.1(3)	C(18)-C(15)-C(16)	118.9(3)
C(18)-N(1)-C(3)	125.2(2)	C(17)-C(16)-C(15)	121.6(3)
C(18)-N(1)-C(4)	124.0(2)	C(16)-C(17)-C(4)	120.2(3)
C(3)-N(1)-C(4)	110.9(2)	N(1)-C(18)-C(11)	119.1(3)
C(4)-C(1)-C(2)	108.7(3)	N(1)-C(18)-C(15)	117.8(3)
C(4)-C(1)-C(43)	127.1(3)	C(11)-C(18)-C(15)	123.2(3)
C(2)-C(1)-C(43)	124.1(3)	C(24)-C(19)-C(20)	118.5(3)
C(3)-C(2)-C(1)	107.8(3)	C(24)-C(19)-C(2)	120.5(3)
C(3)-C(2)-C(19)	127.5(3)	C(20)-C(19)-C(2)	121.0(3)
C(1)-C(2)-C(19)	124.7(3)	C(21)-C(20)-C(19)	120.5(3)
N(1)-C(3)-C(2)	106.5(2)	C(20)-C(21)-C(22)	121.8(3)
N(1)-C(3)-C(5)	117.0(3)	C(23)-C(22)-C(21)	117.0(3)
C(2)-C(3)-C(5)	136.4(3)	C(23)-C(22)-B(1)	120.7(3)
C(1)-C(4)-N(1)	106.1(2)	C(21)-C(22)-B(1)	122.2(3)
C(1)-C(4)-C(17)	136.3(3)	C(24)-C(23)-C(22)	121.6(3)
N(1)-C(4)-C(17)	117.6(3)	C(19)-C(24)-C(23)	120.5(3)
C(6)-C(5)-C(10)	118.6(3)	C(26)-C(25)-C(30)	117.1(3)
C(6)-C(5)-C(3)	121.7(3)	C(26)-C(25)-B(1)	121.0(3)
C(10)-C(5)-C(3)	119.7(3)	C(30)-C(25)-B(1)	121.7(3)
C(7)-C(6)-C(5)	121.3(3)	C(27)-C(26)-C(25)	120.4(3)
C(6)-C(7)-C(8)	120.1(3)	C(27)-C(26)-C(32)	116.8(3)
C(9)-C(8)-C(7)	120.0(3)	C(25)-C(26)-C(32)	122.7(3)
C(8)-C(9)-C(10)	121.3(3)	C(28)-C(27)-C(26)	121.8(4)
C(9)-C(10)-C(5)	118.7(3)	C(29)-C(28)-C(27)	117.8(4)
C(9)-C(10)-C(11)	121.3(3)	C(29)-C(28)-C(33)	121.4(4)
C(5)-C(10)-C(11)	120.0(3)	C(27)-C(28)-C(33)	120.8(5)
C(18)-C(11)-C(12)	116.6(3)	C(28)-C(29)-C(30)	122.7(4)
C(18)-C(11)-C(10)	118.8(3)	C(29)-C(30)-C(25)	120.2(4)
C(12)-C(11)-C(10)	124.6(3)	C(29)-C(30)-C(31)	118.2(3)

C(25)-C(30)-C(31)	121.6(3)	F(5)-C(44)-C(43)	119.8(3)
C(35)-C(34)-C(39)	117.4(3)	F(5)-C(44)-C(45)	117.7(4)
C(35)-C(34)-B(1)	120.6(3)	C(43)-C(44)-C(45)	122.5(4)
C(39)-C(34)-B(1)	121.7(3)	F(4)-C(45)-C(46)	119.7(4)
C(36)-C(35)-C(34)	119.9(3)	F(4)-C(45)-C(44)	120.3(4)
C(36)-C(35)-C(42)	119.2(3)	C(46)-C(45)-C(44)	120.1(4)
C(34)-C(35)-C(42)	120.6(3)	F(3)-C(46)-C(45)	120.2(4)
C(37)-C(36)-C(35)	122.4(3)	F(3)-C(46)-C(47)	119.9(4)
C(36)-C(37)-C(38)	117.8(3)	C(45)-C(46)-C(47)	119.9(3)
C(36)-C(37)-C(41)	121.7(4)	F(2)-C(47)-C(46)	120.4(3)
C(38)-C(37)-C(41)	120.6(4)	F(2)-C(47)-C(48)	120.8(3)
C(37)-C(38)-C(39)	122.1(3)	C(46)-C(47)-C(48)	118.8(4)
C(38)-C(39)-C(34)	120.3(3)	F(1)-C(48)-C(43)	119.2(3)
C(38)-C(39)-C(40)	118.3(3)	F(1)-C(48)-C(47)	117.4(3)
C(34)-C(39)-C(40)	121.4(3)	C(43)-C(48)-C(47)	123.3(3)
C(48)-C(43)-C(44)	115.3(3)	Cl(3)-C(49)-Cl(1)	110.7(3)
C(48)-C(43)-C(1)	122.8(3)	Cl(3)-C(49)-Cl(2)	109.9(3)
C(44)-C(43)-C(1)	121.5(3)	Cl(1)-C(49)-Cl(2)	109.3(2)

