Table of contents

1. Synthesis and Materials S2
1.1. Chemicals and Materials S2
1.2. $C T V-B r$ derivative 4. S2
1.3. $\mathrm{CTV}-\mathrm{NH}_{2}$ derivative 5 S2
1.4. Compound 6 S2
1.5. Hemicryptophane 3 S2
2. NMR and mass spectra S4
3. Photophysic studies S11
3.1. Spectra and properties S11
3.2. Fluorescence titration. S11
4. ${ }^{1} \mathrm{H}$ NMR Titrations S13
4.1. General procedure S13
4.2. Titration curve for acetylcholine S13
5. Computational method S15
References S19

1. Synthesis and Materials

1.1. Chemicals and Materials

Starting material and solvents were of commercial grade and were used without further purification. Chromatography was carried out with Merck 60 A ($0.040-0.063 \mathrm{~mm}$) silica gel. TLC was performed with Merck silica gel $60 \mathrm{~F}_{254}$ plates. Melting points were determined with a Büchi Melting Point B-545. IR spectra were obtained using a Bruker Alpha Platinium ATR. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded at 298 K on a Bruker Avance III HD 300 MHz spectrometer and a Bruker Avance III HD 400 $\mathrm{MHz} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shifts δ are reported in ppm referenced to the protonated residual solvent signal. Coupling constants J are given in Hz. HRMS were performed on a SYNAPT G2 HDMS (Waters) mass spectrometer with API and spectra were obtained with TOF analysis. Measurements were realized with two internal standards. UV spectra were recorded on a Agilent Cary 60 UV-Vis spectrophotometer and fluorescence spectra on a Jasco FP-8600 spectrofluorometer.

1.2. CTV-Br derivative 4

CTV-Br derivative 4 was prepared according to the common published procedure. ${ }^{1}$

1.3. CTV- NH_{2} derivative 5

The two-step synthesis of CTV- NH_{2} derivative 5 was done according to the previously published procedure. ${ }^{2}$

1.4. Compound 6

$\mathrm{NaOH}(80 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added to a solution of 1-hydroxy-2-naphtaldehyde (262 mg , 1.52 mmol) in absolute ethanol (15 mL). The mixture was stirred at r.t. for 30 minutes and 1,3,5-tris(bromomethyl)benzene ($155 \mathrm{mg}, 0.434 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 20 h and cooled to $4^{\circ} \mathrm{C}$ overnight. The solid obtained was filtered off and wash with cold ethanol and cold water to afford trialdehyde 6 as a slightly brown solid ($138 \mathrm{mg}, 51 \%$).
$R_{\mathrm{f}}=0.52\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \mathrm{mp} 141-142^{\circ} \mathrm{C}$; $\mathrm{IR} \mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 3050,2852,1671,1612,1398,1266 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-$ $7.61(\mathrm{~m}, 3 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 189.4,160.5,138.2,137.5,129.5,128.5$, $127.9,127.5,127.1,125.5,125.1,123.3,122.8,79.1$; HRMS (ESI-TOF) m/z: found $631.2115\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{NO}_{6}$: 631.2115 .

