Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Planarized *B*,*N*-Phenylated Dibenzoazaborine with a Carbazole Substructure: Electronic Impact of the Structural Constraint

Mikinori Ando, Mika Sakai, Naoki Ando, Masato Hirai, and Shigehiro Yamaguchi*

Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemistry and Sciences (IRCCS) and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan

E-mail: yamaguchi@chem.nagoya-u.ac.jp

Contents

1.	Experimental Details	S2
2.	X-ray Crystallographic Analysis	S 8
3.	Cyclic Voltammetry	S10
4.	Photophysical Properties	S10
5.	Chemical Oxidation	S11
6.	Theoretical Calculations	S11
7.	References	S18
8.	NMR Spectra	S19

1. Experimental Details

General Procedures. Melting points (mp) or decomposition temperatures were determined with a Yanaco MP-S3 instrument. ${}^{1}H$, ${}^{13}C{}^{1}H$, and ${}^{11}B{}^{1}H$ NMR spectra were recorded with a JEOL AL-400 spectrometer in CDCl₃ and acetone- d_6 (400 MHz for ¹H, 100 MHz for ¹³C, and 128 MHz for ¹¹B). $^{13}C{^{1}H}$ and $^{11}B{^{1}H}$ NMR spectra were also measured with a JEOL A-400 spectrometer in CDCl₃ (100 MHz for ¹³C and 128 MHz for ¹¹B). The chemical shifts in ¹H NMR spectra are reported in δ ppm using the residual proton of the solvents, δ 7.26 in CDCl₃ and δ 2.05 in acetone- d_6 , as an internal standard and those in ${}^{13}C$ NMR spectra are reported using the solvent signals of CDCl₃ (δ 77.16), and acetone- d_6 (δ 29.84) as an internal standard. The chemical shifts in ¹¹B NMR spectra are reported using BF₃·OEt₂ (δ 0.00) as an external standard. Mass spectra were measured with a Bruker micrOTOF Focus spectrometry system with the ionization method of APCI. Thin layer chromatography (TLC) was performed on plates coated with 0.25 mm thickness of silica gel 60F₂₅₄ (Merck). Column chromatography was performed using PSQ100B or PSQ60B (Fuji Silvsia Chemicals). Recycling preparative gel permeation chromatography (GPC) was performed using LC-918 equipped with polystyrene gel columns (JAIGEL 1H and 2H, Japan Analytical Industry) using chloroform as an eluent. Anhydrous THF, Et₂O, toluene, and CH₂Cl₂ were purchased from Kanto Chemicals or FUJIFILM Wako Pure Chemical Corporation, and further purified by Glass Contour 2-Bromo-1,3-di(propen-2-yl)benzene,1 dimethyl Solvent Systems. [2,6-di(propen-2yl)phenyl]boronate,² dimethyl (2,4,6-trimethylphenyl)boronate,³ and compound 5⁴ were prepared according to the literature methods. All reactions were carried out under a nitrogen atmosphere.

Scheme S1

Bis(2-bromophenyl)phenylamine (S1). A mixture of bis(2-bromophenyl)amine (2.17 g, 6.64 mmol), iodobenzene (10.9 g, 53.4 mmol), copper(I) iodide (630 mg, 3.31 mmol), and potassium carbonate (9.17 g, 66.4 mmol) was heated at 200 °C for 23 h. After cooling to room temperature, CH₂Cl₂ was added to the mixture, which was then filtered through a pad of Celite[®] using CH₂Cl₂ as an eluent. After water was added to the filtrate, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under a reduced pressure. The crude product was subjected to silica gel column chromatography (hexane, $R_f = 0.11$) and further purified by recrystallization from hexane to give 1.82 g (4.50 mmol) of **S1** in 68% yield as white solids: mp 98.0–99.0 °C; ¹H NMR (400 MHz, acetone-*d*₆) δ 6.64–6.67 (m, 2H), 6.93–6.98 (m, 1H), 7.12–7.18 (m, 4H), 7.21-7.25 (m, 2H), 7.38 (td, *J*_{HH} = 8.0 Hz, 1.2 Hz, 2H), 7.68 (dd, *J*_{HH} = 8.0 Hz, 1.2 Hz, 2H); ¹³C NMR (100 MHz, acetone-*d*₆) δ 121.6, 122.57, 122.60, 127.6, 129.6, 129.9, 130.4, 135.4, 146.4, 148.4; HRMS (APCI) *m/z* calcd for C₁₈H₁₃⁷⁹Br₂N[*M*]⁺ 400.9409, found: 400.9414.

B-(2,4,6-Trimethylphenyl)-N-phenyl-5,10-dihydro-dibenzo-1,4-azaborine (2). To a solution of bis(2-bromophenyl)phenylamine S1 (408 mg, 1.01 mmol) in anhydrous Et₂O (25 mL) was added t-BuLi (1.53 M in pentane, 2.90 mL, 4.44 mmol) dropwise at -78 °C. After stirring at 0 °C for 3 h, a solution of dimethyl (2,4,6-trimethylphenyl)boronate (219 mg, 1.14 mmol) in anhydrous Et₂O (3.0 mL) was added to the mixture at the same temperature. The mixture was warmed to room temperature and stirred at reflux for 13 h. After a saturated aqueous solution of NH₄Cl was added, the organic layer was separated and the aqueous laver was extracted with Et₂O three times. The combined organic laver was washed with brine, dried over MgSO₄, filtered, and concentrated under a reduced pressure. The crude product was subjected to silica gel column chromatography (hexane/CH₂Cl₂ 5/1, $R_f = 0.37$) and further purified by recrystallization from hexane to give 295 mg (0.790 mmol) of 2 in 78% yield as white solids: mp. 233.5-234.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 6H), 2.42 (s, 3H), 6.84 (d, $J_{HH} = 8.8$ Hz, 2H), 6.98 (s, 2H), 7.10 (t, $J_{HH} = 7.2$ Hz, 2H), 7.42 (d, $J_{HH} = 8.0$ Hz, 2H), 7.48–7.52 (m, 2H), 7.64 (t, J_{HH} = 7.2 Hz, 1H), 7.71–7.74 (m, 2H), 7.88 (dd, J_{HH} = 7.4 Hz, 1.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ21.5, 23.4, 117.1, 119.8, 127.0, 129.0, 130.5, 131.1, 132.9, 136.5, 137.1, 139.5, 141.8, 146.8, two signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 54.0; HRMS (APCI) m/z calcd for C₂₇H₂₄¹¹BN[*M*]⁺ 373.1996, found: 373.1995.