Table S13c. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1b. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U13	U ¹²
B(1)	34(2)	42(2)	42(2)	-8(2)	10(2)	8(2)
N(1)	33(2)	31(1)	28(1)	-1(1)	5(1)	1(1)
C(1)	42(2)	33(2)	32(2)	3(1)	6(1)	7(1)
C(2)	36(2)	33(2)	31(2)	0(1)	5(1)	2(1)
C(3)	32(2)	34(2)	27(1)	1(1)	7(1)	1(1)
C(4)	36(2)	35(2)	31(2)	2(1)	7(1)	7(1)
C(5)	33(2)	32(2)	30(2)	6(1)	12(1)	2(1)
C(6)	39(2)	38(2)	33(2)	2(1)	9(1)	3(1)
C(7)	42(2)	49(2)	35(2)	9(2)	7(2)	12(2)

C(8)	53(2)	39(2)	44(2)	16(2)	21(2)	15(2)
C(9)	51(2)	32(2)	48(2)	1(1)	18(2)	4(2)
C(10)	35(2)	32(2)	34(2)	4(1)	15(1)	3(1)
C(11)	32(2)	37(2)	37(2)	-3(1)	17(1)	-1(1)
C(12)	49(2)	37(2)	49(2)	-5(2)	17(2)	-3(2)
C(13)	50(2)	48(2)	53(2)	-18(2)	18(2)	-9(2)
C(14)	39(2)	60(2)	36(2)	-13(2)	11(2)	-9(2)
C(15)	32(2)	50(2)	32(2)	-5(1)	11(1)	-3(2)
C(16)	37(2)	63(2)	31(2)	0(2)	4(1)	2(2)
C(17)	40(2)	48(2)	32(2)	7(1)	6(1)	7(2)
C(18)	31(2)	37(2)	30(2)	-3(1)	13(1)	-2(1)
C(19)	39(2)	27(2)	32(2)	1(1)	4(1)	5(1)
C(20)	39(2)	35(2)	37(2)	0(1)	7(1)	-4(1)
C(21)	45(2)	36(2)	32(2)	0(1)	8(1)	3(2)
C(22)	37(2)	33(2)	36(2)	-1(1)	7(1)	2(1)
C(23)	41(2)	35(2)	43(2)	1(1)	10(2)	-5(2)
C(24)	45(2)	36(2)	34(2)	2(1)	10(2)	-1(2)
C(25)	38(2)	49(2)	38(2)	-3(1)	2(2)	-2(2)
C(26)	50(2)	50(2)	42(2)	4(2)	2(2)	0(2)
C(27)	64(3)	59(2)	52(2)	11(2)	-2(2)	0(2)
C(28)	79(3)	80(3)	43(2)	11(2)	-1(2)	-16(3)
C(29)	71(3)	84(3)	35(2)	-6(2)	8(2)	-17(2)
C(30)	39(2)	63(2)	40(2)	-9(2)	7(2)	-9(2)
C(31)	67(3)	65(3)	53(2)	-20(2)	22(2)	-10(2)
C(32)	79(3)	48(2)	55(2)	0(2)	11(2)	21(2)
C(33)	164(6)	103(4)	51(3)	26(3)	2(3)	-20(4)
C(34)	33(2)	43(2)	38(2)	-9(1)	4(1)	-3(2)
C(35)	37(2)	51(2)	40(2)	-10(2)	4(2)	0(2)
C(36)	36(2)	61(2)	43(2)	-10(2)	7(2)	-8(2)
C(37)	52(2)	49(2)	37(2)	-11(2)	6(2)	-18(2)
C(38)	52(2)	42(2)	46(2)	-11(2)	3(2)	-3(2)
C(39)	37(2)	42(2)	47(2)	-11(2)	2(2)	-4(2)
C(40)	45(2)	47(2)	71(3)	-6(2)	10(2)	6(2)
C(41)	69(3)	65(3)	56(2)	-7(2)	9(2)	-27(2)