1.5. Hemicryptophane 3

In a 250 mL round bottom flask was added CTV-NH2 derivative 5 ($106 \mathrm{mg}, 0.197 \mathrm{mmol}$) dissolved in a $1 / 1$ mixture of $\mathrm{CHCl}_{3} / \mathrm{MeOH}(90 \mathrm{~mL})$. A solution of $6(113 \mathrm{mg}, 0.179 \mathrm{mmol})$ in the same mixture of solvent (60 mL) was added dropwise under stirring at r.t. and the reaction mixture was stirred at r.t. for 48 h . It was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(245 \mathrm{mg}, 6.48 \mathrm{mmol})$ was added portionwise. The mixture was stirred at r.t. during 4 h and solvents were evaporated. The crude residue was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and washed with a $10 \% \mathrm{NaOH}$ solution (30 mL). Aqueous phase was extracted with $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and combined organic layers were washed with a $10 \% \mathrm{NaOH}$ solution ($3 \times 25 \mathrm{~mL}$), dried over MgSO_{4}. Organic solvent was removed under reduced pressure to afford a yellowish solid purified by silica gel column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right.$, gradient from 97/1/2 to 90/8/2). Hemicryptophane 3 was obtained as a white solid ($71 \mathrm{mg}, 35 \%$).
$R_{\mathrm{f}}=0.33\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}: 94 / 4 / 2\right) ; \mathrm{mp} 250{ }^{\circ} \mathrm{C}$ (decomposition); $\lambda_{\max }\left(\mathrm{DMSO}+2 \% \mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm} 288$ ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 20000$); IR $v_{\max } / \mathrm{cm}^{-1} 2968,2901,1607,1572,1508,1452,1259 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 8.06-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}$, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-$ $3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.89(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 152.6,148.9,146.7,137.8,134.4$, 133.1, 131.8, 128.2, 127.9, 127.2, 126.3, 126.0, 125.9, 125.8, 124.3, 122.2, 117.2, 113.6, 75.9, 69.0, 55.9, 47.6, 47.4, 36.5; HRMS (ESI-TOF) m/z: found $560.7591[\mathrm{M}+2 \mathrm{H}]^{2+}$, calcd for $\mathrm{C}_{72} \mathrm{H}_{71} \mathrm{~N}_{3} \mathrm{O}_{9}$: 560.7590.

2. NMR and mass spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR Spectrum of $6\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure $\mathrm{S} 2 .{ }^{13} \mathrm{C}$ NMR Spectrum of $6\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S3. HRMS Spectrum of $\mathbf{6 +}+\mathbf{H}^{+}$and $\mathbf{6}+\mathrm{NH}_{4}{ }^{+}$. Expected peaks are observed at 631.2115 and 648.2368 and internal standards $\mathrm{NH}_{4}{ }^{+}$adducts with two oligomers of PMMA600 chosen for analysis at 620.3641 and 720.4165 .

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure $\mathrm{S} 5 .{ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S6. COSY Spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S7. HSQC Spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S8. HMBC Spectrum of $\mathbf{3}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure S9. HRMS Spectrum of $\mathbf{3 + 2 H ^ { + }}$. Expected peak is observed at 560.7591 and internal standards $\mathrm{NH}_{4}{ }^{+}$ adducts with two oligomers of PEG1000 chosen for analysis at 555.3537 and 577.3668.

3. Photophysic studies

3.1. Spectra and properties

2.90 mg of hemicryptophane 3 were dissolved in 10.0 mL of DMSO containing $2 \% \mathrm{H}_{2} \mathrm{O}$ and diluted by a factor 10 . The absorption spectrum of the $25.9 \mu \mathrm{M}$ solution in DMSO $+2 \% \mathrm{H}_{2} \mathrm{O}$ was recorded between 265 nm and 500 nm using a quartz cuvette ($1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 4.5 \mathrm{~cm}$). A maximum at 288 nm was observed with an extinction coefficient $\varepsilon=2.0 \times 10^{4} \mathrm{~L} . \mathrm{mol}^{-1} . \mathrm{cm}^{-1}$.
The emission spectrum ($\lambda_{\text {exc }}=290 \mathrm{~nm}$) was recorded between 300 nm and 550 nm with a maximum at 326 nm . Emission spectra of 4 solutions of hemicryptophane 3 in DMSO containing $2 \% \mathrm{H}_{2} \mathrm{O}$, with absorbance lower than 0.1 , were recorded, and the average quantum yield was calculated with quinine bisulfate in $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{M})$. All these solutions afforded the same results.

Absorption: $\lambda_{\max }=288 \mathrm{~nm}, \varepsilon=2.0 \times 10^{4} \mathrm{~L}^{2} \mathrm{~mol}^{-1} . \mathrm{cm}^{-1}$.
Emission: $\lambda_{\text {exc }}=290 \mathrm{~nm}, \lambda_{\max }=326 \mathrm{~nm}$, quantum yield: 1.8%.