B-[2,6-di(propen-2yl)phenyl]-N-phenyl-5,10-dihydro-dibenzo-1,4-azaborine (S2). To a solution of S1 (811 mg, 2.01 mmol) in anhydrous Et_2O (50 mL) was added *t*-BuLi (1.53 M in pentane, 5.80 mL, 8.87 mmol) dropwise at -78 °C. After stirring at 0 °C for 2 h, a solution of dimethyl [2,6di(propen-2-yl)phenyl]boronate (541 mg, 2.35 mmol) in anhydrous Et₂O (5.0 mL) was added to the mixture at the same temperature. The mixture was warmed to room temperature and stirred at reflux for 33 h. After a saturated aqueous solution of NH₄Cl was added, the organic layer was separated and the aqueous layer was extracted with Et₂O three times. The combined organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under a reduced pressure. The crude product was subjected to silica gel column chromatography (hexane/CH₂Cl₂ 10/3, $R_f = 0.43$) and further purified by preparative GPC (CHCl₃) to give 529 mg (1.29 mmol) of **S2** in 64% yield as white solids: mp. 199.0–200.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.89 (s, 6H), 4.52 (s, 2H), 4.66 (s, 2H), 6.73 (d, J_{HH} = 8.8 Hz, 2H), 7.05 (t, *J*_{HH} = 7.2 Hz, 2H), 7.34–7.45 (m, 7H), 7.62 (t, *J*_{HH} = 7.2 Hz, 1H), 7.70 (t, *J*_{HH} = 7.2 Hz, 2H), 7.89 (d, J_{HH} = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 24.7, 116.7, 117.2, 119.4, 125.5, 126.9, 128.9, 130.7, 131.0, 132.1, 137.2, 142.1, 146.3, 147.4, 147.7, two signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 50.7; HRMS (APCI) *m/z* calcd for C₃₀H₂₆¹¹BN[*M*]⁺ 411.2153, found: 411.2161.

Compound 4. A mixutre of **S2** (210 mg, 0.511 mmol) and Sc(OTf)₃ (255 mg, 0.517 mmol) in anhydrous 1,2-dichloroethane (125 mL) was stirred at reflux for 15 h. After water was added, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under a reduced pressure. The crude product was purified through silica gel column chromatography (hexane/CH₂Cl₂ 3/1, R_f = 0.42) to give 91.3 mg (0.222 mmol) of **4** in 43% yield as pale yellow solids: mp. 265.0–266.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.83 (s, 12H), 6.58 (d, J_{HH} = 8.0 Hz, 2H), 7.40–7.44 (m, 4H), 7.56 (t, J_{HH} = 8.0 Hz, 2H), 7.62 (d, J_{HH} = 7.6 Hz, 1H), 7.66–7.72 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 35.0, 43.2, 113.0, 117.9, 123.9, 128.8, 130.6, 131.0, 131.8, 132.8, 142.1, 146.6, 154.8, 156.1, two signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 39.2; HRMS (APCI) m/z calcd for C₃₀H₂₇¹¹BN[M+H]⁺ 412.2231, found: 412.2226.

Scheme S2

Compound 3. To a solution of **5** (151 mg, 0.503 mmol) in anhydrous CH₂Cl₂ (3.0 mL) was added BBr₃ (100 μ L, 0.26 g, 1.04 mmol) and stirred at room temperature for 5.5 h. After removal of volatiles under a reduced pressure at 50 °C, the resulting mixture was resolved into anhydrous toluene (3.0 mL). A THF solution of MesMgBr (0.51 M, 1.20 mL, 0.61 mmol) was then added to the mixture at 0°C. After stirring at room temperature for 25 h, a saturated aqueous solution of NH₄Cl was added to the mixture. The organic layer was separated and the aqueous layer was extracted with Et₂O three times. The combined organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under a reduced pressure. The crude product was purified through silica gel column chromatography (hexane/CH₂Cl₂ 5/1, $R_f = 0.41$) to give 158 mg (0.426 mmol) of 4 in 85% yield as pale yellow solids: mp. 138.0–139.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.02 (s, 6H), 2.43 (s, 3H), 6.99 (s, 2H), 7.33 (t, $J_{HH} = 7.2$ Hz, 1H), 7.49 (t, $J_{HH} = 7.3$ Hz, 1H), 7.56 (t, $J_{HH} = 7.3$ Hz, 1H), 7.63–7.67 (m, 1H), 7.89– 7.93 (m, 1H), 7.99–8.06 (m, 2H), 8.28 (d, *J*_{HH} = 8.0 Hz, 1H), 8.46 (dd, *J*_{HH} = 7.4 Hz, 1.2 H_Z, 1H), 8.54 (d, J_{HH} = 8.4 Hz, 1H), 8.73 (d, J_{HH} = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 23.5, 114.8, 115.9, 121.3, 121.9, 122.2, 122.8, 124.0, 125.2, 127.09, 127.11, 127.3, 134.0, 135.1, 137.0, 139.0, 139.3, 140.2, 142.1, 143.7, three signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 56.2; HRMS (APCI) m/zcalcd for $C_{27}H_{22}^{11}BN[M]^+$ 371.1840, found: 371.1833.

Compound 7. To a solution of **5** (1.20 g, 4.01 mmol) in anhydrous CH_2Cl_2 (20 mL) was added BBr₃ (1.00 mL, 2.64 g, 10.5 mmol) at room temperature. After stirring at the same temperature for 4.5 h, the volatiles were removed under a reduced pressure at 50 °C. The resulting mixture was dissolved into anhydrous toluene (7 mL), followed by addition of a toluene solution of 2,6-di(propen-2-

yl)phenyllithium at 0 °C, which was prepared from 2-bromo-1,3-di(propen-2-yl)benzene (1.08 g, 4.56 mmol) and *n*-BuLi (1.6 M in hexane, 3.00 mL, 4.80 mmol) in toluene (11 mL).¹ After stirring at 50 °C for 20 h, a saturated aqueous solution of NH₄Cl was added. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was passed through a pad of silica gel using CH₂Cl₂ as an eluent and purified by preparative GPC (CHCl₃) to give 1.24 g (3.02 mmol) of 7 in 75% yield as yellow solids: mp. 188.0–189.0 °C; ¹H NMR (400 MHz, acetone-*d*₆) δ 1.92 (s, 6H), 4.41 (s, 2H), 4.55 (s, 2H), 7.36–7.53 (m, 5H), 7.60 (t, *J*_{HH} = 7.6 Hz, 1H), 7.91–7.96 (m, 2H), 8.02 (d, *J*_{HH} = 7.4 Hz, 1H), 8.41 (d, *J*_{HH} = 8.0 Hz, 1H), 8.56 (d, *J*_{HH} = 7.6 Hz, 1H), 8.68 (d, *J*_{HH} = 8.0 Hz, 1H), 8.81 (d, *J*_{HH} = 8.0 Hz, 1H), 13°C NMR (100 MHz, CDCl₃) δ 24.5, 114.6, 115.6, 117.9, 121.2, 121.6, 121.9, 122.4, 123.5, 124.1, 125.5, 127.00, 127.04, 127.3, 133.0, 134.3, 138.7, 140.0, 141.8, 143.2, 147.3, 147.7, three signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 54.2; HRMS (APCI) *m/z* calcd for C₃₀H₂₄¹¹BN[*M*]⁺ 409.1996, found: 409.2016.

