Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2019

Synthesis of 2-alkyl-2-boryl-substituted-tetrahydrofurans via copper(I)-catalyzed borylative cyclization of aliphatic ketones

Koji Kubota,^{a,b} Minami Uesugi,^b Shun Osaki^b and Hajime Ito^{a,b*}

^aInstitute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, Japan. ^bDivision of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.

e-mail: hajito@eng.hokudai.ac.jp, kbt@eng.hokudai.ac.jp

Table of Contents

- 1. Instrumention and Chemicals
- 2. General Experimental Procedures
- 3. Substrate Preparation Procedures
- 4. Borylation Product Characterization
- 5. Borylation Product Functionalization Procedure
- 6. References
- 7. NMR Spectra

1. Instrumentation and Chemicals

Materials were obtained from commercial suppliers and purified by standard procedures unless otherwise noted. Solvents were also purchased from commercial suppliers, degassed via three freeze-pump-thaw cycles, and further dried over molecular sieves (MS 4A). NMR spectra were recorded on JEOL JNM-ECX400P and JNM-ECS400 spectrometers (¹H: 401 or 400 or 396 or 392 MHz, ¹³C: 99 MHz, ¹⁹F: 373 MHz ¹¹B: 127 MHz,) Tetramethylsilane (¹H), CDCl₃ (¹³C), fluorobenzene (¹⁹F), BF₃·Et₂O (¹¹B) were employed as the external standards, respectively. CuCl (ReagentPlus® grade, 224332-25G, \geq 99%) and K(O-*t*-Bu) / THF (1.0 M, 328650-50ML) were purchased from Sigma-Aldrich Co. and used as received. Dibromomethane was used as an internal standard to determine ¹H NMR yields. Recycle preparative gel permeation chromatography (GPC) was conducted with JAI LC-9101 using CHCl₃ as an eluent. GLC analyses were conducted with a Shimadzu GC-2014 or GC-2025 equipped with a ULBON HR-1 glass capillary column (Shinwa Chemical Industries) and a FID detector. High-resolution mass spectra was recorded at the Global Facility Center for Instrumental Analysis, Hokkaido University.

2. General Experimental Procedures

Procedure for the Copper(I)-Catalyzed Borylative Cyclization of 1a without MeOH (Table 1).

Copper chloride (2.5 mg, 0.025 mmol) and bis(pinacolato)diboron (139.7 mg, 0.55 mmol), 1,3-di*tert*-butylimidazolium tetrafluoroborate (6.7 mg, 0.025 mmol) were placed in an oven-dried reaction vial. After the vial was sealed with a screw cap containing a Teflon-coated rubber septum, the vial was connected to a vacuum/nitrogen manifold through a needle. It was evacuated and then backfilled with nitrogen. This cycle was repeated three times. Dry THF (450 μ L) and K(O-*t*-Bu)/THF (1.0 M, 550 μ L, 0.55 mmol) were added in the vial through the rubber septum using a syringe. The dark brown color solution was formed. **1a** (60.3 mg, 0.50 mmol) was then added dropwised to the reaction mixture and the mixture was stirred for 4 h. After the reaction was complete, the reaction mixture was passed through a short silica gel eluting with EtOAc. The crude mixture was purified by flash column chromatography [SiO₂, EtOAc/hexane (dried over K₂CO₃ before used), 0:100–12:88] to give the corresponding borylation product **3a** as a colorless oil. The flash column chromatography should be completed within 10 min to minimize decomposition of the product.

Procedure for the Copper(I)-Catalyzed Borylative Cyclization of 1b with MeOH (Table 2).

Copper chloride (2.5 mg, 0.025 mmol) and bis(pinacolato)diboron (139.7 mg, 0.55 mmol), 1,3-di*tert*-butylimidazolium tetrafluoroborate (6.7 mg, 0.025 mmol) were placed in an oven-dried reaction vial. After the vial was sealed with a screw cap containing a Teflon-coated rubber septum, the vial was connected to a vacuum/nitrogen manifold through a needle. It was evacuated and then backfilled with nitrogen. This cycle was repeated three times. Dry THF (450 μ L) and K(O-*t*-Bu)/THF (1.0 M, 550 μ L, 0.55 mmol) were added in the vial through the rubber septum using a syringe. The dark brown color solution was formed. After **1b** (105.4 mg, 0.50 mmol) was added to the mixture at 30°C, MeOH (40.5 μ L, 1.0 mmol) was added dropwise. After the reaction was complete, the reaction mixture was passed through a short silica gel eluting with EtOAc. The crude mixture was purified by flash column chromatography [SiO₂, EtOAc/hexane (dried over K₂CO₃ before used), 0:100–12:88] to give the corresponding borylation product **3b** as a colorless oil. The flash column chromatography should be completed within 10 min to minimize decomposition of the product.