C(42)	34(2)	72(3)	66(2)	-9(2)	5(2)	4(2)
C(43)	52(2)	34(2)	36(2)	0(1)	-1(2)	9(2)
C(44)	113(4)	46(2)	39(2)	7(2)	16(2)	29(2)
C(45)	169(6)	47(2)	42(2)	-5(2)	13(3)	39(3)
C(46)	124(4)	30(2)	55(2)	-3(2)	-19(3)	8(2)
C(47)	68(3)	35(2)	48(2)	7(2)	-6(2)	-2(2)
C(48)	47(2)	35(2)	39(2)	1(1)	-2(2)	-1(2)
C(49)	71(3)	69(3)	62(3)	9(2)	15(2)	4(2)
Cl(1)	125(1)	103(1)	58(1)	-11(1)	34(1)	1(1)
Cl(2)	115(1)	119(1)	82(1)	-30(1)	13(1)	-18(1)
Cl(3)	88(1)	131(1)	116(1)	28(1)	33(1)	-18(1)
F(1)	76(2)	43(1)	58(1)	5(1)	29(1)	5(1)
F(2)	92(2)	44(1)	82(2)	15(1)	9(1)	-14(1)
F(3)	222(4)	30(1)	75(2)	-6(1)	-15(2)	5(2)
F(4)	357(6)	63(2)	62(2)	0(1)	62(3)	83(3)
F(5)	188(3)	67(2)	64(2)	21(1)	68(2)	59(2)

Table S13d.	Hydrogen coordinates ($x \ 10^4$)) and isotropic	displacement	parameters (Å ²	$2x 10^{3}$) for 1b.

	x	у	Z	U(eq)	
H(6)	4395	4496	3625	44	
H(7)	3338	5303	3145	50	
H(8)	4356	6151	3539	53	
H(9)	6395	6191	4428	51	
H(12)	8239	6216	5242	53	
H(13)	10093	6200	6190	59	
H(14)	10936	5379	6686	53	
H(16)	10829	4331	6695	52	
H(17)	9773	3532	6231	48	
H(20)	6653	3845	3224	44	
H(21)	4938	3462	2363	45	
H(23)	2500	2653	3633	47	

H(24)	4155	3064	4500	45
H(27)	1158	4396	1128	71
H(29)	2104	3064	100	76
H(31A)	2169	2188	532	91
H(31B)	1827	2083	1265	91
H(31C)	3632	2233	1124	91
H(32A)	2151	4225	2467	90
H(32B)	995	3727	2622	90
H(32C)	245	4235	2188	90
H(33A)	1707	3902	-466	161
H(33B)	2322	4429	-36	161
H(33C)	410	4293	-184	161
H(36)	-2206	1735	2647	56
H(38)	2126	972	2960	57
H(40A)	4653	1878	3082	81
H(40B)	4420	1961	2307	81
H(40C)	4452	1355	2609	81
H(41A)	-536	661	3488	95
H(41B)	-783	455	2746	95
H(41C)	-2165	819	3012	95
H(42A)	-2509	2628	2259	86
H(42B)	-1059	2914	1943	86
H(42C)	-1154	2982	2706	86
H(49)	4877	626	6205	80

Figure S34. A diagram showing the structure of **1b** with labeling schemes.

Figure S35. A diagram showing the intermolecular stacking of the IDP core of **1b**.

Table S14. Crystal data and structure refineme	nt for 2a.	
Identification code	2a	
Empirical formula	C49 H39 B Cl3 F3 N2	
Formula weight	829.98	
Temperature	180(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.5885(6) Å	$\Box = 93.829(3)^{\circ}.$
	b = 14.6907(12) Å	$\Box = 94.403(3)^{\circ}.$
	c = 16.3399(13) Å	$\Box = 98.387(3)^{\circ}.$
Volume	2027.2(3) Å ³	
Z	2	
Density (calculated)	1.360 Mg/m ³	
Absorption coefficient	0.278 mm ⁻¹	
F(000)	860	
Crystal size	$0.150 \ x \ 0.100 \ x \ 0.050 \ mm^3$	
Theta range for data collection	2.406 to 28.373°.	
Index ranges	-11<=h<=11, -19<=k<=19, -	-21<=l<=21
Reflections collected	67617	
Independent reflections	10119 [R(int) = 0.1615]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equiva	lents
Max. and min. transmission	0.986 and 0.959	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	10119 / 0 / 556	
Goodness-of-fit on F^2	1.051	
Final R indices [I>2sigma(I)]	R1 = 0.0806, wR2 = 0.1959	
R indices (all data)	R1 = 0.2054, wR2 = 0.2983	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.620 and -0.585 e.Å ⁻³	