Compound 1. A mixture of 7 (208 mg, 0.508 mmol) and Sc(OTf)₃ (282 g, 0.572 mmol) in anhydrous 1,2-dichloroethane (250 mL) was stirred at 60 °C for 3 h. After a saturated aqueous solution of NaHCO₃ was added, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under a reduced pressure. The crude product was purified through silica gel column chromatography (hexane/CH₂Cl₂ 1/1, R_f = 0.68) and further purified by preparative GPC (CHCl₃) to give 174 mg (0.426 mmol) of **1** in 84% yield as yellow solids: mp. 210.0–211.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.87 (s, 6H), 1.89 (s, 6H), 7.45 (t, J_{HH} = 7.6 Hz, 1H), 7.62 (t, J_{HH} = 7.6 Hz, 1H), 7.66–7.74 (m, 4H), 7.81 (d, J_{HH} = 8.0 Hz, 1H), 7.97 (t, J_{HH} = 8.0 Hz, 1H), 8.25 (d, J_{HH} = 7.6 Hz, 1H), 8.45–8.50 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 33.9, 34.5, 43.4, 44.5, 112.9, 114.3, 119.3, 119.8, 120.7, 121.3, 122.0, 123.8, 124.5, 124.9, 126.5, 127.0, 132.6, 133.8, 141.2, 141.9, 143.5, 154.5, 155.0, 156.7, 158.3, three signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 38.4; HRMS (APCI) *m/z* calcd for C₃₀H₂₄¹¹BN[*M*]⁺ 409.1996, found: 409.1989.

Scheme S3

Compound 8. To a solution of **1** (408 mg, 0.996 mmol) in CH₂Cl₂ (6 mL) was added *N*bromosuccinimide (195 mg, 1.10 mmol) portionwise at 0 °C under air. After stirring for 22 h at room temperature, another amount of *N*-bromosuccinimide (41.4 mg, 0.233 mmol) in CH₂Cl₂ (1 mL) were added to the mixture. After stirring for 28 h, water was added to the mixture, and the organic layer was separated. The aueous layer was extracted with CH₂Cl₂ three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (hexane/ CH₂Cl₂ 15/1, *R*_f = 0.13) and a mixture containing **8** was further purified by preparative GPC (CHCl₃) to give 258 mg (0.528 mmol) of **8** in 53% yield as yellow solids: mp. 297.5–298.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.87 (s, 6H), 1.88 (s, 6H), 7.67–7.74 (m, 5H), 7.82 (d, *J*_{HH} = 8.0 Hz, 1H), 7.98 (t, *J*_{HH} = 8.0 Hz, 1H), 8.33–8.42 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 33.8, 34.5, 43.5, 44.5, 112.8, 115.0, 115.5, 118.6, 119.7, 121.1, 123.9, 124.1, 124.6, 125.2, 128.91, 128.98, 132.8, 133.9, 139.8, 142.2, 143.2, 155.0, 155.4, 156.7, 158.5, three signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 42.0; HRMS (APCI) *m/z* calcd for C₃₀H₂₃¹¹B⁷⁹BrN[*M*]⁺ 487.1101, found; 487.1120.

Compound 9. A mixture of **8** (48.6 mg, 99.5 µmol), 4-*tert*-butylphenylboronic acid (20.2 mg, 113 µmol), tetrakis(triphenylphosphine)palladium(0) (20.1 mg, 17.4 µmol), 2.0 M aqueous solution of potassium carbonate (0.30 mL) in degassed toluene (2.0 mL) was stirred at 70 °C for 35.5 h. After cooling to room temperature, a saturated aqueous solution of NH₄Cl was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with Et₂O three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was passed through a pad of silica gel using CH₂Cl₂ as an eluent and purified by preparative GPC to give 50.1 mg (92.5 µmol) of **9** in 93% yield as yellow solids: mp. 161.0–162.0 °C (decomp.) ; ¹H NMR (400 MHz, CDCl₃) δ 1.42 (s, 9H), 1.88 (s, 6H), 1.90 (s, 6H), 7.56 (d, *J*_{HH} = 8.4 Hz, 2H), 7.67–7.76 (m, 6H), 7.81–7.87 (m, 2H), 7.99 (t, *J*_{HH} = 8.0 Hz, 1H), 8.45–8.53 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 31.6, 33.9, 34.5, 34.7, 43.4, 44.5, 112.9, 114.5, 119.4, 119.5, 119.9, 120.8,

123.9, 124.5, 125.0, 125.6, 126.0, 127.0, 127.6, 132.7, 133.8, 135.1, 138.5, 140.4, 142.3, 143.4, 150.2, 154.6, 155.0, 156.8, 158.3, three signals for the carbon atoms bound to the boron atom were not observed due to the quadrupolar relaxation; ¹¹B NMR (128 MHz, CDCl₃) δ 62.1; HRMS (APCI) *m/z* calcd for C₄₀H₃₆¹¹BN[*M*]⁺ 541.2935, found: 541.2945.

2. X-ray Crystallographic Analysis

Structural analysis of 1. Single crystal of 1 suitable for X-ray crystallographic analysis was obtained by vapor diffusion of hexane into a CHCl₃ solution of 1. Intensity data were collected at 123 K on a Rigaku Single Crystal X-ray diffractometer equipped with FR-X generator, Varimax optics, and PILATUS 200K photon counting detector with MoK α radiation ($\lambda = 0.71073$ Å). Total 40864 reflections were measured at the maximum 2θ angle of 55°, of which 4915 were independent reflections ($R_{int} = 0.0465$). The structure was solved by direct methods (SHELXL-2017/1)⁵ and refined by full-matrix least-squares procedure on F^2 for all reflections (SHELXL-2017/1)⁵. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: C₃₀H₂₄BN, FW = 409.31, crystal size 0.50 × 0.40 × 0.40 mm³, *orthorhombic*, *P*bca, a = 10.6779(2) Å, b = 10.8890(2) Å, c = 36.8908(7) Å, V = 4289.35(14) Å³, Z =8, D = 1.268 g cm⁻³. The refinement converged to R_1 [$I > 2\sigma(I)$] = 0.0416, w R_2 (all data) = 0.1119, GOF = 1.026.

Structural analysis of 4. Single crystal of 4 suitable for X-ray crystallographic analysis was obtained by vapor diffusion of hexane into a CHCl₃ solution of 4. Intensity data were collected at 123 K on a Rigaku Single Crystal X-ray diffractometer equipped with FR-X generator, Varimax optics, and PILATUS 200K photon counting detector with MoK α radiation ($\lambda = 0.71073$ Å). Total 26152 reflections were measured at the maximum 2θ angle of 55°, of which 9162 were independent reflections ($R_{int} = 0.0269$). The structure was solved by direct methods (SHELXL-2017/1)⁵ and refined by full-matrix least-squares procedure on F^2 for all reflections (SHELXL-2017/1)⁵. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: C₃₁H₂₇BCl₃N, FW = 530.69, crystal size 0.20 × 0.15 × 0.15 mm³, *monoclinic*, Cc, a = 26.0787(16) Å, b = 18.5482(5) Å, c = 11.0330(5) Å, $\beta = 103.001(6)^\circ$, V =5200.0(4) Å³, Z = 8, D = 1.356 g cm⁻³. The refinement converged to R_1 [$I > 2\sigma(I)$] = 0.0450, w R_2 (all data) = 0.1112, GOF = 1.014.