3. Substrate Preparation

The substrate 1a was purchased from commercial suppliers and used received.

Preparation of 6-chloro-1-phenylhexan-3-one (1b).

In an oven-dried 300 mL round bottomed flask, methyl 4-chlorobutyrate (1.86 g, 13.6 mmol) was added to a suspension of *N*,*O*-dimethylhydroxylamine in THF (36 mL) at room temperature under nitrogen atmosphere and the mixture was cooled to -20° C. A THF solution of Isopropylmagnesium chloride (2.0 M, 48 mL, 96 mmol) was then added dropwised for 15 min to the reaction mixture and the mixture was stirred for 1 h. After the reaction mixture was warmed to 0°C, the mixture was stirred for 12 h. The resulting suspension was quenched by the addition of saturated aqueous NH₄Cl. The mixture was extracted with CH₂Cl₂ three times and dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was used for the next step without purification.

In an oven-dried 100 mL round bottomed flask, the amide (993.1 mg, 6.0 mmol) was dissolved in THF (14 mL) under nitrogen atmosphere. After the reaction mixture was cooled to 0°C, a THF solution of phenethylmagnesium bromide (1.5 M, 8.0 mL, 12 mmol) was added dropwised to the reaction mixture. After stirred for 18 h at room temperature, the resulting suspension was quenched by the addition of saturated aqueous NH₄Cl. The mixture was the extracted with EtOAc three times and dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc/hexane, 0:100–7:93) to afford the corresponding ketone **1b** (214.0 mg, 1.0 mmol, 17%) as a colorless oil.

¹H NMR (401 MHz, CDCl₃, δ): 2.03 (quint, J = 6.5 Hz, 2H), 2.59 (t, J = 7.0 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H), 2.91 (t, J = 7.6 Hz, 2H), 3.55 (t, J = 6.4 Hz, 2H), 7.17–7.22 (m, 3H), 7.26–7.30 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 26.0 (*C*H₂), 29.5 (*C*H₂), 39.2 (*C*H₂), 44.1 (*C*H₂), 44.2 (*C*H₂), 125.9 (*C*H), 128.1 (*C*H), 128.3 (*C*H), 140.7 (*C*), 208.4 (*C*). HRMS–EI (m/z): [M]⁺ calcd for C₁₂H₁₅ClO, 210.0811; found, 210.0812.

Preparation of 1-chlorodecan-4-one (1f).

If was prepared from the corresponding alkyl halide according to the procedure for the synthesis of **1b** as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 0.88 (t, *J* = 7.0 Hz, 3H), 1.25–1.34 (m, 6H), 1.54–1.61 (m, 2H), 2.04 (quint, *J* = 6.6 Hz, 2H), 2.42 (t, *J* = 7.4 Hz, 2H), 2.61 (t, *J* = 7.0 Hz, 2H), 3.58 (t, *J* = 6.3 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 14.0 (CH₃), 22.4 (CH₂), 23.8 (CH₂), 26.2 (CH₂), 28.8 (CH₂), 31.5 (CH₂), 39.1 (CH₂), 43.0 (CH₂), 44.5 (CH₂), 210.1 (C). HRMS–EI (*m*/*z*): [M]⁺ calcd for C₁₀H₁₉ClO, 190.1124; found, 190.1129.

Preparation of 6-chloro-1-(4-methylphenyl)hexan-3-one (1g).