3.2. Fluorescence titration

3.2.1. General procedure

2.5 mL of a solution of hemicryptophane $3(5.0 \mu \mathrm{M})$ in DMSO + $2 \% \mathrm{H}_{2} \mathrm{O}$ was taken into the quartz cuvette, and then certain equivalents of a concentrated guest solution (5.0 mM) in the same solvents were added stepwise with a microsyringe. The final volume of the solution was almost unchanged (2.5 mL) since very small volume of guest solution was added. The solution was mixed and incubated for 30 s before irradiation at 290 nm at $25^{\circ} \mathrm{C}$. The corresponding emission values at 362 nm during titration were then recorded.

3.2.2. Titration curves

3.2.2.1 Acetylcholine

Figure S10. (a) Fluorescence titration of $5.0 \mu \mathrm{M}$ of hemicryptophane 3 with acetylcholine (counterion Cl^{-}) excited at 290 nm in DMSO $+2 \% \mathrm{H}_{2} \mathrm{O}$. (b) Relative fluorescence intensity as a function of the concentration of acetylcholine.

3.2.2.2 Choline

Figure S 11 . (a) Fluorescence titration of $5.0 \mu \mathrm{M}$ of hemicryptophane $\mathbf{3}$ with choline (counterion Cl^{-}) excited at 290 nm in DMSO $+2 \% \mathrm{H}_{2} \mathrm{O}$. (b) Relative fluorescence intensity as a function of the concentration of choline.

3.2.2.3 Choline phosphate

Figure S12. (a) Fluorescence titration of $5.0 \mu \mathrm{M}$ of $\mathbf{3}$ with choline phosphate (counterions Cl^{-}and Ca^{2+}) excited at 290 nm in DMSO $+2 \% \mathrm{H}_{2} \mathrm{O}$. (b) Relative fluorescence intensity as a function of the concentration of choline phosphate.

4. ${ }^{1} \mathrm{H}$ NMR Titrations

4.1. General procedure

A solution of hemicryptophane host $3\left(1.0 \times 10^{-3} \mathrm{M}\right.$ in $\left.\mathrm{CDCl}_{3} / \mathrm{MeOD} 95 / 5,500 \mu \mathrm{~L}\right)$ was titrated in NMR tubes with aliquots of a concentrated solution ($5.0 \times 10^{-3} \mathrm{M}$ in the same solvent) of picrate salts of neurotransmitters. The shifts $\Delta \delta$ of the host's protons signals at 7.61 and 7.55 ppm were measured after each addition and plotted as a function of the guest/host ratio ([G]/[H]). Association constant K_{a} was obtained by nonlinear least-squares fitting of these plots using bindfit program from Thordarson's group. ${ }^{3} K_{a}$, covariance and RMS of the fit are reported.

4.2. Titration curve for acetylcholine

Figure S13. Titration curve of host $\mathbf{3}$ with acetylcholine. The chemical induced shifts $\Delta \delta$ of host's protons at $7.61 \mathrm{ppm}(\Theta)$ and $7.55 \mathrm{ppm}(\square)$ were measured and plotted as a function of the ratio $[\mathrm{G}] /[\mathrm{H}]$ (dots). Curves were fitted with the bindfit program (lines).

Guest	$\mathrm{K}_{\mathrm{a}}\left(\mathrm{L.mol}^{-1}\right)$	cov	RMS (ppm)
ACh	$5.5 \times 10^{3} \pm 4.2 \%$	2.13×10^{-3}	9.05×10^{-4}

Table S1. K_{a}, covariance and RMS obtained from fits of the titration curves.

Figure S14. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{3}\left(1 \mathrm{mM}\right.$ in $\left.\mathrm{CDCl}_{3} / \mathrm{MeOD} 95 / 5\right)$ for several additions of a concentrated solution of acetylcholine picrate (5 mM in the same solvents), with protons C and D used to give the binding constant.