Figure S1. Crystal structure of **1** (50% probability for thermal ellipsoids). Hydrogen atoms are omitted for clarity.

Figure S2. Crystal structure of **4** (50% probability for thermal ellipsoids). Hydrogen atoms are omitted for clarity.

	•	•	2
B1C1	1.494(5)	B2-C31	1.491(5)
B1-C18	1.498(5)	B2-C48	1.493(5)
B1-C19	1.516(5)	B2-C49	1.518(5)
C6-N1	1.408(4)	C36–N2	1.406(5)
N1-C7	1.443(4)	N2-C37	1.443(5)
N1-C13	1.402(4)	N2-C43	1.406(4)
C1-B1-C18	118.4(3)	C31-B2-C48	119.0(3)
C1-B1-C19	121.0(3)	C31-B2-C49	120.6(3)
C18-B1-C19	120.6(3)	C48-B2-C49	120.4(3)

Table S1 Selected Bond Lengths (Å) and Angles (°) in the Crystal Structure of 4

3. Cyclic Voltammetry

Methods. Cyclic voltammetry (CV) was performed on an ALS/chi-617A electrochemical analyzer. The CV cell was consisted of a glassy carbon electrode, a Pt wire counter electrode, and an Ag/AgNO₃ reference electrode. The measurements were carried out under an argon atmosphere using a THF or CH₂Cl₂ solution of sample with a concentration of 1 mM and 0.1 M tetrabutylammonium hexafluorophosphate (n-Bu₄N⁺PF₆⁻) as a supporting electrolyte with a scan rate of 100 mV s⁻¹. The potentials were calibrated with ferrocene as an internal standard.

Figure S3. Cyclic voltammograms of 1–4 and 9 at a scan rate of 100 mV s⁻¹ in THF (reduction) and in CH₂Cl₂ (oxidation).

4. Photophysical Properties

Methods. UV-vis absorption and fluorescence spectra were measured with a Shimadzu UV-3600 Plus spectrometer and a JASCO FP-8500 spectrofluorometer, respectively, using dilute sample solutions in a 1 cm square quartz cuvette. Absolute Fluorescence quantum yields were determined with a Hamamatsu Photonics C-9920-02 calibrated integrating sphere system. Time resolved fluorescence spectra were measured with a Hamamatsu picosecond fluorescence measurement system C4780.

Compound	${\cal P}_{ m F}{}^a$	τ [ns]	$k_{\rm r} [{ m s}^{-1}]^b$	$k_{ m nr} [m s^{-1}]^c$
1	0.82	5.5	1.5×10^{8}	$3.3 imes 10^7$
2	0.96^{d}	7.7	1.2×10^{8}	5.2×10^{6}
3	0.72	7.3	$9.9 imes 10^7$	3.9×10^{7}
4	0.95	6.2	$1.5 imes 10^8$	$8.0 imes10^6$

Table S2 Fluorescence Quantum Yields, Lifetimes, and Decay Rate Constants for 1-4 in THF

^{*a*} Absolute fluorescence quantum yields determined by a calibrated integrating sphere system within $\pm 3\%$ error. $\lambda_{ex} = 380$ nm. ^{*b*} Radiative decay rate constant. ^{*c*} Nonradiative decay rate constant. ^{*d*} $\lambda_{ex} = 360$ nm.

5. Chemical Oxidation

Methods. In a Schlenk flask equipped with J-Young stopcock, to a dilute solution of **9** in dried and degassed CH_2Cl_2 (~10⁻⁴ M) was added an excess amount of nitrosonium hexafluoroantimonate under an argon atmosphere. The thus generated radical cation was directly employed for the UV-vis-NIR absorption measurement. UV-vis-NIR absorption spectra were recorded with a Shimadzu UV-3600 Plus spectrometer in a 1 mm-thickness quartz cuvette equipped with J-Young stopcock. CH_2Cl_2 was distilled over calcium hydride and degassed by freeze-pump-thaw cycles prior to use.

6. Theoretical Calculations

Computational method. Theoretical calculations were conducted using the Gaussian 16 program.⁶ TD-DFT calculations of **1**–**4** and **9** were performed at the B3LYP/6-31G(d) level for the optimized geometries obtained at the same level. TD-DFT calculation of 1^{++} and 9^{++} were carried out at the UB3LYP/6-31+G(d) level including the effect of solvents by PCM model. Nucleus independent chemical shift (NICS) calculations were carried out at the B3LYP/6-31G(d) level for the optimized structures of **1**–**4** at the B3LYP/6-31G(d). The Cartesian coordinates are listed in Tables S4–S10.

In order to elucidate the effect of the structural constraint around the boron atom, the difference between **2** and *B*,*N*-phenyl-substituted dibenzoazaborine **S3** was theoretically compared according to the litelature method.^{2,7} The result is summarized in Figure S9, and **S3**' represents a model compound where the alignment of the *B*-phenyl group changed from orthogonal (**S3**) to parallel relative to the dibenzoazaborin scaffold.

Figure S5. The NICS(1) values for the optimized structures of **1**–**4** calculated at the B3LYP/6-31G(d) level. Chemical shifts are given in ppm.

Figure S6. Kohn–Sham molecular orbitals of **9** in the neutral state, calculated at the B3LYP/6-31G(d) level.

Figure S7. Spin density distributions of 1^{++} and 9^{++} in CH₂Cl₂ calculated at the UB3LYP/6-31+G(d) level.

Figure S8. Kohn–Sham molecular orbitals of 9^+ in CH₂Cl₂ calculated at the UB3LYP/6-31+G(d) level.

Figure S9. Energy diagram and Kohn–Sham HOMOs and LUMOs for **S3**, **S3**', and **4** at the B3LYP/6-31G(d) level of theory. The results of TD-DFT calculations are also shown.

excited state	transition energy [eV] ^a	main CI coefficient	f^{b}
		0.84724 : HOMO(β) \rightarrow SOMO(β)	
1	0.69 (1793)	0.36609: HOMO–1(β) \rightarrow SOMO(β)	0.0463
		0.34731 : HOMO $-2(\beta) \rightarrow \text{SOMO}(\beta)$	
r	1 12 (1105)	-0.44580 : HOMO(β) \rightarrow SOMO(β)	0 2021
2	1.12 (1105)	0.86644: HOMO–1(β) \rightarrow SOMO(β)	0.3921
		-0.26227 : HOMO(β) \rightarrow SOMO(β)	
3	1.22 (1020)	-0.28454 : HOMO $-1(\beta) \rightarrow \text{SOMO}(\beta)$	0.1359
		0.91667: HOMO– $2(\beta) \rightarrow \text{SOMO}(\beta)$	

Table S3 Excited Energies of 9^{+} in CH₂Cl₂ calculated at the UB3LYP/6-31+G(d) level.

^a Corresponding wavelength (nm) is shown in parenthesis. ^b Oscillator strength.