The amidation was performed according to the literature procedure.¹ In an oven-dried 100 mL round bottomed flask, 3-(*p*-tolyl)propionic acid (3.23 g, 20 mmol) was dissolved in CH₂Cl₂ (30 mL) and one

drop of DMF was added under nitrogen atmosphere. Then oxalyl chloride (3.79 g, 30 mmol) was added dropwised to the reaction mixture. The resulting mixture was stirred for 4 h at room temperature and then concentrated under reduced pressure to give the corresponding acid chloride. The reaction mixture was used for the next step without purification. The acid chloride was dissolved in CH_2Cl_2 (30 mL). After the reaction mixture was cooled to 0°C, *N*,*O*-dimethylhydroxylamine (2.20 g, 22 mmol), pyridine (4.8 mL) and DMAP (472.1 mg, 4 mmol) was added to the reaction mixture and the mixture was warmed to room temperature. After stirred for 15 h, the resulting suspension was quenched by the addition of 3 M HCl. The mixture was the extracted with CH_2Cl_2 three times and dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was used for the next step without purification.

In an oven-dried 200 mL round bottomed flask, the amide was dissolved in THF (60 mL) under nitrogen atmosphere. After the reaction mixture was cooled to 0°C, a Et₂O solution of allylmagnesium bromide (0.7 M, 34 mL, 24 mmol) was added dropwise to the reaction mixture and the mixture was warmed to room temperature. After stirred for 16 h, the resulting suspension was quenched by the addition of saturated aqueous NH₄Cl. The mixture was the extracted with EtOAc three times and dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc/hexane, 0:100–4:96) to afford the corresponding ketone **S1** (3.29 g, 17 mmol, 87%) as a colorless oil.

The hydroboration was performed according to the literature procedure.^{2,3} In an oven-dried 200 mL round bottomed flask, **S1** (1.91 g, 10 mmol) was dissolved in THF (22 mL) under nitrogen atmosphere. After the reaction mixture was cooled to 0°C, a THF solution of 9-borabicyclo[3.3.1]nonane (0.5 M, 22 mL, 11 mmol) was added dropwised to the reaction mixture and the reaction mixture heated to 60°C. After stirred for 3 h, NaBO₃·4H₂O (6.15 g, 40 mmol) and H₂O (44 mL) were added to the mixture at 0°C. After stirred for 2 h at room temperature, the reaction mixture was extracted with CH₂Cl₂ three times and dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc/hexane, 0:100–40:60) to afford the corresponding alcohol **S2** (1.29 g, 6.2 mmol, 62%) as a colorless oil.

The chlorination was performed according to the literature procedure.⁴ In an oven-dried 50 mL round bottomed flask, triphenylphosphine (2.41 g, 9.3 mmol), **S2** (1.29 g, 6.2 mmol) and carbon tetrachloride (1.48 g, 9.3 mmol) were dissolved in acetonitrile (19 mL) under nitrogen atmosphere at 80°C. After stirred for 5 h, the resulting suspension was the extracted with CH_2Cl_2 three times and dried over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc/hexane, 0:100–2:98) to afford the corresponding ketone **1g** (491.6 mg, 2.2 mmol, 35%) as a yellow oil.

¹H NMR (392 MHz, CDCl₃, δ): 2.03 (quint, J = 6.6 Hz, 2H), 2.31 (s, 3H), 2.58 (t, J = 7.1 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), 2.87 (t, J = 7.3 Hz, 2H), 3.55 (t, J = 6.3 Hz, 2H), 7.06–7.12 (m, 4H). ¹³C NMR

(99 MHz, CDCl₃, δ): 20.9 (*C*H₃), 26.1 (*C*H₂), 29.2 (*C*H₂), 39.3 (*C*H₂), 44.3 (*C*H₂), 44.4 (*C*H₂), 128.0 (*C*H), 129.0 (*C*H), 135.5 (*C*), 137.6 (*C*), 208.7 (*C*). HRMS–EI (*m*/*z*): [M]⁺ calcd for C₁₃H₁₇ClO, 224.0968; found, 224.0975.

Preparation of 6-chloro-1-[3-(trifluoromethyl)phenyl]hexan-3-one (1h).

1h was prepared from the corresponding calboxylic acid according to the procedure for the synthesis of **1g** as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 2.04 (quint, *J* = 6.6 Hz, 2H), 2.61 (t, *J* = 7.0 Hz, 2H), 2.78 (t, *J* = 7.6 Hz, 2H), 2.97 (t, *J* = 7.4 Hz, 2H), 3.56 (t, *J* = 6.3 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 26.1 (*C*H₂), 29.3 (*C*H₂), 39.4 (*C*H₂), 43.7 (*C*H₂), 44.3 (*C*H₂), 124.2 (q, *J* = 273.2 Hz, *C*), 125.3 (q, *J* = 3.8 Hz, *C*H), 128.4 (q, *J* = 32.4 Hz, *C*), 128.6 (*C*H), 145.0 (*C*), 208.0 (*C*). HRMS–EI (*m*/*z*): [M]⁺ calcd for C₁₃H₁₄ClF₃O, 278.0685; found, 278.0683.