	Х	У	Z	U(eq)	
B(1)	7925(5)	5939(3)	8253(3)	35(1)	
N(1)	6538(4)	8420(2)	6704(2)	35(1)	
N(2)	4420(4)	5583(2)	5945(2)	38(1)	
C(1)	5773(4)	7384(3)	7586(2)	36(1)	
C(2)	5122(4)	7038(3)	6779(2)	35(1)	
C(3)	5589(4)	7692(3)	6230(2)	35(1)	
C(4)	6632(5)	8249(3)	7527(2)	36(1)	
C(5)	5237(5)	7833(3)	5370(2)	39(1)	
C(6)	4120(5)	7225(3)	4858(2)	45(1)	
C(7)	3766(6)	7391(3)	4048(3)	55(1)	
C(8)	4520(7)	8166(4)	3732(3)	64(1)	
C(9)	5598(6)	8787(3)	4216(3)	58(1)	
C(10)	6000(5)	8637(3)	5045(3)	45(1)	
C(11)	7123(5)	9318(3)	5572(3)	45(1)	
C(12)	8018(6)	10094(3)	5303(3)	63(1)	
C(13)	8996(7)	10718(3)	5835(3)	67(2)	
C(14)	9142(6)	10615(3)	6662(3)	54(1)	
C(15)	8302(5)	9854(3)	6974(3)	43(1)	
C(16)	8376(5)	9685(3)	7836(3)	45(1)	
C(17)	7552(5)	8924(3)	8100(3)	42(1)	
C(18)	7318(5)	9205(3)	6409(2)	38(1)	
C(19)	5624(4)	6975(3)	8393(2)	34(1)	
C(20)	4561(5)	7310(3)	8899(2)	40(1)	
C(21)	4360(5)	7006(3)	9667(3)	44(1)	
C(22)	5215(5)	6350(3)	9951(2)	43(1)	
C(23)	6252(5)	5994(3)	9451(2)	40(1)	

Table S14a. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for 2a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(24)	6511(4)	6301(3)	8675(2)	35(1)
C(25)	4101(4)	6131(3)	6588(2)	35(1)
C(26)	2876(4)	5865(3)	7075(2)	37(1)
C(27)	1972(5)	5010(3)	6903(3)	41(1)
C(28)	2324(5)	4441(3)	6258(2)	40(1)
C(29)	3526(5)	4756(3)	5794(2)	40(1)
C(30)	1362(6)	3509(3)	6070(3)	56(1)
C(31)	8171(5)	4909(3)	8361(2)	36(1)
C(32)	6921(5)	4183(3)	8140(2)	40(1)
C(33)	7123(5)	3270(3)	8245(2)	43(1)
C(34)	8542(5)	3036(3)	8565(2)	43(1)
C(35)	9765(5)	3749(3)	8784(2)	42(1)
C(36)	9620(5)	4669(3)	8688(2)	37(1)
C(37)	11043(5)	5379(3)	8992(3)	43(1)
C(38)	5338(5)	4338(3)	7759(3)	49(1)
C(39)	8712(6)	2048(3)	8653(3)	59(1)
C(40)	9088(4)	6641(3)	7810(2)	38(1)
C(41)	9236(5)	6513(3)	6960(2)	41(1)
C(42)	10205(5)	7186(3)	6581(3)	49(1)
C(43)	11061(5)	7958(3)	7014(3)	51(1)
C(44)	10949(5)	8055(3)	7852(3)	47(1)
C(45)	9983(5)	7430(3)	8256(3)	41(1)
C(46)	9939(5)	7605(3)	9169(3)	48(1)
C(47)	8356(5)	5687(3)	6444(3)	50(1)
C(48)	12078(7)	8675(3)	6595(4)	72(2)
C(49)	3542(9)	962(6)	9102(6)	120(3)
Cl(1)	2943(3)	1593(2)	8271(2)	154(1)
Cl(2)	1943(2)	386(2)	9509(1)	110(1)
Cl(3)	4795(3)	223(2)	8722(2)	176(1)
F(1)	1850(20)	3002(13)	5607(13)	138(8)
F(2)	901(18)	3110(11)	6679(8)	89(5)

F(3)	5(17)	3618(13)	5632(9)	80(4)
F(1A)	1690(20)	2940(13)	6705(12)	122(7)
F(2A)	-150(20)	3469(13)	5955(13)	129(9)
F(3A)	1946(12)	2987(9)	5436(9)	51(2)

Table S14b. Bond lengths [Å] and angles $[\circ]$ for 2a.