Table S4 Cartesian Coordinates of 1 Calculated at the B3LYP/6-31G(d) Level

atom	x	у	Ζ	atom	x	у	Ζ
В	-0.00075298	0.94979596	0.00000000	Н	-0.01427291	5.19606911	-2.14294250
С	-1.29508231	0.12581103	0.00000000	С	-0.00418643	3.25721491	-1.21404934
С	-2.57434558	0.73220746	0.00000000	Ν	0.00107003	-1.95927743	0.00000000
Н	-2.6153593	1.8183962	0.00000000	С	-0.0071188	2.52804468	-2.54220084
С	-3.74595566	-0.00353052	0.00000000	Н	0.8735553	1.88201238	-2.64853783
Н	-4.71425773	0.48884166	0.00000000	Н	-0.00895502	3.23017338	-3.38248177
С	-3.66091827	-1.40462584	0.00000000	Н	-0.88778466	1.88144044	-2.64499791
Н	-4.56798492	-2.0042343	0.00000000	С	-0.0071188	2.52804468	2.54220084
С	-2.43405661	-2.04797868	0.00000000	Н	0.8735553	1.88201238	2.64853783
Н	-2.40428332	-3.13016306	0.00000000	Н	-0.88778466	1.88144044	2.64499791
С	-1.2351216	-1.29621204	0.00000000	Н	-0.00895502	3.23017338	3.38248177
С	1.29463246	0.1274376	0.00000000	С	0.02135982	6.88863755	0.00000000
С	1.23647811	-1.29467103	0.00000000	Н	1.05156777	7.27061356	0.00000000
С	2.43639841	-2.04488822	0.00000000	Н	-0.47482708	7.29955046	0.88621982
Н	2.40804433	-3.12709921	0.00000000	Н	-0.47482708	7.29955046	-0.88621982
С	3.66243337	-1.39995527	0.00000000	С	0.00186383	-3.40246962	0.00000000
Н	4.57027763	-1.99838592	0.00000000	С	0.00218748	-4.09854939	-1.21142549
С	3.74566687	0.001243	0.00000000	Н	0.00187893	-3.54189499	-2.14382062
Н	4.71334396	0.49484918	0.00000000	С	0.00292746	-5.49428032	-1.20913132
С	2.57311176	0.73546339	0.00000000	Н	0.00320014	-6.03432438	-2.15182439
Н	2.61269152	1.82170051	0.00000000	С	0.0033118	-6.19322022	0.00000000
С	-0.00138352	2.53296257	0.00000000	Н	0.00388328	-7.27967498	0.00000000
С	-0.00418643	3.25721491	1.21404934	С	0.00292746	-5.49428032	1.20913132
С	-0.00841734	4.65617671	1.19701650	Н	0.00320014	-6.03432438	2.15182439
Н	-0.01427291	5.19606911	2.14294250	С	0.00218748	-4.09854939	1.21142549
С	-0.00705063	5.37741999	0.00000000	Н	0.00187893	-3.54189499	2.14382062
С	-0.00841734	4.65617671	-1.19701650				

 Table S5 Cartesian Coordinates of 2 Calculated at the B3LYP/6-31G(d) Level

atom	x	у	Z	atom	x	у	Z
В	-0.92166434	0.05955952	-0.04002753	Н	-5.01001338	-0.46021955	2.32058841
С	-0.21868126	1.44162036	-0.02818941	С	-3.13993662	-0.21136398	1.29069248
С	-0.97698328	2.63398952	-0.04849184	Ν	1.98689936	0.40226811	-0.03333841
Н	-2.0581875	2.54333208	0.01392351	С	-2.34032542	-0.15782716	2.57643396
С	-0.3968621	3.88798145	-0.16480397	Н	-2.98901198	-0.24873557	3.45376243
Н	-1.00927996	4.78498259	-0.17730402	Н	-1.78586107	0.78479276	2.66781679
С	0.99316511	3.97554574	-0.30183558	Н	-1.59987078	-0.96656373	2.62459502
Н	1.46789036	4.94304618	-0.44429103	С	-2.62549257	-0.06075446	-2.49979073
С	1.78684236	2.83598503	-0.27518311	Н	-1.87179399	-0.84331853	-2.65282854
Н	2.84788649	2.937053	-0.44593976	Н	-2.11245125	0.90118168	-2.62663639
С	1.20347829	1.56779816	-0.09692853	Н	-3.36603405	-0.15004436	-3.30127949
С	0.03498239	-1.13667885	-0.16421911	С	-6.81201871	-0.58017791	0.27198172
С	1.41028536	-0.86155125	-0.13112117	Н	-7.11396053	-1.13786778	1.16533872
С	2.41465551	-1.85331893	-0.16419416	Н	-7.21288292	-1.10186779	-0.60403395
С	2.03204813	-3.18748697	-0.27402962	Н	-7.30693248	0.39954999	0.31962446
Н	2.7783017	-3.97719166	-0.31025833	С	3.39226241	0.22611025	0.08242659
С	0.66611661	-3.50498027	-0.32805739	С	4.42076731	1.13501998	0.34993352
Н	0.36482987	-4.54571064	-0.40816472	Н	4.23500303	2.1826163	0.53842973
С	-0.30465191	-2.50474188	-0.26462442	С	5.72927767	0.65391949	0.42974009
Н	-1.35712474	-2.7758908	-0.28631447	Н	6.53135548	1.35708873	0.63595228

С	-2.49062832	-0.10453336	0.03960529	С	6.02448412	-0.70472328	0.26407717
С	-3.27461758	-0.16941521	-1.134935	Н	7.0533699	-1.04680589	0.32724469
С	-4.66096484	-0.33347083	-1.04268901	С	4.9976771	-1.61960933	0.04605926
Н	-5.24862995	-0.38414853	-1.95820542	Н	5.21263225	-2.68077399	-0.04719418
С	-5.30977346	-0.43538239	0.19088749	С	3.68117057	-1.1613609	-0.03241801
С	-4.52781152	-0.37528948	1.34778696				