Preparation of 6-chloro-1-[4-(trifluoromethyl)phenyl]hexan-3-one (1i).

1i was prepared from the corresponding alkyl halide according to the procedure for the synthesis of 1b as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 2.05 (quint, *J* = 6.6 Hz, 2H), 2.61 (t, *J* = 7.0 Hz, 2H), 2.79 (t, *J* = 7.4 Hz, 2H), 2.97 (t, *J* = 7.4 Hz, 2H), 3.56 (t, *J* = 6.3 Hz, 2H), 7.36–7.40 (m, 2H), 7.42–7.47 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 26.1 (*C*H₂), 29.2 (*C*H₂), 39.3 (*C*H₂), 43.8 (*C*H₂), 44.3 (*C*H₂), 122.9 (q, *J* = 3.8 Hz, *C*H), 124.1 (q, *J* = 273.5 Hz, *C*), 124.9 (q, *J* = 3.5 Hz, *C*H), 128.8 (*C*H), 130.6 (q, *J* = 32.1 Hz, *C*), 131.8 (*C*H), 141.8 (*C*), 208.0 (*C*). HRMS–EI (*m*/*z*): [M]⁺ calcd for C₁₃H₁₄ClF₃O, 278.0685; found, 278.0686.

Preparation of 6-chloro-1-(4-fluorophenyl)hexan-3-one (1j).

1j was prepared from the corresponding alkyl halide according to the procedure for the synthesis of 1b as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 2.03 (quint, *J* = 6.6 Hz, 2H), 2.59 (t, *J* = 7.0 Hz, 2H), 2.74 (t, *J* = 7.4 Hz, 2H), 2.88 (t, *J* = 7.4 Hz, 2H), 3.56 (t, *J* = 6.1 Hz, 2H), 6.93–6.99 (m, 2H), 7.11–7.16 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 26.1 (*C*H₂), 28.7 (*C*H₂), 39.4 (*C*H₂), 44.2 (*C*H₂), 44.3 (*C*H₂), 115.0 (*C*H), 115.2 (*C*H), 129.6 (d, *J* = 8.5 Hz, *C*H), 136.4 (d, *J* = 2.8 Hz, *C*), 161.2 (d, *J* = 244.5 Hz, *C*), 208.4 (*C*). HRMS–EI (*m*/*z*): [M]⁺ calcd for C₁₂H₁₄CIFO, 228.0717; found, 228.0718.

4. Borylation Product Characterization

2-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetrahydrofuran (3a).

The reaction was conducted with 60.5 mg (0.50 mmol) of **1a**. The product **3a** was obtained in 62% yield (64.9 mg, 0.31 mmol) as a yellow oil.

¹H NMR (401 MHz, CDCl₃, δ): 1.21 (s, 3H), 1.27 (s, 12H), 1.56–1.65 (m, 1H), 1.82–1.89 (m, 1H), 1.91–2.02 (m, 2H), 3.78–3.91 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 22.9 (*C*H₃), 24.5 (*C*H₃), 25.8 (*C*H₂), 35.0 (*C*H₂), 67.1 (*C*H₂), 83.7 (*C*). HRMS–EI (*m*/*z*): [M–CH₃]⁺ calcd for C₁₀H₁₈¹¹BO₃, 197.0351; found, 197.1352.

2-phenethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetrahydrofuran (3b).

The reaction was conducted with 103.0 mg (0.50 mmol) of **1b**. The product **3b** was obtained in 54% yield (80.6 mg, 0.27 mmol) as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 1.29 (s, 12H), 1.65–1.72 (m, 1H), 1.76–2.03 (m, 5H), 2.52–2.62 (m, 1H), 2.76–2.84 (m, 1H), 3.87 (t, *J* = 7.0 Hz, 2H), 7.15–7.29 (m, 5H). ¹³C NMR (99 MHz, CDCl₃, δ): 24.5 (CH₃), 24.7 (CH₃), 25.8 (CH₂), 32.3 (CH₂), 34.0 (CH₂), 39.5 (CH₂), 67.1 (CH₂), 83.8 (*C*), 125.5 (CH), 128.1 (CH), 128.2 (CH), 142.8 (*C*). HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₈H₂₇¹¹BO₃Na, 325.1949; found, 325.1952.