5. Computational method

In order to access geometrical information upon the host-guest species, full geometry optimizations were performed using restricted Density Functional Theory (DFT) calculations. A combination of BP86 functional and an all electron 6-31G* basis set including polarization functions has proven to be very satisfactory for similar issues. ${ }^{4}$ However, we checked using the hybrid B3LYP functional that our results do not suffer from the arbitrariness of the exchange correlation functional. All calculations were carried out using the Gaussian 03 suite of program. ${ }^{5}$

ACh@3
Cartesian coordinates :
179
optimized

H	-7.563560	4.672452	-0.507059
C	-8.607617	3.282253	-1.764735
H	-9.384676	1.809892	-3.154890
H	-7.168996	1.211885	-4.069530
C	-8.491428	2.299987	-2.778117
H	4.478785	-8.408406	-2.287054
H	-9.587838	3.537770	-1.373131
H	0.378977	-8.526333	-0.982628
C	2.442604	-8.603573	-1.565455
H	4.123607	-6.175010	-3.284013
C	3.504122	-7.933198	-2.222533
H	6.567650	6.007854	-2.993690
H	2.612451	-9.585944	-1.134695
H	8.177063	4.038201	1.288244
C	8.520214	5.506008	-0.238214
C	8.060305	6.063571	-1.455256
H	9.421467	5.895874	0.226052
H	8.612837	6.877972	-1.915320
N	-0.552603	-0.235175	0.080919
C	-0.437049	-1.594954	-0.578390
C	0.769389	-2.440669	-0.196405
O	1.900058	-1.948539	-0.918941
C	0.624819	0.637504	-0.269244
C	-1.800892	0.443422	-0.429699
C	-0.657508	-0.402078	1.572560
C	3.103499	-2.610580	-0.913923
O	3.978892	-2.148311	-1.607815
C	-0.326017	-0.207887	-4.131636
C	1.005861	-0.612828	-3.971437
C	1.982696	0.347540	-3.704974
C	1.646979	1.706844	-3.622101
C	0.315856	2.094782	-3.780105
C	-0.680466	1.138357	-4.024748
C	-2.132602	1.544064	-4.119040

$\begin{array}{llll}\text { C } & 2.723361 & 2.707576 & -3.273883\end{array}$
C $\quad 1.394589-2.068416-4.049029$
O $0.324634-2.856134-3.507395$
O $\quad 3.161069 \quad 2.397704-1.949626$
O -2.370073 2.505945 -3.092550
C $\quad-1.873583-4.168771-2.331615$
N $\quad-2.429295-4.437439-0.998930$
C $\quad-2.5053904 .535559-1.238375$
$\begin{array}{lllll}\mathrm{N} & -2.714219 & 5.105496 & 0.093003\end{array}$
$\begin{array}{llll}\text { C } & 3.933008 & 1.280441 & 0.333817\end{array}$
$\begin{array}{llll}\mathrm{N} & 4.492940 & 0.599841 & 1.506428\end{array}$
C $\quad-0.241575 \quad 4.951178 \quad 0.628105$
C $\quad-4.020075-3.973631 \quad 0.789442$
C $\quad-3.564774-3.606155-0.627391$
$\begin{array}{lllll}\text { C } & -1.546950 & 5.766037 & 0.671562\end{array}$
C $4.076474-1.292078 \quad 3.082149$
C $\quad 3.534977-0.396597 \quad 1.970555$
C $\quad 2.039734-6.053847-2.703133$
C $0.968130-6.730518$-2.040034
C $\quad 1.813021-4.755902-3.235460$
C $\quad 0.583047-4.141498$-3.107938
C $\quad-0.512185-4.822500-2.478722$
C $\quad-0.293789-6.084231-1.965277$
C $\quad-6.077229 \quad 2.592391-2.805327$
C $\quad-6.194732 \quad 3.585514-1.782367$
C $\quad-4.783276 \quad 2.239066-3.278429$
C $\quad-3.658639 \quad 2.834817-2.749334$
C $\quad-3.760331 \quad 3.856596-1.750320$
C $\quad-5.011906 \quad 4.205236-1.295243$
$\begin{array}{lllll}\text { C } & 6.650044 & 3.951071 & -0.241881\end{array}$
C $\quad 6.184935 \quad 4.514724-1.472827$
$\begin{array}{llll}\text { C } & 5.908868 & 2.887366 & 0.346314\end{array}$
C $\quad 4.772784 \quad 2.389029-0.242100$
C $\quad 4.316506 \quad 2.965840-1.470604$
$\begin{array}{lllll}\text { C } & 4.999414 & 3.998609 & -2.069994\end{array}$
C $\quad-1.5055731 .873120 \quad 4.034367$
$\begin{array}{lllll}\text { C } & -1.557745 & 2.654489 & 2.866757\end{array}$
$\begin{array}{llll}\text { C } & -0.419587 & 3.114526 & 2.222299\end{array}$
$\begin{array}{lllll}\text { C } & 0.843175 & 2.924485 & 2.825226\end{array}$
$\begin{array}{lllll}\text { C } & 0.902366 & 2.182899 & 4.003583\end{array}$
$\begin{array}{lllll}\text { C } & -0.242344 & 1.599619 & 4.583329\end{array}$
$\begin{array}{llll}0 & -0.522822 & 3.567294 & 0.930619\end{array}$
C $\quad-3.047705-1.2249854 .058312$
C $\quad-3.572295-2.239682 \quad 3.239302$
C $-4.289219-1.971481 \quad 2.077932$
C $\quad-4.512711-0.6263251 .708213$
$\begin{array}{llll}\text { C } & -4.062229 & 0.384661 & 2.559966\end{array}$
$\begin{array}{lllll}\text { C } & -3.322056 & 0.111714 & 3.725665\end{array}$