Table S6 Cartesian Coordinates of 3 Calculated at the B3LYP/6-31G(d) Level

atom	x	у	Z	atom	x	у	Z
В	-0.00000047	-0.78926008	0.00000000	С	-2.59630012	-2.25466033	0.00000000
С	-1.29493948	-0.01933395	0.00000000	С	3.37994886	-2.69516778	1.26885710
С	-1.24528757	1.39887822	0.00000000	Н	3.50837786	-3.78173367	1.29700002
С	1.24515936	1.39894332	0.00000000	Н	2.84478147	-2.39403155	2.17565819
С	1.29489568	-0.01926489	0.00000000	Н	4.37531365	-2.2406877	1.29650580
С	-2.44946181	2.12960148	0.00000000	С	3.37994886	-2.69516778	-1.26885710
Н	-2.45211374	3.21249833	0.00000000	Н	3.50837786	-3.78173367	-1.29700002
С	-3.65361818	1.43769371	0.00000000	Н	4.37531365	-2.2406877	-1.29650580
Н	-4.58173895	2.00444378	0.00000000	Н	2.84478147	-2.39403155	-2.17565819
Н	-4.68152065	-0.44420911	0.00000000	С	-3.37988301	-2.6952843	1.26885658
С	-3.70904961	0.03861473	0.00000000	Н	-2.84468382	-2.39420705	2.17565845
С	-2.5293716	-0.70804102	0.00000000	Н	-3.50839186	-3.78183846	1.29697527
С	2.44926738	2.12975352	0.00000000	Н	-4.37521589	-2.24072915	1.29652628
Н	2.45183296	3.21265513	0.00000000	С	-3.37988301	-2.6952843	-1.26885658
С	3.65347139	1.43792565	0.00000000	Н	-3.50839186	-3.78183846	-1.29697527
Н	4.58154903	2.00474621	0.00000000	Н	-2.84468382	-2.39420705	-2.17565845
С	3.70899565	0.03885169	0.00000000	Н	-4.37521589	-2.24072915	-1.29652628
Н	4.68149895	-0.44390238	0.00000000	Ν	-0.00007423	2.05899629	0.00000000
С	2.529367	-0.70789544	0.00000000	С	-0.00006206	3.50015835	0.00000000
С	0.00004225	-2.30970984	0.00000000	С	-0.00002944	4.19761837	-1.21105908
С	1.23508216	-2.99454433	0.00000000	Н	-0.00003549	3.64097565	-2.14349090
С	1.21462209	-4.39460471	0.00000000	С	-0.00000451	5.59340114	-1.20904483
Н	2.13703928	-4.96847958	0.00000000	Н	0.00001028	6.13338112	-2.15184417
С	0.00013409	-5.08032604	0.00000000	С	0.00000293	6.29245789	0.00000000
Н	0.00017045	-6.1678848	0.00000000	Н	0.00002435	7.37895525	0.00000000
С	-1.21439667	-4.39468087	0.00000000	С	-0.00000451	5.59340114	1.20904483
Н	-2.13677144	-4.96861992	0.00000000	Н	0.00001028	6.13338112	2.15184417
С	-1.23495569	-2.99461636	0.00000000	С	-0.00002944	4.19761837	1.21105908
С	2.59637889	-2.25452483	0.00000000	Н	-0.00003549	3.64097565	2.14349090

Table S7 Cartesian Coordinates of 4 Calculated at the B3LYP/6-31G(d) Level

atom	x	у	Z	atom	x	У	Z
В	0.23817058	-1.07604993	-0.04750682	С	-1.58469538	-2.85737590	-0.02322870
С	0.23817058	-1.07604993	-0.04750682	С	-2.74358638	2.22014836	0.04198836
С	-0.26383997	1.45383689	-0.00893500	С	-1.79919982	-3.74504320	1.23455284
С	1.13842475	1.72335298	-0.07058672	Н	-2.82564071	-4.12166363	1.28449761
С	1.57481754	-0.69491905	-0.05732059	Н	-1.60193150	-3.17485233	2.14836982
Ν	2.03424515	0.62455466	-0.02842541	Н	-1.12681127	-4.60906272	1.22236383
С	1.56476123	3.05163442	-0.20437664	С	-1.87323366	-3.69665792	-1.29940249
Н	2.60387083	3.30831050	-0.34134762	Н	-2.90081636	-4.07369706	-1.30270692
С	0.61502209	4.07073531	-0.21269231	Н	-1.20040880	-4.55844235	-1.35975655
Н	0.95649960	5.09815298	-0.31199070	Н	-1.73067556	-3.09133156	-2.20069549
С	-0.75378699	3.81496003	-0.10922493	С	-3.28322505	2.89647180	1.33414695
Н	-1.44222308	4.65433903	-0.11527627	Н	-4.36982799	2.78842602	1.41038855
С	-1.21545485	2.49662884	-0.02627561	Н	-3.05172457	3.96637567	1.34631484
С	-0.09801978	-2.43757752	-0.05837928	Н	-2.83431574	2.44224819	2.22375184
С	0.95610123	-3.37204567	-0.09144963	С	-3.40385929	2.88251149	-1.20063373
Н	0.74721537	-4.43817012	-0.10471870	Н	-3.03312479	2.42505687	-2.12395294
С	2.30145658	-2.96917602	-0.09748634	Н	-3.18810342	3.95444574	-1.24311912
Н	3.08059085	-3.72746615	-0.11455542	Н	-4.49144502	2.76410468	-1.17777963
С	2.63601233	-1.60994670	-0.07198172	С	3.45238145	0.55661715	0.02935682
С	-2.24007136	-0.31991294	0.03202272	С	3.84759287	-0.81496363	-0.02370726
С	-2.61439492	-1.68614707	0.02812691	С	5.19943546	-1.16228248	0.01273590
С	-3.98290417	-1.97811271	0.06931064	Н	5.49346766	-2.20760920	-0.03187898
Н	-4.33804510	-3.00487332	0.06835030	С	6.15997916	-0.16001144	0.12063538
С	-4.92376898	-0.94677513	0.11384680	Н	7.21466651	-0.41802975	0.14966393
Н	-5.98203272	-1.19492436	0.14863251	С	5.76637521	1.18035226	0.21197951
С	-4.53726188	0.39436015	0.11096412	Η	6.51952165	1.95552733	0.32318202
Н	-5.30772851	1.15977050	0.14266801	С	4.42148456	1.55416632	0.17374220
С	-3.17889806	0.73088684	0.06487117	Н	4.16766678	2.59727681	0.29306848