B(1)-C(31)	1.577(6)	C(12)-C(13)	1.364(7)
B(1)-C(40)	1.580(6)	C(13)-C(14)	1.368(7)
B(1)-C(24)	1.581(6)	C(14)-C(15)	1.389(6)
N(1)-C(4)	1.383(5)	C(15)-C(18)	1.415(6)
N(1)-C(18)	1.382(5)	C(15)-C(16)	1.444(6)
N(1)-C(3)	1.395(5)	C(16)-C(17)	1.349(6)
N(2)-C(29)	1.336(5)	C(19)-C(20)	1.397(5)
N(2)-C(25)	1.351(5)	C(19)-C(24)	1.414(5)
C(1)-C(4)	1.386(5)	C(20)-C(21)	1.375(6)
C(1)-C(2)	1.422(5)	C(21)-C(22)	1.377(6)
C(1)-C(19)	1.492(5)	C(22)-C(23)	1.386(6)
C(2)-C(3)	1.395(5)	C(23)-C(24)	1.397(5)
C(2)-C(25)	1.485(5)	C(25)-C(26)	1.393(5)
C(3)-C(5)	1.450(5)	C(26)-C(27)	1.377(6)
C(4)-C(17)	1.421(5)	C(27)-C(28)	1.380(6)
C(5)-C(6)	1.395(6)	C(28)-C(29)	1.373(6)
C(5)-C(10)	1.420(6)	C(28)-C(30)	1.492(6)
C(6)-C(7)	1.381(6)	C(30)-F(1)	1.168(19)
C(7)-C(8)	1.377(7)	C(30)-F(2)	1.249(14)
C(8)-C(9)	1.363(7)	C(30)-F(2A)	1.288(17)
C(9)-C(10)	1.412(6)	C(30)-F(3)	1.355(17)
C(10)-C(11)	1.465(6)	C(30)-F(3A)	1.414(15)
C(11)-C(18)	1.389(6)	C(30)-F(1A)	1.412(17)
C(11)-C(12)	1.395(6)	C(31)-C(32)	1.405(6)

C(31)-C(36)	1.418(5)	C(3)-C(2)-C(1)	108.7(3)
C(32)-C(33)	1.398(6)	C(3)-C(2)-C(25)	127.5(3)
C(32)-C(38)	1.505(6)	C(1)-C(2)-C(25)	123.8(3)
C(33)-C(34)	1.387(6)	C(2)-C(3)-N(1)	105.8(3)
C(34)-C(35)	1.378(6)	C(2)-C(3)-C(5)	137.6(4)
C(34)-C(39)	1.495(6)	N(1)-C(3)-C(5)	116.2(3)
C(35)-C(36)	1.394(6)	N(1)-C(4)-C(1)	107.3(3)
C(36)-C(37)	1.515(6)	N(1)-C(4)-C(17)	118.2(4)
C(40)-C(41)	1.408(6)	C(1)-C(4)-C(17)	134.5(4)
C(40)-C(45)	1.416(6)	C(6)-C(5)-C(10)	118.7(4)
C(41)-C(42)	1.405(6)	C(6)-C(5)-C(3)	122.1(4)
C(41)-C(47)	1.501(6)	C(10)-C(5)-C(3)	119.1(4)
C(42)-C(43)	1.378(7)	C(7)-C(6)-C(5)	121.0(4)
C(43)-C(44)	1.379(6)	C(6)-C(7)-C(8)	120.1(5)
C(43)-C(48)	1.503(6)	C(9)-C(8)-C(7)	120.7(4)
C(44)-C(45)	1.382(6)	C(8)-C(9)-C(10)	120.8(5)
C(45)-C(46)	1.502(6)	C(9)-C(10)-C(5)	118.6(4)
C(49)-Cl(2)	1.709(9)	C(9)-C(10)-C(11)	120.8(4)
C(49)-Cl(3)	1.754(8)	C(5)-C(10)-C(11)	120.6(4)
C(49)-Cl(1)	1.780(10)	C(18)-C(11)-C(12)	116.2(4)
		C(18)-C(11)-C(10)	118.7(4)
C(31)-B(1)-C(40)	123.5(3)	C(12)-C(11)-C(10)	125.1(4)
C(31)-B(1)-C(24)	117.6(4)	C(13)-C(12)-C(11)	121.9(5)
C(40)-B(1)-C(24)	118.7(3)	C(12)-C(13)-C(14)	121.4(5)
C(4)-N(1)-C(18)	123.4(3)	C(13)-C(14)-C(15)	120.0(4)
C(4)-N(1)-C(3)	110.7(3)	C(14)-C(15)-C(18)	117.6(4)
C(18)-N(1)-C(3)	125.9(3)	C(14)-C(15)-C(16)	124.1(4)
C(29)-N(2)-C(25)	117.4(3)	C(18)-C(15)-C(16)	118.3(4)
C(4)-C(1)-C(2)	107.5(3)	C(17)-C(16)-C(15)	121.3(4)
C(4)-C(1)-C(19)	121.7(3)	C(16)-C(17)-C(4)	120.3(4)
C(2)-C(1)-C(19)	130.7(4)	N(1)-C(18)-C(11)	118.8(4)