2-hexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetrahydrofuran (3f).

The reaction was conducted with 190.7 mg (0.50 mmol) of **1f**. The product **3f** was obtained in 36% yield (49.9 mg, 0.18 mmol) as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 0.85–0.89 (m, 3H), 1.27 (s, 20H), 1.40–1.55 (m, 3H), 1.77–1.85 (m, 1H), 1.87–2.00 (m, 2H), 3.82 (t, *J* = 6.9 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 14.0 (CH₃), 22.5 (CH₂), 24.6 (CH₃), 24.6 (CH₃), 25.9 (CH₂), 26.0 (CH₂), 29.8 (CH₂), 31.7 (CH₂), 34.1 (CH₂), 37.6 (CH₂), 67.0 (CH₂), 83.7 (C). HRMS–EI (*m*/*z*): [M–CH₃]⁺ calcd for C₁₅H₂₈¹¹BO₃, 267.2134; found, 267.2133.

2-(4'-methylphenethyl)- 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetrahydrofuran (3g).

The reaction was conducted with 114.3 mg (0.50 mmol) of **1g**. The product **3g** was obtained in 59% yield (94.0 mg, 0.30 mmol) as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 1.29 (s, 12H), 1.64–1.70 (m, 1H), 1.77–2.02 (m, 5H), 2.31 (s, 3H), 2.48–2.56 (m, 1H), 2.69–2.81 (m, 1H), 3.86 (t, *J* = 6.7 Hz, 2H), 7.06–7.11 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 20.9 (CH₃), 24.5 (CH₃), 24.7 (CH₃), 25.8 (CH₂), 31.9 (CH₂), 34.0 (CH₂), 39.6 (CH₂), 67.1 (CH₂), 75.2 (brs, B–C), 83.8 (C), 128.1 (CH), 128.8 (CH), 134.8 (C), 139.7 (C). HRMS–EI (*m/z*): [M]⁺ calcd for C₁₉H₂₉¹¹BO₃, 316.2213; found, 316.2212.

2-[4'-(trifluoromethyl)phenethyl]-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetrahydrofuran (3h).

The reaction was conducted with 138.8 mg (0.50 mmol) of **1h**. The product **3h** was obtained in 46% yield (84.3 mg, 0.23 mmol) as a colorless oil.

¹H NMR (400 MHz, CDCl₃, δ): 1.29 (s, 6H), 1.29 (s, 6H), 1.64–1.72 (m, 1H), 1.74–2.04 (m, 5H), 2.62 (dt, *J* = 5.2, 12.7 Hz, 1H), 2.85 (dt, *J* = 5.5, 12.9 Hz, 1H), 3.85–3.89 (m, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 24.6 (CH₃), 24.7 (CH₃), 25.8 (CH₂), 32.3 (CH₂), 34.2 (CH₂), 39.2 (CH₂), 67.3 (CH₂), 75.0 (brs, B–C), 84.0 (C), 124.4 (q, *J* = 272.9 Hz, *C*), 125.1 (q, *J* = 3.8 Hz, CH), 127.9 (q, *J* = 32.1 Hz, *C*), 128.6 (CH), 147.0 (C). HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₉H29¹¹BF₃O₃Na, 393.1823; found, 393.1821.

2-[3'-(trifluoromethyl)phenethyl]-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)tetrahydrofuran (3i).

The reaction was conducted with 122.7 mg (0.50 mmol) of **1i**. The product **3i** was obtained in 63% yield (102.4 mg, 0.28 mmol) as a colorless oil. This product contains small amount of unremovable impurities.

¹H NMR (392 MHz, CDCl₃, δ): 1.29 (s, 12H), 1.62–1.73 (m, 1H), 1.75–2.04 (m, 5H), 2.58–2.66 (m, 1H), 2.81–2.89 (m, 1H), 3.87 (td, *J* = 2.2, 6.8 Hz, 2H), 7.26–7.47 (m, 4H). ¹³C NMR (99 MHz, CDCl₃,

δ): 24.5 (CH₃), 24.7 (CH₃), 25.8 (CH₂), 32.2 (CH₂), 34.1 (CH₂), 39.3 (CH₂), 67.3 (CH₂), 83.9 (C),
122.4 (q, J = 6.6 Hz, CH), 124.2 (q, J = 273.5 Hz, C), 124.9 (q, J = 3.8 Hz, CH), 128.6 (CH), 130.4 (q, J = 31.8 Hz, C), 131.8 (CH), 143.7 (C). HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd for C₁₉H₂₆¹¹BF₃O₃, 393.1823; found, 393.1830.