atom	x	у	Z	atom	x	у	Z
В	3.43247453	0.0216147	0.00006377	Н	7.42976859	-2.33759753	1.08727767
С	2.31470044	1.01234739	0.08232424	Н	6.25775841	-3.65829452	1.13560714
С	3.07724204	-1.45002124	-0.01573059	Н	5.9538352	-2.17304016	2.0524436
С	1.711452	-1.86595541	0.04994695	С	6.2165763	-2.53946333	-1.41747824
С	1.02537731	0.49376791	0.09620161	Н	5.7131957	-2.11556703	-2.29277507
Ν	0.70576642	-0.86613978	0.04335366	Н	6.09857544	-3.62724125	-1.45232197
С	1.42654256	-3.23440559	0.15009496	Н	7.28497924	-2.31616952	-1.50002934
Н	0.4206206	-3.60147714	0.28368709	С	-0.71114457	-0.94472937	0.00488974
С	2.47726054	-4.14871715	0.12587501	С	-1.24787109	0.37519326	0.08709957
Н	2.24556959	-5.20839736	0.19961283	С	-2.62579885	0.58325668	0.07788392
С	3.81108401	-3.74889862	0.02093575	Н	-3.01783453	1.59197839	0.17316605
Н	4.58321113	-4.5117636	0.00116318	С	-3.50598962	-0.50144779	-0.03197808
С	4.13228258	-2.38799411	-0.03211942	С	-2.95471184	-1.79284064	-0.15147207
С	2.50715106	2.4010141	0.12101353	Н	-3.62145219	-2.63863633	-0.29118056
С	1.36177551	3.21924563	0.18477393	С	-1.58111411	-2.02922364	-0.13987656
Н	1.45851793	4.30080615	0.22059801	Н	-1.23094151	-3.0404201	-0.28801517
С	0.06579458	2.67799924	0.19430141	С	-4.97586754	-0.29820378	-0.03992887
Н	-0.78792639	3.3500881	0.2362836	С	-5.55887291	0.80875375	-0.67217401
С	-0.12525227	1.29224486	0.14163561	Н	-4.92608717	1.52140669	-1.19454803
С	4.85722026	0.52097172	-0.03374895	С	-6.94100249	1.00001081	-0.67518984
С	5.08714355	1.91845768	-0.00287466	Н	-7.33573861	1.87084267	-1.18713612
С	6.41725979	2.35247381	-0.04923333	С	-7.80980443	0.09485652	-0.05111582
Н	6.66346384	3.41046719	-0.02862981	С	-7.22048455	-1.01465597	0.57931177
С	7.45989894	1.42608833	-0.12433283	Н	-7.84716212	-1.74348638	1.08650327
Н	8.48613354	1.78398683	-0.16246359	С	-5.8431863	-1.20844406	0.58788394
С	7.2152622	0.05215317	-0.14798865	Н	-5.43028855	-2.06607046	1.11239243
Н	8.06090724	-0.62776115	-0.20338436	С	-9.33853162	0.27102542	-0.03436196
С	5.89994659	-0.42522839	-0.09816113	С	-10.00563172	-0.94816848	-0.7146551
С	3.94153816	2.97441757	0.08250576	Н	-9.68351037	-1.03918887	-1.7582652
С	5.62244794	-1.95199724	-0.10587526	Н	-11.09743562	-0.84195048	-0.70333947
С	4.15465343	3.81274292	1.37400425	Н	-9.75704103	-1.88539658	-0.20581159
Н	5.13759954	4.29428727	1.37695908	С	-9.7900646	1.54164923	-0.77913804
Н	4.08500923	3.17747893	2.26319416	Н	-9.49845253	1.52098283	-1.83540093
Н	3.39685214	4.59862671	1.45851273	Н	-9.3743756	2.44928342	-0.32685146
С	4.04881806	3.9053125	-1.15766037	Н	-10.88215526	1.62400153	-0.73991215
Н	5.02976579	4.38813323	-1.20817432	С	-9.82938474	0.37137183	1.42969491
Н	3.29008532	4.69382184	-1.12105458	Н	-9.37893203	1.23289112	1.93568952
Н	3.90233385	3.33648699	-2.08181966	Н	-9.57622783	-0.52414294	2.00679398
С	6.36064216	-2.56904981	1.11600351	Н	-10.91949829	0.49047823	1.45971504

Table S8 Cartesian Coordinates of 9 Calculated at the B3LYP/6-31G(d) Level

Table S9 Cartesian Coordinates of 1^{+} in CH₂Cl₂ Calculated at the UB3LYP/6-31+G(d) Level

atom	x	У	z	atom	x	У	z
В	-0.78413384	0.02131939	0.00610983	С	-1.61140364	-2.85823363	-0.03338308
С	0.22173865	-1.0921579	-0.05619138	С	-2.7170734	2.24221714	0.05042197
С	-0.25922487	1.44690227	-0.01840032	С	-1.8226625	-3.77646339	1.20531153
С	1.15017107	1.70229632	-0.09817381	Н	-2.85160382	-4.14517257	1.24668966
С	1.56165318	-0.7212709	-0.07152962	Н	-1.6153811	-3.23314775	2.13353103
Ν	2.02493376	0.60269664	-0.03695124	Н	-1.16177044	-4.6481077	1.1626586
С	1.6028391	3.02575137	-0.27647907	С	-1.91415135	-3.66859549	-1.3284849
Н	2.64064471	3.262541	-0.45085449	Н	-2.94567459	-4.03304254	-1.32630649
С	0.66883188	4.05802457	-0.28453721	Н	-1.25374664	-4.5382205	-1.40684079
Н	1.0165077	5.07811246	-0.41576295	Н	-1.77166471	-3.04730335	-2.21924607
С	-0.70121242	3.81275311	-0.146829	С	-3.23042702	2.94905201	1.34092959
Н	-1.3774801	4.66098112	-0.15238543	Н	-4.31706556	2.85607264	1.42341725
С	-1.19186273	2.4910016	-0.03771138	Н	-2.98917612	4.01650575	1.32966013
С	-0.12570555	-2.44634925	-0.07256108	Н	-2.77927385	2.50348255	2.23396132
С	0.93373751	-3.3820257	-0.12157328	С	-3.37978105	2.90323934	-1.19621364
Н	0.72632477	-4.44748213	-0.14433745	Н	-3.02427639	2.43367691	-2.11969088
С	2.29049468	-2.98813038	-0.13211743	Н	-3.15809125	3.97323058	-1.24682677
Н	3.06112859	-3.75283635	-0.16041494	Н	-4.4671214	2.79477981	-1.15464106
С	2.62336856	-1.63402271	-0.09632359	С	3.45061915	0.53542408	0.04235856
С	-2.24269637	-0.30844122	0.04623861	С	3.84400939	-0.83329028	-0.03355911
С	-2.62795529	-1.67855203	0.04662318	С	5.18658963	-1.17834393	0.01509424
С	-3.99773561	-1.9527337	0.11229357	Н	5.49428984	-2.21748405	-0.04835839
Н	-4.3714818	-2.97203682	0.11640383	С	6.1464029	-0.16092355	0.16541201
С	-4.92485212	-0.90450923	0.17490536	Н	7.19999682	-0.41964034	0.20449437
Н	-5.98451271	-1.14160796	0.22841436	С	5.75319161	1.17251612	0.29239812
С	-4.52928188	0.43769315	0.16455754	Н	6.49957109	1.94562867	0.44401872
Н	-5.29618302	1.20509104	0.20878287	С	4.40112466	1.54019511	0.24460841
С	-3.17008509	0.76103359	0.09293794	Н	4.14020611	2.57616705	0.40160668