N(1)-C(18)-C(15)	118.3(4)	F(3A)-C(30)-C(28)	112.2(6)
C(11)-C(18)-C(15)	122.9(4)	F(1A)-C(30)-C(28)	109.4(9)
C(20)-C(19)-C(24)	119.2(4)	C(32)-C(31)-C(36)	117.1(4)
C(20)-C(19)-C(1)	116.5(3)	C(32)-C(31)-B(1)	120.2(3)
C(24)-C(19)-C(1)	124.3(3)	C(36)-C(31)-B(1)	122.7(4)
C(21)-C(20)-C(19)	121.8(4)	C(33)-C(32)-C(31)	120.5(4)
C(20)-C(21)-C(22)	119.7(4)	C(33)-C(32)-C(38)	116.9(4)
C(21)-C(22)-C(23)	119.4(4)	C(31)-C(32)-C(38)	122.5(4)
C(22)-C(23)-C(24)	122.4(4)	C(34)-C(33)-C(32)	122.3(4)
C(23)-C(24)-C(19)	117.4(4)	C(35)-C(34)-C(33)	117.1(4)
C(23)-C(24)-B(1)	115.4(3)	C(35)-C(34)-C(39)	122.4(4)
C(19)-C(24)-B(1)	126.7(3)	C(33)-C(34)-C(39)	120.4(4)
N(2)-C(25)-C(26)	122.3(4)	C(34)-C(35)-C(36)	122.6(4)
N(2)-C(25)-C(2)	117.8(3)	C(35)-C(36)-C(31)	120.4(4)
C(26)-C(25)-C(2)	119.9(3)	C(35)-C(36)-C(37)	116.5(4)
C(27)-C(26)-C(25)	119.0(4)	C(31)-C(36)-C(37)	123.0(4)
C(26)-C(27)-C(28)	118.7(4)	C(41)-C(40)-C(45)	118.2(4)
C(29)-C(28)-C(27)	119.1(4)	C(41)-C(40)-B(1)	121.0(4)
C(29)-C(28)-C(30)	121.7(4)	C(45)-C(40)-B(1)	120.8(4)
C(27)-C(28)-C(30)	119.2(4)	C(42)-C(41)-C(40)	119.1(4)
N(2)-C(29)-C(28)	123.5(4)	C(42)-C(41)-C(47)	119.2(4)
F(1)-C(30)-F(2)	111.1(14)	C(40)-C(41)-C(47)	121.7(4)
F(1)-C(30)-F(3)	99.9(13)	C(43)-C(42)-C(41)	122.6(4)
F(2)-C(30)-F(3)	103.9(10)	C(44)-C(43)-C(42)	117.4(4)
F(2A)-C(30)-F(3A)	111.3(10)	C(44)-C(43)-C(48)	120.9(5)
F(2A)-C(30)-F(1A)	108.0(12)	C(42)-C(43)-C(48)	121.7(5)
F(3A)-C(30)-F(1A)	96.5(10)	C(43)-C(44)-C(45)	122.7(4)
F(1)-C(30)-C(28)	116.5(10)	C(44)-C(45)-C(40)	119.9(4)
F(2)-C(30)-C(28)	115.6(8)	C(44)-C(45)-C(46)	118.3(4)
F(2A)-C(30)-C(28)	117.3(9)	C(40)-C(45)-C(46)	121.8(4)
F(3)-C(30)-C(28)	107.7(9)	Cl(2)-C(49)-Cl(3)	112.9(5)