2-(4'-fluorophenethyl)- 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)tetrahydrofuran (3j).

The reaction was conducted with 122.9 mg (0.50 mmol) of **1j** product **3j** was obtained in 47% yield (75.1 mg, 0.24 mmol) as a colorless oil.

¹H NMR (392 MHz, CDCl₃, δ): 1.29 (s, 12H), 1.64–1.70 (m, 1H), 1.72–2.03 (m, 5H), 2.49–2.567 (m, 1H), 2.72–2.80 (m, 1H), 3.81–3.90 (m, 2H), 6.94 (tt, *J* = 5.4, 7.6 Hz, 2H), 7.11–7.16 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 24.5 (*C*H₃), 24.7 (*C*H₃), 25.8 (*C*H₂), 31.6 (*C*H₂), 34.1 (*C*H₂), 39.7 (*C*H₂), 67.2 (*C*H₂), 75.5 (brs, B–*C*), 83.9 (*C*), 114.8 (d, *J* = 20.8 Hz, *C*H), 129.5 (d, *J* = 7.6 Hz, *C*H), 138.4 (*C*), 161.0 (d, *J* = 243.6 Hz, *C*). HRMS–EI (*m*/*z*): [M–CH₃]⁺ calcd for C₁₇H₂₃¹¹BFO₃, 305.1727; found, 305.1722.

5. Borylation Product Functionalization Procedure

Procedure for the synthesis of trifluoroborate salt 7.

KHF₂ (351.5 mg, 4.5 mmol) was placed in an oven-dried reaction vial. After the vial was sealed with a screw cap containing a teflon-coated rubber septum, the vial was connected to a vacuum/nitrogen manifold through a needle. It was evacuated and then backfilled with nitrogen. This cycle was repeated three times. MeOH (2.0 mL) was added in the vial through the rubber septum using a syringe. After **3a** (212.1 mg, 1.0 mmol) was added to the mixture at room temperature, H₂O (1.0 mL) was added dropwise. After 2 h, the reaction mixture was concerted in vacuo. The resulting solid was filtered with MeOH. The filtrate was concerted in vacuo. The resulting solid was washed with Et₂O to give **7** (132.5 mg, 0.69 mmol, 69%) as a white powder.

¹H NMR (396 MHz, CD₃CN, δ): 0.88 (s, 3H), 1.25–1.32 (m, 1H), 1.68–1.87 (m, 3H), 3.55–3.61 (m, 1H), 3.63–3.70 (m, 1H). ¹³C NMR (99 MHz, DMSO-d₆, δ): 23.6 (*C*H₃), 26.1 (*C*H₂), 34.2 (*C*H₂), 65.4 (*C*H₂). ¹¹B NMR (127 MHz, CD₃CN, δ): 4.30 (q, *J* = 44.8 Hz). ¹⁹F NMR (373 MHz, CD₃CN, δ): – 151.3 (q, *J* = 56.9 Hz). HRMS–ESI (*m/z*): [M–K]⁻ calcd for C₅H₉¹⁰BF₃O, 152.0740; found, 152.0741.

Procedure for the synthesis of arylated product 8 through the stereospecific cross-coupling of 3b with benzofuran.