atom	x	y	Z	atom	x	V	Z
В	3.42474504	0.02945688	0.00023796	С	6.36226790	-2.52159347	-1.17657967
С	3.06494981	-1.44656604	-0.04891797	Н	5.97343968	-2.08576004	-2.10336662
С	2.46153790	-4.14320733	-0.34677942	Н	6.26351983	-3.60913075	-1.24145855
С	1.70133206	-1.86512434	-0.16014517	Н	7.42962418	-2.29159009	-1.11327976
С	4.11698576	-2.37872561	-0.05935009	С	6.17232264	-2.60964964	1.35480626
С	3.79031329	-3.74291074	-0.18805683	Н	7.24037182	-2.39650896	1.45852293
С	1.41136367	-3.22567773	-0.34739440	Н	6.05150909	-3.69725375	1.33293360
Н	4.56124547	-4.50642111	-0.19048054	Н	5.65865065	-2.22496863	2.24262068
Н	0.41163541	-3.58690035	-0.53074947	С	4.00975140	3.87582039	1.31392404
Н	2.23501625	-5.19618993	-0.48612817	Н	4.98939924	4.35578746	1.39557739
С	2.30292455	1.02661903	-0.06926429	Н	3.84597895	3.27639488	2.21615005
С	0.04826208	2.69250434	-0.14982439	Н	3.25392150	4.66720226	1.28646731
С	2.49767494	2.41725222	-0.04980714	С	4.16566163	3.87617017	-1.21826657
С	1.01726428	0.51660404	-0.12323927	Н	4.11509425	3.27705988	-2.13403496
С	-0.13172917	1.30629664	-0.15115474	Н	5.14772437	4.35662353	-1.17780733
С	1.34950369	3.23331186	-0.10139808	Н	3.41087098	4.66651904	-1.28372297
Н	1.44062405	4.31531026	-0.09427860	С	-4.95040435	-0.34494186	0.01628210
Н	-0.80391263	3.36570629	-0.17572698	С	-7.78826739	0.04224761	0.06629140
С	4.83909573	0.52328535	0.07813813	С	-5.55111025	0.78828991	-0.58468462
С	7.43799783	1.41812427	0.26002789	С	-5.81174983	-1.27554794	0.64059040
С	5.88142369	-0.43221732	0.12622320	С	-7.18825956	-1.07965432	0.66919868
С	5.06876678	1.92637195	0.10654185	С	-6.92579981	0.96617559	-0.56457159
С	6.39826005	2.35365624	0.19831423	Н	-4.93873586	1.51756293	-1.10529779
С	7.19519088	0.04140227	0.22426930	Н	-5.40191423	-2.14501100	1.14430052
Н	6.65257719	3.40900574	0.22424866	Н	-7.79809363	-1.81638312	1.17893234
Н	8.04208424	-0.63664744	0.27062900	Н	-7.33734710	1.84183534	-1.05696648
Н	8.46319657	1.77273923	0.33416894	С	-9.30344960	0.28424653	0.07265155
N	0.69143134	-0.86590579	-0.11608429	С	-10.07536797	-0.82481476	0.81353101
С	-0.69951886	-0.95180018	-0.07255300	Н	-9.93394662	-1.80621456	0.34587874
С	-3.49995742	-0.53968549	-0.00741437	Н	-11.14727412	-0.59944664	0.78732279
С	-1.25355218	0.37510141	-0.13115320	Н	-9.77990725	-0.89754060	1.86677683
С	-1.56324822	-2.05680906	0.07517769	С	-9.81530810	0.33991188	-1.38950118
С	-2.92933823	-1.83720419	0.10425173	Н	-9.62102845	-0.60520773	-1.91008886
С	-2.61828315	0.57067107	-0.11785060	Н	-9.34190613	1.14557802	-1.96045278
Н	-1.20337659	-3.06778212	0.19196964	Н	-10.89752664	0.51644951	-1.39675170
Н	-3.57905374	-2.69989931	0.19483671	С	-9.60161590	1.63523300	0.77176767
Н	-3.01386058	1.57998388	-0.14544526	H	-9.12323792	2.47761897	0.26096148
C	5.60330342	-1.95526560	0.06067622	H	-9.25262197	1.62537720	1.8110/010
C	3.92851985	2.98837277	0.03801255	Н	-10.68276810	1.81852025	0.77745349

Table S10 Cartesian Coordinates of 9⁻⁺ in CH₂Cl₂ Calculated at the UB3LYP/6-31+G(d) Level

7. References

- 1 Z. Zhou, A. Wakamiya, T. Kushida and S. Yamaguchi, J. Am. Chem. Soc., 2012, 134, 4529.
- 2 N. Ando, T. Kushida and S. Yamaguchi, Chem. Commun., 2018, 54, 5213.
- 3 K. Smith, A. Pelter and Z. Jin, Angew. Chem. Int. Ed., 1994, 33, 851.
- 4 H. Li, Y. Wang, K. Yuan, Y. Tao, R. Chen, C. Zheng, X. Zhou, J. Li and W. Huang, *Chem. Commun.*, **2014**, *50*, 15760.
- 5 G. M. Sheldrick, *SHELXL-2017/1, Program for the Refinement of Crystal Structures*; University of Göttingen: Göttingen, Germany, 2017.
- J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.

Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

7 (a) T. Kushida, Z. Zhou, A. Wakamiya and S. Yamaguchi, Chem. Commun., 2012, 48, 10715;
(b) H. Iwahara, T. Kushida and S. Yamaguchi, Chem. Commun., 2015, 52, 1124.

8. NMR Spectra

Figure S10. ¹H NMR spectrum of S1 (400 MHz, acetone- d_6).

Figure S11. ¹³C{H} NMR spectrum of S1 (100 MHz, acetone- d_6).

Figure S12. ¹H NMR spectrum of 2 (400 MHz, CDCl₃).

Figure S13. $^{13}C{H}$ NMR spectrum of 2 (100 MHz, CDCl₃).

Figure S14. ¹¹B{H} NMR spectrum of 2 (128 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of S2 (400 MHz, CDCl₃).

Figure S16. ¹³C{H} NMR spectrum of S2 (100 MHz, CDCl₃).

Figure S17. ¹¹B{H} NMR spectrum of S2 (128 MHz, CDCl₃).

Figure S18. ¹H NMR spectrum of 4 (400 MHz, CDCl₃).

Figure S19. $^{13}C\{H\}$ NMR spectrum of 4 (100 MHz, CDCl₃).

Figure S20. ¹¹B{H} NMR spectrum of 4 (128 MHz, CDCl₃).

Figure S21. ¹H NMR spectrum of 3 (400 MHz, CDCl₃).

Figure S22. $^{13}C{H}$ NMR spectrum of 3 (100 MHz, CDCl₃).

Figure S23. ¹¹B{H} NMR spectrum of **3** (128 MHz, CDCl₃).

Figure S24. ¹H NMR spectrum of 7 (400 MHz, acetone-*d*₆).

Figure S25. $^{13}C{H}$ NMR spectrum of 7 (100 MHz, CDCl₃).

Figure S26. ¹¹B{H} NMR spectrum of 7 (128 MHz, CDCl₃).

Figure S27. ¹H NMR spectrum of 1 (400 MHz, CDCl₃).

Figure S28. $^{13}C{H}$ NMR spectrum of 1 (100 MHz, CDCl₃).

Figure S29. $^{11}B{H}$ NMR spectrum of 1 (128 MHz, CDCl₃).

Figure S30. ¹H NMR spectrum of 8 (400 MHz, CDCl₃).

Figure S31. $^{13}C{H}$ NMR spectrum of 8 (100 MHz, CDCl₃).

Figure S32. ¹¹B{H} NMR spectrum of **8** (128 MHz, CDCl₃).

Figure S33. ¹H NMR spectrum of 9 (400 MHz, CDCl₃).

Figure S34. $^{13}C{H}$ NMR spectrum of 9 (100 MHz, CDCl₃).

Figure S35. $^{11}B{H}$ NMR spectrum of 9 (128 MHz, CDCl₃).