Table S14c.	Anisotropic displa	acement parameters	$(Å^2 x \ 10^3)$ for 2a.	The anisotropic displacement
factor expone	nt takes the form:	-2□2[h ² a*2U ¹¹ +	$ + 2 h k a^* b^* U$	J12]

	U ¹¹	U ²²	U ³³	U ²³	U13	U ¹²
B(1)	39(2)	40(3)	27(2)	1(2)	-3(2)	10(2)
N(1)	41(2)	31(2)	35(2)	3(1)	6(1)	11(1)
N(2)	42(2)	41(2)	31(2)	0(2)	1(1)	7(2)
C(1)	38(2)	33(2)	37(2)	5(2)	4(2)	10(2)
C(2)	40(2)	34(2)	32(2)	1(2)	4(2)	8(2)
C(3)	38(2)	33(2)	35(2)	3(2)	4(2)	5(2)
C(4)	46(2)	31(2)	32(2)	2(2)	2(2)	9(2)
C(5)	46(2)	42(2)	31(2)	3(2)	6(2)	9(2)
C(6)	53(3)	48(3)	34(2)	5(2)	2(2)	9(2)
C(7)	62(3)	64(3)	37(2)	8(2)	-2(2)	6(2)
C(8)	91(4)	68(3)	33(2)	10(2)	1(2)	11(3)
C(9)	85(4)	54(3)	38(3)	15(2)	10(2)	9(3)
C(10)	60(3)	40(2)	38(2)	7(2)	11(2)	12(2)
C(11)	57(3)	38(2)	41(2)	7(2)	12(2)	5(2)
C(12)	91(4)	48(3)	47(3)	8(2)	18(3)	-3(3)
C(13)	92(4)	44(3)	61(3)	5(2)	21(3)	-8(3)
C(14)	62(3)	36(3)	60(3)	1(2)	8(2)	-2(2)
C(15)	51(2)	29(2)	49(3)	2(2)	9(2)	5(2)
C(16)	53(3)	31(2)	49(3)	-2(2)	-1(2)	7(2)
C(17)	53(3)	34(2)	39(2)	-1(2)	-3(2)	10(2)
C(18)	46(2)	27(2)	43(2)	8(2)	10(2)	7(2)
C(19)	39(2)	31(2)	32(2)	2(2)	2(2)	4(2)
C(20)	45(2)	39(2)	38(2)	2(2)	6(2)	14(2)

C(21)	46(2)	49(3)	40(2)	-3(2)	10(2)	11(2)
C(22)	55(3)	45(3)	29(2)	4(2)	10(2)	2(2)
C(23)	45(2)	42(2)	35(2)	8(2)	5(2)	6(2)
C(24)	38(2)	34(2)	32(2)	3(2)	1(2)	3(2)
C(25)	38(2)	38(2)	30(2)	5(2)	0(2)	10(2)
C(26)	37(2)	41(2)	33(2)	2(2)	3(2)	5(2)
C(27)	35(2)	46(3)	41(2)	6(2)	5(2)	4(2)
C(28)	40(2)	41(2)	39(2)	2(2)	-1(2)	6(2)
C(29)	42(2)	41(2)	35(2)	-1(2)	2(2)	7(2)
C(30)	59(3)	50(3)	55(3)	-6(3)	7(3)	-2(2)
C(31)	42(2)	37(2)	30(2)	4(2)	4(2)	11(2)
C(32)	48(2)	38(2)	33(2)	6(2)	2(2)	10(2)
C(33)	57(3)	36(2)	37(2)	2(2)	5(2)	8(2)
C(34)	58(3)	39(2)	35(2)	5(2)	7(2)	14(2)
C(35)	51(2)	45(3)	35(2)	6(2)	5(2)	20(2)
C(36)	43(2)	40(2)	31(2)	3(2)	7(2)	10(2)
C(37)	46(2)	44(2)	40(2)	5(2)	2(2)	8(2)
C(38)	50(3)	42(3)	53(3)	5(2)	-3(2)	7(2)
C(39)	79(3)	42(3)	58(3)	3(2)	2(2)	21(2)
C(40)	38(2)	38(2)	40(2)	11(2)	5(2)	10(2)
C(41)	43(2)	50(3)	35(2)	12(2)	7(2)	18(2)
C(42)	53(3)	63(3)	40(2)	19(2)	14(2)	23(2)
C(43)	55(3)	47(3)	59(3)	23(2)	21(2)	18(2)
C(44)	45(2)	37(2)	61(3)	12(2)	12(2)	10(2)
C(45)	44(2)	38(2)	42(2)	10(2)	6(2)	9(2)
C(46)	59(3)	40(2)	45(3)	6(2)	4(2)	6(2)
C(47)	47(2)	70(3)	36(2)	0(2)	4(2)	13(2)
C(48)	85(4)	53(3)	94(4)	37(3)	41(3)	25(3)
C(49)	83(5)	115(6)	150(8)	-33(5)	-16(5)	11(4)
Cl(1)	83(1)	196(3)	183(3)	31(2)	15(2)	7(2)
Cl(2)	92(1)	130(2)	100(1)	-26(1)	-5(1)	19(1)