The stereospecific cross-coupling was performed according to the literature.⁵ A solution of benzofuran (18.4 mg, 0.24 mmol) in THF (800 μ L) was cooled to -78° C and treated with *n*-BuLi in hexane (1.57 M, 153 µL, 0.24 mmol). The reaction mixture was warmed to room temperature and stirred for 1 h. The mixture was then cooled to -78° C and the **3b** (60.4 mg, 0.2 mmol) was added to the mixture as a solution in THF (400 μ L) and the reaction stirred at the same temperature for 1 h. A solution of NBS (42.7 mg, 0.24 mmol) in THF (800 µL) was then added dropwise to the mixture. After 2 h at -78° C, aqueous Na₂S₂O₃ was added and the reaction mixture was allowed to warm to room temperature. The mixture was extracted three times with Et₂O, dried over MgSO₄, and filtered. The resulting crude product was purified by flash column chromatography (SiO₂, Et₂O/hexane, 0:100-2:98) to give the corresponding arylated product 8 (10.1 mg, 0.03 mmol, 17% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃, δ): 1.94–2.07 (m, 3H), 2.17–2.24 (m, 1H), 2.34 (td, J = 4.6, 12.7 Hz, 1H), 2.38–2.43 (m, 1H), 2.48 (td, J = 4.7, 12.8 Hz, 1H), 2.71 (td, J = 4.7, 12.7 Hz, 1H), 4.03 (t, J = 6.5 Hz, 2H), 6.65 (d, J = 0.8 Hz, 1H), 7.13–7.16 (m, 3H), 7.19–7.27 (m, 4H), 7.46 (d, J = 7.8 Hz, 1H), 7.56– 7.55 (m, 1H). ¹³C NMR (99 MHz, CDCl₃, δ): 25.7 (CH₂), 30.9 (CH₂), 36.2 (CH₂), 41.3 (CH₂), 68.4 (CH2), 83.5 (C), 102.6 (CH), 111.1 (CH), 120.7 (CH), 122.6 (CH), 123.6 (CH), 125.7 (CH), 128.3 (CH), 128.4 (C), 142.1 (C), 155.0 (C), 160.7 (C). HRMS-EI (m/z): [M]⁺ calcd for C₂₀H₂₀O₂, 292.1463; found, 292.1464.

6. References

- 1) Wang, Y.; Zarca, M.; Gong, L.-Z.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 7516.
- 2) Organ, M. G.; Ghasemt, H. J. Org. Chem. 2004, 69, 695.
- 3) Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.
- 4) Kalkeren, H. A.; Delft, F. L.; Rutjes, F. P. J. T. Pure Appl. Chem. 2012, 85, 817.
- 5) Hilt, G.; Bolze, P.; Harms, K. Chem. Eur. J. 2007, 13, 4312.

5.0			
<u></u>		UE	
~ <u>~</u>			
		PROCESSING PA	ARAMETERS
N		dc_balance(0, FA	LSE)
		sexp(2.0[Hz], 0.0	[s])
9		<pre>zerofill(1)</pre>	80[8], 100[8])
		fft(1, TRUE, TRU	Ξ)
10		machinephase	
		ppm	
· ·		以下に由来:: UES-052	-pureC-1.jdf
4			
<u> </u>		· · · · · · · · · · · · · · · · · · ·	
		Filename	= UES-052-pureC-2.jdf
0		Author	= element
		Sample Id	$=$ single_pulse_dec = s#361150
		Solvent	= CHLOROFORM-D
		Actual_Start_Time	= 11-JUL-2018 17:17:29
	26.0 24.6 24.5	Revision_Time	= 23-APR-2019 12:38:19
		Comment	= single pulse decoupled ga
		Data_Format	= 1D COMPLEX
0.		Dim_Size X Domain	= 26214
	X : parts per Million ? 13C ^{*4} X : parts per Million? : 13C	Dim Title	= 13C
. 8.		Dim_Units	= [ppm]
		Dimensions	= X
L		Spectrometer	= ECS 400 $= INM - ECS 400$
. • .			
9		Field_Strength	= 9.20197068[T] (390[MHz])
0		X_Acq_Duration	= 1.06430464[s]
ŝ		X Freq	= 98.51479726[MHz]
0	$Me \rightarrow 1$	X_Offset	= 100[ppm]
		X_Points	= 32768
0		X Resolution	= 4 = 0.93958061[Hz]
		X_Sweep	= 30.78817734[kHz]
		Irr_Domain	= 1H
		Irr_Freq Irr_Offset	= 391.78655441[MHz] = 5[ppm]
		Clipped	= FALSE
0		Scans	= 50
e –		Total_Scans	= 50
an 0		Relaxation_Delay	= 2[s]
nud C	Republic to the second	Recvr_Gain	= 60
nqi 🗋	In many or far far far far far far far far far fa	Temp_Get X 90 Width	= 19.6[dC] = 9.11[us]
. 07		X Acq Time	= 1.06430464[s]
	210.0200.0190.0180.0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0	X_Angle	= 30[deg]
		X_Atn X_Dulco	= 4.9[dB]
		Irr Atn Dec	= 22.255[dB]
	04000 010011014	Irr Atn Noe	= 22.255[dB]
	0 0	Irr_Noise	= WALTZ
	142242526931333 66667777733	Decoupling Initial Wait	= TRUE = 1 [e]
	X : parts per Million : 13C	Noe	= TRUE