0	-4.869006	-2.960922	1.326797
C	-2.819674	1.295412	4.549355
C	-0.697554	-1.767468	4.794516
C	-0.340752	-2.913288	4.055293
C	0.935395	-3.094756	3.535122
C	1.932789	-2.129153	3.812482
C	1.586712	-1.014445	4.566393
C	0.278108	-0.792679	5.037991
0	3.179222	-2.386049	3.309949
C	-0.013364	0.563476	5.678923
C	-2.156953	-1.639217	5.221313
0	-5.146709	-0.428223	0.521510
C	-5.577676	0.890500	0.187275
0	1.909984	3.441104	2.159799
C	3.181157	3.467737	2.820194
0	1.318051	-4.132857	2.729967
C	0.344830	-5.101242	2.369819
H	-1.089735	-0.960052	-4.309736
H	3.004816	0.035081	-3.506750
H	0.035514	3.138587	-3.673520
H	-2.383016	1.983796	-5.095411
H	-2.768943	0.660213	-3.978334
H	3.570558	2.625998	-3.968858
H	2.341637	3.736467	-3.320304
H	1.573747	-2.384070	-5.086758
H	2.314572	-2.218081	-3.479224
H	-1.796481	-3.092793	-2.547051
H	-2.571470	-4.577036	-3.075783
H	-1.689027	-4.352817	-0.304274
H	-1.675083	3.816525	-1.277653
H	-2.231198	5.356140	-1.918430
H	-2.994427	4.349254	0.713960
H	2.977846	1.723258	0.640784
H	3.695437	0.564841	-0.471270
H	5.357574	0.134857	1.226921
H	0.188170	4.934440	-0.376888
H	0.512894	5.349707	1.311991
H	-4.591067	-4.905015	0.787155
H	-3.141048	-4.122058	1.434712
H	-4.380917	-3.772884	-1.338988
H	-3.356678	-2.518025	-0.655664
H	-1.374806	6.719441	0.153960
H	-1.796087	6.007139	1.711251
H	4.276307	-0.730393	4.002315
H	5.010730	-1.770657	2.774896
H	3.190448	-1.064328	1.162238
H	2.647146	0.135378	2.334645
C	3.308207	-6.688376	-2.780481