Cl(3)	90(2)	145(2)	295(4)	-36(2)	37(2)	39(1)
F(1)	176(13)	73(8)	152(15)	-58(8)	98(9)	-31(7)
F(2)	137(12)	66(8)	47(5)	12(4)	7(7)	-47(8)
F(3)	47(7)	91(8)	87(6)	-22(5)	-13(5)	-21(5)
F(1A)	182(17)	56(7)	106(9)	26(5)	-49(11)	-37(10)
F(2A)	41(5)	70(8)	270(30)	-37(13)	44(11)	-10(5)
F(3A)	48(4)	39(5)	59(5)	-17(3)	10(4)	-5(3)

Table S14d. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 2a.

Х	у	Z	U(eq)	
3594	6688	5070	54	
3000	6970	3708	66	
4286	8269	3171	77	
6084	9326	3992	70	
7944	10189	4733	75	
9589	11237	5627	80	
9817	11064	7022	65	
9018	10119	8224	54	
7587	8839	8672	51	
3961	7759	8707	48	
3635	7248	10001	53	
5095	6142	10484	52	
6806	5525	9644	48	
2668	6268	7519	44	
1123	4815	7222	49	
3733	4365	5340	47	
6258	2792	8092	52	
10745	3607	9010	51	
	x 3594 3000 4286 6084 7944 9589 9817 9018 7587 3961 3635 5095 6806 2668 1123 3733 6258 10745	xy35946688300069704286826960849326794410189958911237981711064901810119758788393961775936357248509561426806552526686268112348153733436562582792107453607	XYZ3594668850703000697037084286826931716084932639927944101894733958911237562798171106470229018101198224758788398672396177598707363572481000150956142104846806552596442668626875191123481572223733436553406258279280921074536079010	x y z U(eq) 3594 6688 5070 54 3000 6970 3708 66 4286 8269 3171 77 6084 9326 3992 70 7944 10189 4733 75 9589 11237 5627 80 9817 11064 7022 65 9018 10119 8224 54 7587 8839 8672 51 3961 7759 8707 48 3635 7248 10001 53 5095 6142 10484 52 6806 5525 9644 48 2668 6268 7519 44 1123 4815 7222 49 3733 4365 5340 47 6258 2792 8092 52 10745 3607 9010 51

H(37A)	10943	5602	9562	65	
H(37B)	11102	5897	8643	65	
H(37C)	12005	5095	8969	65	
H(38A)	4743	3748	7518	73	
H(38B)	5492	4766	7327	73	
H(38C)	4748	4600	8183	73	
H(39A)	9831	1997	8771	88	
H(39B)	8299	1679	8139	88	
H(39C)	8118	1821	9105	88	
H(42)	10272	7105	6004	59	
H(44)	11560	8571	8164	56	
H(46A)	10492	7163	9454	73	
H(46B)	8838	7533	9305	73	
H(46C)	10458	8235	9345	73	
H(47A)	7300	5810	6258	76	
H(47B)	8260	5150	6772	76	
H(47C)	8933	5561	5964	76	
H(48A)	11618	9247	6610	109	
H(48B)	12138	8451	6022	109	
H(48C)	13143	8793	6881	109	
H(49)	4158	1406	9542	144	

Figure S35. A diagram showing the structure of **2a** with labeling schemes.