abundance 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1	The second secon	tion 13			000 000 <th>07 01 0 24.9 24.7 X : parts per N</th> <th>24.5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th> PROCESSING I dc_balance(0, FZ sexp(2.0[Hz], 0. trapezoid3(0[%], zerofill(1) fft(1, TRUE, TRU machinephase ppm 以下に由来:: UES-04 Filename Author Experiment Sample Id Solvent Actual Start_Time Revision_Time Comment Data_Format Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Site Spectrometer Field_Strength X_Acq_Duration X_Freq X_Offset X_Prescans X_Resolution X_Sweep Irr_Domain Irr_Freq Irr_Offset Clipped Scans Total_Scans Relaxation_Delay Recvr_Gain Temp_Get X_90 Width</th> <th>EUES-041-pureC-2.jdf = UES-041-pureC-2.jdf = element = single_pulse_dec = s#500723 = CHLOROFORM-D = 11-JUL-2018 21:10:05 = 23-APR-2019 16:45:22 = single pulse decoupled ga = 1D COMPLEX = 26214 = 13C = [ppm] = x = ECS 400 = JNM-ECS400 = 9.20197068[T] (390[MHz]) = 1.06430464[s] = 13C = 98.51479726[MHz] = 100[ppm] = 32768 = 4 = 0.93958061[Hz] = 30.76817734[kHz] = 1H = 391.78655441[MHz] = 51ppm] = FALSE = 50 = 2[s] = 60 = 9.8[dC] = 9.11[us]</th>	07 01 0 24.9 24.7 X : parts per N	24.5						PROCESSING I dc_balance(0, FZ sexp(2.0[Hz], 0. trapezoid3(0[%], zerofill(1) fft(1, TRUE, TRU machinephase ppm 以下に由来:: UES-04 Filename Author Experiment Sample Id Solvent Actual Start_Time Revision_Time Comment Data_Format Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Dim_Size X_Domain Site Spectrometer Field_Strength X_Acq_Duration X_Freq X_Offset X_Prescans X_Resolution X_Sweep Irr_Domain Irr_Freq Irr_Offset Clipped Scans Total_Scans Relaxation_Delay Recvr_Gain Temp_Get X_90 Width	EUES-041-pureC-2.jdf = UES-041-pureC-2.jdf = element = single_pulse_dec = s#500723 = CHLOROFORM-D = 11-JUL-2018 21:10:05 = 23-APR-2019 16:45:22 = single pulse decoupled ga = 1D COMPLEX = 26214 = 13C = [ppm] = x = ECS 400 = JNM-ECS400 = 9.20197068[T] (390[MHz]) = 1.06430464[s] = 13C = 98.51479726[MHz] = 100[ppm] = 32768 = 4 = 0.93958061[Hz] = 30.76817734[kHz] = 1H = 391.78655441[MHz] = 51ppm] = FALSE = 50 = 2[s] = 60 = 9.8[dC] = 9.11[us]
	210.0	190.0	170.0	150.0	130.0		90.0		50.0	30.0) 10.0	-10.0	X_90_Width X_Acq_Time X_Angle	= 9.11[us] = 1.06430464[s] = 30[deg]
			· · · · · / /			\mathbf{A}	. /			1/1/	\mathbb{K}		X_Atn X_Pulse	= 4.9[dB] = 3.03666667[us]
			265	804	374 - 580 > 504 -	950 × 740 ×	157	334 / 222 / 222 / 222		551 × 081 × 033 ×	544		Irr_Atn_Dec Irr_Atn_Noe	= 22.255[dB] = 22.255[dB] = WALTZ
			162.2	159.8	138.5 129.5 129.5	114.5	83.8	77.5 77.6 76.6 75.5	5	39.6 34.0 31.5 25.8	24.5		Decoupling	= WALTZ = TRUE = 1[e]
Σ.	K : parts per M	Million:13	BC										Noe	= 100