C $1.200355-8.014138$-1.478160
H 2.639837 -4.255623 -3.725424
H $\quad-1.119378$-6.594741 -1.476364
C $\quad-7.255378$ 1.965364 -3.290181
C $\quad-7.481693 \quad 3.913268$-1.281164
H $\quad-4.7099421 .488441$-4.057417
H $\quad-5.089270 \quad 4.983120-0.541160$
$\begin{array}{lllll}\text { C } & 7.827686 & 4.471596 & 0.353925\end{array}$
$\begin{array}{lllll}\text { C } & 6.919151 & 5.578932 & -2.058254\end{array}$
$\begin{array}{llll}\mathrm{H} & 6.248123 & 2.462409 & 1.287299\end{array}$
$\begin{array}{lllll}H & 4.648227 & 4.444258 & -2.994936\end{array}$
$\begin{array}{llll}H & -2.511840 & 2.839366 & 2.383044\end{array}$
$\begin{array}{llll}\text { H } & 1.867720 & 1.998657 & 4.460940\end{array}$
H $\quad-3.445667-3.278618 \quad 3.530497$
$\begin{array}{llll}\text { H } & -4.284137 & 1.416750 & 2.313652\end{array}$
$\begin{array}{lllll}\mathrm{H} & -2.736404 & 1.022587 & 5.602715\end{array}$
$\begin{array}{llll}H & -3.577840 & 2.086282 & 4.509586\end{array}$
H $\quad-1.101813-3.661624 \quad 3.867849$
$\begin{array}{llll}H & 2.345992 & -0.271040 & 4.779560\end{array}$
$\begin{array}{llll}H & -0.862677 & 0.508067 & 6.360694\end{array}$
$\begin{array}{llll}H & 0.845649 & 0.864206 & 6.289006\end{array}$
H $\quad-2.257661-0.949781 \quad 6.060964$
H $\quad-2.496451$-2.611981 5.595465
H $\quad-6.1415570 .795057-0.739284$
H $\quad-6.2267221 .3073740 .966696$
$\begin{array}{llll}\text { H } & -4.729916 & 1.567765 & 0.018717\end{array}$
$\begin{array}{llll}H & 3.103218 & 3.978883 & 3.787345\end{array}$
$\begin{array}{llll}\text { H } & 3.589617 & 2.459385 & 2.950330\end{array}$
$\begin{array}{llll}H & 3.842648 & 4.021295 & 2.153636\end{array}$
H 0.845388 -5.794046 1.690899
H $\quad-0.025497-5.648224 \quad 3.245646$
H $\quad-0.510048-4.6396521 .851282$
C $\quad 3.235214 \quad-3.838229 \quad-0.049068$
$\begin{array}{llll}\text { H } & -0.823737 & 0.572897 & 2.014843\end{array}$
H 2.538361 -4.614783 -0.382200
H $\quad 3.024011$-3.621217 1.003952
H 4.251820 -4.217365 -0.153676
H 0.264205 -0.825324 1.965260
H $\quad-1.498893-1.0573591 .796373$
$\begin{array}{llll}\text { H } & -1.880841 & 1.413562 & 0.062061\end{array}$
H $\quad-2.672139-0.170983-0.202002$
H $\quad-1.6984540 .596675$-1.503255
$\begin{array}{llll}\mathrm{H} & 0.463196 & 1.630914 & 0.147826\end{array}$
H 0.7108370 .692252 -1.352045
$\begin{array}{llll}\mathrm{H} & 1.518423 & 0.181121 & 0.135674\end{array}$
H 0.543529 -3.464712 -0.507632
H 0.966978 -2.454362 0.878202
H $\quad-0.427545-1.436830-1.656820$

References

1 B. Chatelet, E. Payet, O. Perraud, P. Dimitrov-Raytchev, L.-L. Chapellet, V. Dufaud, A. Martinez and J.-P. Dutasta, Org. Lett., 2011, 13, 3706-3709.
2 A. Long, O. Perraud, M. Albalat, V. Robert, J.-P. Dutasta and A. Martinez, J. Org. Chem., 2018, 83, 6301-6306.
3 D. B. Hibbert and P. Thordarson, Chem. Commun., 2016, 52, 12792-12805.
4 O. Perraud, V. Robert, A. Martinez and J.-P. Dutasta, Chem. - Eur. J., 2011, 17, 13405-13408.
5 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian Inc Wallingford CT, 2009.

